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Abstract—Development of the Canadian Wetland Inventory
Map (CWIM) has thus far proceeded over two generations, report-
ing the extent and location of bog, fen, swamp, marsh, and water
wetlands across the country with increasing accuracy. Each gener-
ation of this training inventory has improved the previous results
by including additional reference wetland data and focusing on
processing at the scale of ecozone, which represent ecologically dis-
tinct regions of Canada. The first and second generations attained
relatively highly accurate results with an average approaching 86%
though some overestimated wetland extents, particularly of the
swamp class. The current research represents a third refinement of
the inventory map. It was designed to improve the overall accuracy
(OA) and reduce wetlands overestimation by modifying test and
train data and integrating additional environmental and remote
sensing datasets, including countrywide coverage of L-band ALOS
PALSAR-2, SRTM, and Arctic digital elevation model, nighttime
light, temperature, and precipitation data. Using a random forest
classification within Google Earth Engine, the average OA obtained
for the CWIM3 is 90.53%, an improvement of 4.77% over previous
results. All ecozones experienced an OA increase of 2% or greater
and individual ecozone OA results range between 94% at the
highest to 84% at the lowest. Visual inspection of the classification
products demonstrates a reduction of wetland area overestima-
tion compared to previous inventory generations. In this study,
several classification scenarios were defined to assess the effect of
preprocessing and the benefits of incorporating multisource data
for large-scale wetland mapping. In addition, the development of a
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confidence map helps visualize where current results are most and
least reliable given the amount of wetland test and train data and
the extent of recent landscape disturbance (e.g., fire). The resulting
OAs and wetland areal extent reveal the importance of multisource
data and adequate test and train data for wetland classification at
a countrywide scale.

Index Terms—Canada, google earth engine, multisource data,
random forest, remote sensing, satellite data, wetland.

I. INTRODUCTION

UNTIL recently, the production of large-scale land cover
maps through the classification of remote sensing obser-

vations required substantial amounts of time, labor, and com-
plex methodologies. Additionally, the resolution of these maps
tended to be coarse due to the nature of historically free remote
sensing data, such as MODIS (250 m) and Landsat (30 m) [1].
Despite such difficulties and limitations, large-scale land cover
data are essential for a broad range of applications related to
environmental management, climate change, and the assessment
of major habitats. Examples of such land cover data in Canada
include the 30 m Annual Crop Inventory (ACI) [2], and the
30 m Land Cover of Canada (LCC) [3], the former spanning the
agricultural lands of southern Canada, while the latter spanning
the entire country [4]. These datasets provide crucial spatial
information related to the location of numerous anthropogenic
and nonanthropogenic land covers, including urban, agriculture,
forest, herbaceous, and barren landscapes [5]. However, these
datasets lack detailed wetland spatial information at the level of
class. Such information that would be helpful for a multitude of
environmental applications, given the different functions and
distribution of wetlands at the class level [6]. An estimated
16% of Canada is currently covered in wetlands [7], and given
the relatively recent and growing impacts of climate change
(permafrost melt, changes to temperature, and precipitation),
wetland spatial data at the level of wetland class is an increasing
necessity [8].

Wetlands are habitats characterized by a dominance of hy-
drophytic vegetation and saturated soils, though these character-
istics manifest in various visually and ecologically distinct ways,
which are sometimes grouped into different classes [9], [10].
In Canada, wetland classes can be defined following the
Canadian Wetland Classification System (CWCS) [11]. The
CWCS outlines five wetland classes of bog, fen, swamp, marsh,
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and shallow and open water based on shared broad vegetation
and hydrological patterns. To briefly summarize the CWCS, bog
wetlands are ombrotrophic peatlands dominated by sphagnum
moss, fen wetlands are also peatlands, but are minerotrophic
dominated by both moss and graminoid vegetation, swamp
wetlands are dominated by woody vegetation, and marsh are
wetlands that experience water fluctuations and are dominated
by emergent herbaceous vegetation [12], [13]. Each class
functions somewhat differently and in ways that benefit humans
and other animals across the country and the globe via habitat
provision, carbon storage, flood mitigation, and food provision,
among many other benefits [14]. These five classes form the
basis of wetland classification in Canada using remote sensing,
but the products and methods are almost always implemented
at small (at least relative to entire provinces and ecozones),
geographical scales, such as that of watersheds, conservation
areas, protected park, wildlife areas, municipalities, and at the
scale of agricultural or industrial development [1].

The lack of large geographical scale wetland-class spatial
information is likely the result of several factors, including
limited wetland-related ground-truthing fieldwork, associated
difficulties related to collecting wetland-related test and train
data, difficulties inherent to the discrimination of wetland classes
using remote sensing techniques, including the lower resolution
of free Landsat data, and ecological characteristics inherent to
wetlands [15]. For example, wetlands of different classes will
often share visually similar vegetation patterns (such as bog and
nutrient-poor fen) and are typically differentiated using field-
validation of indicator species, nutrient quality, or subsurface
hydrology [11] all of which is not easily resolved by open
remote sensing data [16]. Additionally, some wetland classes,
such as marsh, experience dynamic changes to vegetation and
hydrology over different seasons and are impacted by weather
events such as rain, impacting spectral signatures captured by
remote sensing data over time [17]. To make matters more dif-
ficult, most wetlands within close distances of roads and easily
accessible locations have been damaged or destroyed. As such,
acquiring wetland ground-truth data requires labor-intensive
field campaigns. For all of these reasons, remote sensing of
wetlands is a relatively challenging problem even at small (less
than that of a province or ecozone) geographical scales [18].

In more recent times, however, there has been increased inter-
est in wetland-class mapping [1]. This has resulted in a relatively
substantial amount of research dedicated to mapping wetland
classes around the world [19]. Additionally, there has been a
boom in the production of large-scale remote-sensing thematic
datasets, attributed to recent advancements in computational
and software development, including cloud computing, and an
increase in the amount and availability of multisensor remote
sensing datasets. This boom has similarly resulted in more large-
scale wetland thematic data. In China, for example, Mao et al.
[20] produced a national-scale wetland map at the class level
using object-based image analysis, hierarchical classification,
and Landsat-8 imagery, estimating roughly 4510 484 km2 of
wetlands, a dominance of inland marsh, and rarity of coastal
swamp wetlands. Similarly, in Canada, Wulder et al. [6] assessed
the status of wetlands at the level of treed wetland and nontreed
wetland across forested ecozones of Canada over 33 years using
Landsat imagery composites.

To address the data gap in Canada related to large-scale
wetland spatial information at the class level, Mahdianpari et al.

[21] developed the Canadian Wetland Inventory Map (CWIM),
a product that describes wetland class across all of Canada using
advanced remote sensing and cloud computing techniques. This
project has been implemented over several generations, each
improving on the last. The original CWIM (herein CWIM1)
produced a 10m wetland inventory map of Canada using mul-
tiyear and multisource [Sentinel-1 (S1) and Sentinel-2 (S2)]
remote sensing data and an object-based random forest (RF)
methodology within Google Earth Engine (GEE) [21]. Given the
distribution of testing and training data available to the project
at the time, provincial boundaries were selected as processing
units. Overall accuracies (OAs) ranged from 74% to 84%, de-
pending on the province.

To improve on the results of the CWIM1, soon after, the
second generation of the CWIM (herein CWIM2) was developed
[22]. Changes to the original CWIM1 methodology included
integrating a larger pool of wetland testing and training data,
including filling some data gaps in Northern Canada and pro-
cessing at the scale of ecozone rather than province. An ecozone-
scale processing unit was chosen rather than a provincial-scale,
given a greater geographical distribution of test and train data
available to the CWIM2 and the ecologically relevant scale of
ecozone units. Ecozones divide Canada into 15 ecologically
distinct areas and are a more meaningful unit ecologically than
political boundaries [23]. OA results ranged from 76% to 91%,
a 7% improvement over the CWIM2. Despite the improvement,
issues remained with an overestimation of wetland classes,
particularly swamp and lower accuracies in regions with little
ground truth.

The purpose of this study is the implementation of the third
generation of the CWIM (CWIM3), which will integrate more
remote sensing datasets to improve OA and reduce wetland
area overestimation. Wetland-remote sensing research over the
past 40 years [1] has demonstrated the value of multisensor
and multifeature methods to discriminate wetland classes better.
Generally, in wetland-remote sensing research, higher OA and
better class discrimination are achieved when integrating mul-
tiple features from multiple optical, multiple SAR, and various
other datasets such as elevation, temperature, etc [8]. Such a
multifeature methodology is challenging to implement at a large-
scale given restriction in data coverage of some remote sensing
datasets (e.g., the Canadian DEM is not present in Northern
Canada), cost (LiDAR and other higher spatial resolution data
across Canada are limited and costly to obtain), and difficultly
as a result of computation power and processing. However, with
time and through collaboration, advances in the technical capa-
bilities to integrate multiple datasets for large-scale classification
are becoming more feasible to be taken advantage of by the
CWIM3.

As such, this research aims to develop the third generation of
the CWIM, which will be developed by integrating a multitude
of new datasets to improve wetland class discrimination. These
datasets include ALOS PALSAR-2, 10 m Canada-wide elevation
data, city light information, and climate data (temperature and
precipitation). Additional effort has been dedicated to refining
the test and train datasets within each ecozone across Canada.
Specific objectives are to 1) improve the accuracy of the
CWIM3 compared to the CWIM2, 2) reduce wetland class
area overestimation, and 3) improve on the processing time
required to produce a classified wetland map for each ecozone.
Several research questions are also answered by defining
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TABLE I
WETLAND AND NON-WETLAND TEST AND TRAIN POLYGONS PER ECOZONE. DATA IN BOLD TEXT HIGHLIGHTS ECOZONES WITH LOW AMOUNTS OF

WETLAND TEST AND TRAIN DATA RELATIVE TO OTHER ECOZONES

Ecozone Abbreviations are As Follows: Atlantic Maritime (AM), Boreal and Taiga Cordillera (BCTC), Boreal Plains (BP), Boreal Shield East (BSE) and West
(BSW), Hudson Plains (HP), Mixedwood Plains (MP), Montane Cordillera (MC), Northern Ecozones (NE), Pacific Maritime (PM), Prairies (Pr), Taiga Plains (TP),
and Taiga Shield (TS).

different classification scenarios, which determine the effect of
preprocessing steps, integration of various sources of remote
sensing and nonremote sensing data, and processing units
(i.e., ecozone-by-ecozone vs. the entire country) on wetland
classification accuracy. The results are then compared to other
similar large-scale Canadian classification datasets.

II. STUDY AREA

The study area encompasses the entire landmass of the country
of Canada, totaling 9.9 million km2. Processing was imple-
mented at the scale of ecozone. Canada is divided into 15
ecozones, the boundaries of which define an ecologically distinct
area characterized by interacting biotic and abiotic factors [23].
Ecozones often cross multiple provincial boundaries and range
in size between 117 240 km2 at the smallest to 1 857 530 km2

at the largest [22]. Table I summarizes the general landscape
characteristics of each ecozone. For purposes of this research,
we modified some ecozone boundaries due to limited testing and
training data distribution, leaving 13 ecozone processing units.
As was implemented in the CWIM2, we group the three eco-
zones that comprise Northern Canada (Southern Arctic, North-
ern Arctic, and the Arctic Cordillera) due to the limited amount
of wetland test and train data available in this part of Canada.
This area is referred to as the Northern Ecozones herein. For
similar reasons, we group the Boreal and Taiga Cordillera into a
single unit, named Boreal/Taiga Cordillera ecozone. Given the
size and abundance of training data in the Boreal Shield ecozone,
we split the Boreal Shield down the middle into the Boreal Shield
West and Boreal Shield East for ease of processing. See Fig. 1
for the distribution of these ecozones across Canada.

III. METHODS

A. Test and Train Data Preparation

Wetland test and train data (the distribution of which can
be seen in Fig. 1) has been sourced from many partners to
produce the CWIM. Because these datasets were collected under

varying circumstances and for differing purposes, an effort was
made to better standardize and improve the cohesiveness of
these wetland datasets before producing the CWIM2 [22]. This
included modifying wetland boundaries, altering class labels,
removing potentially inaccurate polygons, and filtering by size
by removing any polygons smaller than one hectare and greater
than 100 hectares because small polygons would not contain any
helpful spectral information for the classifier and large polygons
had a higher chance of being highly spectrally heterogeneous
[22]. A sample of the testing and training data polygons can be
seen in Fig. 2.

To help improve the results of the CWIM3, additional effort
was dedicated to improving the quality and quantity of the
nonwetland testing and training data. Nonwetland data helps
to reduce overclassification of wetland areas in remote sensing
supervised classification methods. For example, a dataset with
a representative sample of forest data can help to reduce over-
classification of woody wetlands, such as swamp. An issue with
the test and train data applied to the CWIM2 was an excess of
wetland test and train data relative to nonwetland test and train
data. This likely contributed to an overestimation of wetland
classes in certain ecozones, particularly swamp. Mahdianpari
et al. [12] suggested that a quality testing and training dataset
represents the general land cover of the study area. As such, the
ratio of wetland and nonwetland data was modified to ensure
a more considerable amount of nonwetland polygons in most
ecozones. The Hudson Plains ecozone is an exception given
its overwhelming dominance by wetlands. Because there was a
limited amount of nonwetland land cover data provided directly
to this project, nonwetland data was obtained via governmental
datasets such as the 2015 Land Cover [3]. Considered upland
classes included forest, shrubland, grassland, agriculture, urban,
and barren/exposed, though these are reported as a single land
cover class (nonwetland) in the final results.

The final test and train datasets used to produce the classifi-
cation for each ecozone are outlined in Table I. In total, the final
dataset is comprised of 8804 wetlands and 15 691 nonwetland
polygons. In each ecozone, the dataset was split 70/30 into
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Fig. 1. Canadian Ecozones, modified for purposes of implementing the CWIM3. Wetland testing and training data are visible in black and red.

Fig. 2. Examples of wetland polygons that comprise the testing and training
datasets used in developing the CWIM3 overlaid Sentinel-2 summer imagery.

training and testing datasets, respectively. Note that due to the
limited amount of wetland data available in some ecozones,
the bog class was not considered in the Northern Ecozones,
Montane Cordillera, and Prairies. However, any occurrence of
bog in these ecozones will likely be classified as fen. Bog and
fen share many similar ecological features, and it was deemed
acceptable to consider only the fen class.

B. Satellite Imagery Processing

All satellite imagery were processed in the GEE cloud com-
puting platform [24]. In this study, the GEE data catalog was
employed to collect satellite imagery over different Canadian
ecozones during the summers of 2017–2020 from S1 and S2
and 2017–2018 to develop an ALOS PALSAR-2 yearly mosaic.

The S1 mission provides data from a dual-polarization C-band
Synthetic Aperture Radar (SAR) instrument. This collection in-
cludes the S1 Ground Range Detected (GRD) scenes, processed
using the S1 Toolbox to generate a calibrated, ortho-corrected
product [25]. The collection is updated daily. New assets are
ingested to GEE within two days after they become available. In
this study, a total of 6222 and 27 102 Level-1 S1 GRD images
were acquired in the HH–HV and VV–VH polarization modes,
respectively. Different preprocessing steps, including thermal
noise removal, radiometric calibration, terrain correction using
SRTM 30 (or ASTER DEM for areas greater than 60° latitude,
where SRTM is not available) were carried out in GEE on each
scene of S1 data [i.e., interferometric wide (IW) mode with a
resolution of 10 m]. An adaptive Lee sigma filter with a pixel
size of 7×7 was then applied to reduce the speckle noise from S1
data. Median and standard deviation mosaics of the time stacks
of S1 imagery were then extracted and employed for wetland
classification.
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TABLE II
LIST OF EXTRACTED BANDS, FEATURES, INDICES, AND AUXILIARY DATA USED IN THIS STUDY

∗These numbers represent the SAR pixel spacing.

S2 is a wide-swath, high-resolution, multispectral imaging
mission with a global five-day revisit time. The S2 Multispectral
Instrument (MSI) collects data in 13 spectral bands: visible and
NIR at 10 m, red edge, and SWIR at 20 m, and atmospheric bands
at 60 m spatial resolution. In this study, S2 Surface Reflectance
(SR, Level-2A) and Top of Atmosphere (TOA, Level-1C) im-
agery were collected on a tri-monthly period, from June to
August. This is because generating a 10-m cloud-free Sentinel-2
composite for Canada over a shorter time was challenging. A
total of 115 747 Sentinel-2 images (with less than 20% cloud
cover) from summer 2017 to 2020 were queried from the GEE
data catalog.

Novel to the CWIM methodology is an L-band ALOS
PALSAR-2 mosaic, a seamless SAR dataset created by mosaick-
ing ALOS PALSAR-2 SAR imagery strips. In this dataset, the
strip data were selected through visual inspection of the browse
mosaics available over the period, with those showing minimum
response to surface moisture preferentially used. Several optical
and SAR features were extracted from these satellite imagery
and were incorporated into the classification step (see Table II
and Fig. 10).

C. Auxiliary Data Preparation and Processing

The use of exclusively spectral classification models for large-
scale land cover mapping may suffer due to dramatic changes
in climatic and ecological characteristics across geographical
gradients, such as ecozones and affect the final classification
accuracy. For example, the ecological characteristics of wet-
land classes, such as vegetation composition and structure, soil
type, and hydrology can vary under the ecozones’ climatic and
ecological parameters. Thus, a fen presented in the Atlantic
Maritime and characterized by a maritime climate (i.e., cool and
moist) may appear spectrally different from a fen in the Montane
Cordillera ecozone, with mainly continental climate (warm and
dry). Thus, signatures of wetland classes illustrate a possibly
wide range of species composition, vegetation physiognomy,
and land management strategy, all of which are combined to
represent a single land cover class over a large geographic region
in the final classification product.

To address such problems associated with large-scale land
cover mapping, two common strategies have been employed in
the literature: 1) dividing large-scale study areas into several
small parts and applying classification models within small
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Fig. 3. Comparisons between classification accuracies obtained for different classification scenarios outlined in Table III.

Fig. 4. The class composition of the total wetland area in each ecozone.

regions [26] and/or 2) incorporating environmental indices into
the classification scheme, which allow classification models to
take into account regional variations within different ecozones
[27]. Both techniques have been examined in this study to
identify which method is more effective for improving wetland
classification results.

A Canada-wide digital elevation model was introduced to the
CWIM to improve wetland discrimination. In particular, it is
expected that adding DEM data will improve swamp class dis-
crimination and help to reduce wetland area overestimation. The
30 m SRTM data covering southern Canada was resampled to 10
m and used alongside the 10 m Arctic DEM covering Northern
Canada. Slope and aspect were also extracted from DEM and
added to the classification scheme. Nighttime light data was
used as another input feature. The Defense Meteorological
Program (DMSP) Operational Line-Scan System (OLS) has a
unique capability to detect visible and near-infrared (VNIR)
emission sources at night. In particular, the nightlight data is
a monthly average radiance composite image using nighttime
data from the Visible Infrared Imaging Radiometer Suite
(VIIRS) Day/Night Band (DNB). This dataset helps distinguish
artificial surfaces from other land covers. Finally, climate data,
including temperature and precipitation, with a resolution of

25 km, were added to our analysis from the ERA5
fifth-generation ECMWF atmospheric reanalysis of the
global climate (Copernicus Climate Change Service, 2017).
In particular, a 10-year (2010–2020) average and standard
deviation in monthly precipitation and temperature were
extracted from the climate data. It is expected that long-term
precipitation data capture spectral differences between wetland
classes in ecozones with different climates, such as the
Atlantic Maritime (maritime climate), the Montane Cordillera
(continental climate), and parts of the Northern Ecozones (the
coldest and driest of all ecozones). Long-term temperature
data also helps to capture the timing of maximum vegetation
growth within different ecozones. All features extracted from
satellite imagery and auxiliary data were then incorporated into
an object-based classification scheme in various classification
scenarios. A visual illustration of auxiliary datasets can be
found in the Fig. 10.

D. Classification and Accuracy Assessment

In this study, an object-based classification scheme consisting
of a simple noniterative clustering (SNIC) method and an RF
algorithm were used. Object-based classification was chosen
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Fig. 5. Comparison of the Boreal Plains wetland classification results for the
CWIM2 (left) and CWIM3 (right). Green represents non-water wetland, blue
represents water, and grey represents non-wetlands.

as it produces objects that are more meaningful and tends to
produce higher OAs when classifying wetlands compared to
pixel-based classification [1]. SNIC is a noniterative, region-
growing approach for generating superpixels, wherein centroids
of clusters are evolved based on online averaging. SNIC uses
a priority queue, 4- or 8-connected candidate pixels to the
currently growing superpixels cluster and gives a higher priority
to the pixels with the smallest distance from the centroid to
join the cluster [28]. The algorithm takes advantage of both
priority queue and online averaging to evolve the centroid once
each new pixel is added to the given cluster. Accordingly,
SNIC is faster and demands less memory relative to similar
clustering algorithms (e.g., Simple Linear Iterative Clustering).
This is attributed to the introduction of connectivity (e.g., 4-
or 8-connected pixels) from the beginning of the algorithm,
resulting in fewer distances during centroid evolution.

Fig. 6. Comparison of the Taiga Plains wetland classification results for the
CWIM2 (left) and CWIM3 (right). Green represents wetland, blue represents
water, and grey represents nonwetlands.

The RF algorithm was implemented for classification in this
study. RF is an ensemble learning method comprised of a group
of tree classifiers handling high-dimension remote sensing data
[29]. As such, RF is not prone to overfitting and performs well
with noisy input data. Assigning a label to each object is based on
the majority vote of trees [30]. RF can be tuned by adjusting two
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Fig. 7. Comparison of the Prairies wetland classification results for the
CWIM2 (top) and CWIM3 (bottom). Green represents nonwater wetland, blue
represents water, and gray represents nonwetlands.

input parameters, namely the number of trees (Ntree), which is
generated by randomly selecting samples from the training data,
and the number of variables (Mtry) used for tree node splitting.
An automated hyperparameter tuning was employed to select
the Ntree of 100 and Mtry set to the square root of the number
of features [31].

In this study, several classification scenarios were defined to
assess the effect of preprocessing and the benefits of incorpo-
rating multisource data for large-scale wetland mapping (see
Table III). In particular, both TOA and SR S2 data were used to
identify the importance of applying atmospheric correction on
the final classification results. Next, three classification scenarios
were defined to determine the usefulness of combining optical
and SAR data for large-scale wetland applications [10]. The
effect of adding auxiliary data, including DEM, environmental
data (i.e., precipitation and temperature), and nighttime data
were also explored. The importance of applying classification
models at various scales (i.e., ecozone-by-ecozone vs. the entire
country) was determined by comparing classification models
applied ecozone-by-ecozone versus the entire country. This also

Fig. 8. Classification of wetland area in the Prairies ecozone from various data
sources, including the CWIM3.

Fig. 9. Confidence in the accuracy of the CWIM based on wetland testing and
training data distribution and location of recent fires.
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Fig. 10. Auxiliary datasets used in the CWIM3 including a Canada-wide 10 m digital elevation model (a), nighttime light data (b), precipitation (c),
and temperature (d).

identifies whether auxiliary data are more influential to the
classification results or applying classification models in small
ecozones.

OA and Kappa coefficients were used to evaluate the capa-
bility of the wetland classification in each ecozone. In addition,
the average F1-score for wetland and nonwetland classes were
measured. F1-score (range 0–1) is the harmonic average of
precision and recall and is useful for unbalanced validation data.

IV. RESULTS

Fig. 3 compares the classification accuracies achieved under
different wetland classification scenarios outlined in Table III.
Comparing classification scenarios 1 and 2 reveals that atmo-
spheric correction of S2 data is essential, as an improvement of
about 2.5% was achieved when surface reflectance data is used.
Overall, the classification accuracy obtained from single source
SAR data is significantly lower than single-source optical data
for wetland mapping (see S2 vs. S3). However, the inclusion
of both types of data (i.e., optical and SAR) improved the
classification accuracy by about 6% compared to single-source
optical data (see S2 and S4) and 18% relative to exclusive use

of SAR data (see S3 vs S4). An additional 2% improvement is
obtained through the inclusion of DEM data. This is attributed
in part to the improvement in discrimination between the forest
and swamp classes. Finally, the classification accuracy exceeded
90% when other auxiliary data, namely precipitation, tempera-
ture, and nighttime data, were incorporated in the classification
scheme in scenario 6.

Regarding the classification scale for large-scale applications,
the results confirmed the necessity for performing classification
models ecozone-by-ecozone rather than the entire country. For
example, classification scenarios 5 and 7, as well as 6 and 8
use the same input features albeit within different geographic
scales. In both cases, significant improvement was achieved
for classifications through the ecozone-by-ecozone strategy.
Although previous studies suggested that for large-scale land
cover mapping either inclusion of auxiliary data or applying
different classification models within a small area should be
sufficient [32]. This does not hold for a country like Canada,
where ecological and climatic features can vary even within a
single ecozone.

Based on the results of classification scenarios, classification
scenario S6 was selected to produce final classification results.
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TABLE III
WETLAND CLASSIFICATION SCENARIOS EXAMINED IN THIS STUDY

TABLE IV
OA RESULTS FOR THE CWIM3 AND THE CWIM2 FOR EACH ECOZONE

S6 produced an average OA of 90.53% and an average Kappa
coefficient of 0.87 across all ecozones. This is an increase of
4.77% in terms of OA compared to CWIM2, which has an
average OA of 85.76%. At the level of ecozone, OAs range
between 94% at the highest (Atlantic Maritimes and Prairies)
and 84% at the lowest (Boreal and Taiga Cordillera). This pattern
is similarly reflected in the CWIM2, though with lower OA per-
centages, the highest being 91% (Prairies) and the lowest being
76% (Boreal and Taiga Cordillera). Table IV further outlines the
OA percentages across each ecozone for both the CWIM2 and
the CWIM3. For each ecozone, the OA percentage increased by
at least 2% and at most 8%. The smallest OA increase compared
to the CWIM3 occurred in the Boreal Plains ecozone, at 2%.
The greatest OA increase compared to the CWIM2 occurred in
the Taiga Shield ecozone at 8%. A majority of ecozones (5 out
of 13) experienced an OA increase of 5%.

Across Canada, the results of the CWIM3 reveal an esti-
mated 16.69% of wetlands. Fig. 4 displays the distribution of
wetlands across the country for each class. Spatial patterns of
wetland classes are well preserved in the map, and the prevalence
of wetland classes is clear in the Hudson Plains and Boreal
Plains ecozones. Wetlands generally follow a central longitu-
dinal distribution across the country and are less common in the
north and the south. Compared to other areas, the water class is
less prevalent on the west side of the country.

Table V outlines the percentage of wetlands per ecozone ac-
cording to the CWIM3. The results of the CWIM3 are compared
with other estimates of Canadian wetland coverage per ecozone
by other related research investigating wetland change detection
across Canada’s forested ecozones [6] and estimates of wetlands
extent by Environment and Climate Change Canada [7]. The
Hudson Plains ecozone has the greatest total area of wetland,
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TABLE V
PERCENT COVERAGE OF WETLANDS PER ECOZONE AS REPORTED BY THE CWIM3, [7] AND [6].

followed by the Boreal Plains and Taiga Plains. Ecozones with
the fewer areas of wetlands are the Boreal and Taiga Cordillera
ecozone and the Montane Cordillera. This pattern is similarly
reflected in [3] and [9].

Fig. 7 displays the class composition of the total wetland area
in each of the 13 ecozones. Excluding water, fen and bog are the
most dominant wetland classes in Canada, followed by swamp
and marsh. The dominant wetland class (excluding water) in the
Hudson Plains ecozone is bog, followed by fen, then swamp,
and marsh. The dominant wetland class in the Boreal Plains
ecozone is fen, followed by bog, then marsh, and swamp. In
the Boreal and Taiga Cordillera ecozones, fen and swamp cover
the greatest wetland areas, followed by bog and marsh. In the
Montane Cordillera ecozone, the marsh covers most of the areas,
followed by fen and swamp. Visual comparison of ecozones
across the CWIM2 and CWIM3 reveals a substantial reduction
in the total amount of overestimated wetland area in all ecozones.
Visual analysis of the Boreal Plains ecozone, for example, seen
in Fig. 5, reveals a reduction of total wetland areas and a
better concentration of those wetlands along the northern region
of the ecozone when comparing the CWIM2 to the CWIM3
results. Classification noise is also reduced between CWIM
generations.

Similar results can be seen in the Taiga Shield ecozone (see
Fig. 6), where wetland areas are better concentrated within areas
characterized by lowlands and plains [33] along the ecozone
boundary on the northeast side. Compared to the CWIM2, there
is much less wetland area in the south and along the south-west
boarder of the boundary that lies along the Mackenzie Mountain
range. Again, there is a reduction in classification noise between
map generations, resulting in a more clear visualization of areas
that contain a high concentration of wetland area.

Fig. 7 shows the minimal wetland area present in the highly
agricultural Prairies ecozone described by the CWIM2 and
CWIM3. Though changes appear to be broadly minimal between
these generations, wetlands that were not captured previously
in the CWIM2 have been captured by the CWIM3. This is
particularly the case along the east side of the ecozone in and
around Lake Winnipeg, where there is a higher concentration
of wetlands (particularly peatlands) relative to the rest of the
highly developed area. As is the case with other ecozones,
general wetland noise has been reduced between generations
as well.

Fig. 8 also compares the classification of wetlands at a location
in the Prairies ecozone from various data sources, including the
CWIM3, CWIM2, 2015 LCC, and ACI maps. When compared
to both the CWIM2 and the 2015 LCC, the CWIM3 better
captures the extent of the wetlands as seen on the ground (in
the optical imagery at the bottom of the figure), particularly
those wetland areas that are long and thin in shape. Generally,
the CWIM2 and the 2015 LCC datasets underestimate overall
wetland area at this location in the Prairies ecozone. The CWIM3
results, at least in terms of wetland extent, is comparable to that
seen in the ACI, however the CWIM3 provides the added benefit
of discriminating wetland area at the level wetland class, rather
than only describing wetlands as a single class, as is the case
with the ACI dataset.

V. DISCUSSION

The resulting pan-Canadian wetland map here extends on our
previous work focusing on generating high-resolution wetland
data, by which an overall improvement of about 10% and 5% in
accuracy obtained relative to the CWIM1 [21] and CWIM2 [22],
respectively. The accuracy of 10 m resolution CWIM3 produced
here is 90.53% that are comparable with other Sentinel-based
large-scale land cover mapping globally [32], [34]. However,
general land cover classes (e.g., water, bareland, and cropland)
are much easier to be delineated compared to ecologically
similar wetland classes separated in this study. The results are
also comparable with Landsat-based large scale wetland maps
produced in China [20]. For example, a recent study focusing
on national wetland mapping in China reported an accuracy of
95.1% using Landsat data. This, however, was obtained with four
rounds of manual editing, which improved the accuracy from
80.6% to 95.1% [20]. Although a direct comparison between the
accuracy obtained from the pan-Canadian Sentinel-based wet-
land maps (i.e., the CWIM generations) with the Canada-wide
Landsat-based map [6] and wetland maps from other sources
[7] is impossible, as the accuracies have not been reported from
the latter studies, there is a general agreement between areal
percentages of wetlands found in this study with the existing
literature.

Given the inherent difficulties associated with wetland clas-
sification using automated remote sensing methods [15], and
the variation in the amount of wetland testing and training data
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available to the CWIM3, the accuracy of the CWIM3 will vary
across space, and it is likely that in certain areas, the accuracy
will be less than the stated OA. Additional confounding factors,
such as natural disasters like fire, can also reduce the accuracy
of wetlands in disturbed areas. To better communicate this issue,
a confidence map was developed using testing and training data
distribution and the area of recent fires from 2010 to 2020 [35].
The confidence map is displayed in Fig. 9 and was developed
using a simple multicriteria analysis. In this map, the darker
colors represent areas with greater confidence in the results
of the wetland map, whereas the lighter colors represent areas
where there is less confidence in the results of the classified
map. Generally, confidence decreases moving north as a result
of a lack of substantial testing and training data.

Despite the substantial contribution of wetland training and
testing data from many partners, there remain large expanses
across many ecozones where there is little or no wetland data. Al-
though [12] suggests that an optimal dataset is well-distributed,
this is a difficult challenge to address given the large size of most
of these ecozones and given the substantial portion of Canada
that is generally inaccessible to standard field campaigns. In
Fig. 1, it can be seen that there is a lack of data in ecozones in
northern parts of Canada, particularly in the Northern Ecozones
and Taiga Shield given the large sizes of these ecozones. There
is also a relative lack of testing and training data in the Pacific
Maritime and Montane Cordillera ecozones in western Canada.

Consideration should also be given to the issue of spatial
autocorrelation, particularly when considering the OA results
per ecozone, and the reliability of the CWIM3 map. Spatial
correlation could result in an overestimation of accuracy when it
is not assessed. Because spatial autocorrelation of the testing and
training data was not considered during this research (nor during
the research to develop the CWIM2), and given that spatial
autocorrelation is inherent to remote sensing data, the CWIM3
OA results are likely to be higher than what is represented by
the map when compared to real life. Spatial autocorrelation
will certainly contribute to OA results because our wetland
datasets were generally collected via field campaigns that cover
only very small geographical areas, and were collected not for
nonremote sensing purposes. Consider the Taiga Plains ecozone,
where wetland data available to this research is concentrated in
a small area along the south-east, or the Boreal Shield East eco-
zone, where wetland data is largely concentrated in and around
some populated areas in Newfoundland. Future generations of
the CWIM should address or assess the issue of spatial auto-
correlation, using Moran’s I or implementing recent advances
by [31].

Comprehensive classification of each ecozone is necessary
to ensure wetlands are not overestimated, thus the need for
nonwetland test and train data. For the CWIM3, this information
was obtained from the 2015 LCC [2] dataset available via the
Government of Canada. The accuracy of this dataset is variable
across land cover classes and geographical areas. As such,
some of the nonwetland land cover test and train data used in
the CWIM3 are likely to include mixed land cover signatures.
Future work may dedicate effort to improving the boundaries of
these nonwetland land cover test and train data to include less
land cover mixing, particularly along the polygon boundaries.
This may also require refinement of the number of nonwetland

land cover classes considered. The CWIM3 considered forest,
shrubland, grassland, agriculture, urban, and barren land cover.
However, an increase in the number of nonwetland classes con-
sidered (sub-grassland classes, subforest classes, subshrubland
classes) may help to increase accuracy.

Improvements across the CWIM2 and CWIM3 are a result of
many changes made in the processing and integration of spatial
data across Canada, such as the inclusion of additional environ-
mental datasets and satellite data. Changes to OA are also a result
of direct modifications made to training and testing data inputs
between the CWIM2 and CWIM3. The CWIM2 was developed
using datasets that were wetland-dominant, regardless of actual
proportion of wetland area in the landscape. However, based on
research by [12], a choice was made to improve the relative
proportions of nonwetland and wetland training and testing
data, based on the general landscape of each ecozone, while
developing the CWIM3. For example, most ecozones are not
dominated by any wetland class, rather are dominated by forest.
Thus, training and testing data in most ecozones were modified
to include a greater proportion of forest training and testing data
relative to wetland. As such, improvements to OA across CWIM
generations is not only due to integration of new environmental
and satellite datasets, but is likely a result of changes to training
and testing datasets. In this research, we do not assess how much
of the change to OA in each ecozone is due to the modified
training and testing dataset, however it is likely not negligible.

The resolution of the CWIM3 should be taken into con-
sideration, particularly when examining areas in and around
developed areas. Wetlands in these areas tend to be fragmented,
have modified vegetation patterns, and are often smaller in size
beyond the resolving power of 10 m satellite data [16]. As such,
there should be cautious consideration when using the CWIM3
to examine wetlands in and around areas under major influence
of anthropogenic land use. It is recommended that, in those
cases, to apply a classification using higher-resolution datasets.

The results of the CWIM3 emphasize the importance of
inclusion of climate and ecological information when mapping
natural ecosystems at a scale as large as Canada. The Cana-
dian landscape is far from uniform, characterized by mountain
ranges, far-reaching plains, forest, and maritime and continental
climate areas. The characteristic landscape morphology and
climate of distinct ecological areas across Canada (defined by the
boundaries of Ecozones) control the formation and expression
of wetland distribution, morphology, and vegetation expression.
Analysis of classification accuracy results with and without con-
sideration for climate and ecological variation in ecozone reveals
the necessity of such datasets for mapping Canada’s wetlands.
Ecozones can be further broken down into ecoregions [23],
areas of even more significant ecological similarity. Integration
of ecoregion information in future work may further help to
improve wetland accuracy.

Future improvements to the CWIM3 may consider integrating
additional satellite datasets such as Hybrid Compact Polarimetry
(HCP) data from RADARSAT Constellation Mission (RCM)
satellites. Multiseason data has proven to impact smaller-scale
wetland classification research accuracy positively and may also
be possible. However, there will be some consideration given
the difficultly obtaining leaf-off season optical data across the
entirety of Canada given issues with cloud cover. This will also
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increase processing requirements due to a two-fold increase
in data inputs. Future work should also integrate additional
topographic variables proven to effectively detect wetlands and
were not used in the development of the CWIM3, such as
the topographic position index [32] and topographic wetness
index [33].

Another consideration should be to utilize time-series
methodologies such as that performed by [9] to produce low-
noise and higher consistency satellite data mosaics. Though
perhaps not feasible in the immediate future, an effort to gather
wetland test and train data at the subclass level (wooded bog,
wooded fen, shrub swamp, and emergent marsh), etc. may help
improve CWIM results. However, most wetland test and train
data available to the CWIM are not provided as such, and most
are categorized at the level of five classes. Additionally, this will
reduce the total number of per-class wetland testing and training
data to ingest into the classification methodology.

Future generation of CWIM maps should also focus on im-
proving the accuracy of wetland maps through the application
of advanced tools, such as deep learning. Although this may
not be possible very soon, as the performance of deep learning
tools greatly depend on the availability of large amount of
well-distributed training dataset.

VI. CONCLUSION

While a problematic endeavor, large-scale wetland classifi-
cation has become increasingly simplified due to advances in
remote sensing satellite data availability, machine learning, and
cloud computing. Until recently, Canada has lacked a nationwide
data source describing wetland spatial data specifically. Other
national data products such as the ACI [1] and the LCC [2]
underestimate wetland extent and do not resolve wetlands to
the class level. Several generations of the CWIM have been
developed to address this problem, improving the results of the
previous by integrating new remote sensing data, more signifi-
cant quantities and quality of training data, and improvements
to the RF classification methodology.

Improvements to the CWIM methodology made by the
CWIM3 are (1) inclusion of additional remote sensing and
auxiliary data including ALOS-2, DEM, nighttime light, climate
and precipitation, and alterations to wetland and nonwetland test
and train ratios. This has resulted in a ∼5 percentage increase
in average OA and reduced wetland class overestimation across
all ecozones. This work compares favorably to other research
dedicated to determining the wetland extent across Canada [3],
[9]. This work demonstrates the importance of multisource and
multithematic datasets for wetland classification.

OA’s reported by the CWIM3 are higher than that of the
CWIM1 and CWIM2, though these values must be interpreted
conservatively given the limited distribution of wetland test
and training data across certain ecozones, and small number
of individual test and train polygons. Increasing wetland test
and train data in these areas would certainly increase reliability,
though this is not necessarily an attainable goal given funding
availability and the isolated nature of many of these ecozones,
such as the Taiga Shield. Other issues related to spatial autocor-
relation, and the lack of inclusion of topographic variables may
also contribute to sources of error within the CWIM3.

Climate change has increased the need for large-scale wet-
land information, a problem addressed through the development
of the CWIM. The CWIM3 represents the highest accuracy
Canada-wide wetland classification map, at the level of wetland
class, and future research looks to improve these accuracies even
more through careful integration of additional multisource data,
and testing and training information.
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