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Extended Subspace Projection Upon Sample
Augmentation Based on Global Spatial and
Local Spectral Similarity for Hyperspectral

Imagery Classification

Jiaochan Hu, Xueji Shen, Haoyang Yu
and Bing Zhang

Abstract—Band redundancy and limitation of labeled sam-
ples restrict the development of hyperspectral image classification
(HSIC) greatly. To address the earlier issues, the classification
models such as subspace-based support vector machines, which
have gained a certain advance but mainly concentrate on the
dimensionality reduction and ignore the augmentation of training
samples. In fact, these two issues are equally important for im-
proving the performance of classification, and should be addressed
simultaneously. Therefore, this article proposes a novel method
named extended subspace projection upon sample augmentation
based on global spatial and local spectral similarity (GLSC) for
HSIC, which takes both sample augmentation and dimensionality
reduction into consideration. Specifically, it first exploits the GLSC
to enlarge the original labeled sample set, which allows HSIC to
obtain more prior information. Then, the augmented samples and
the original labeled samples are combined to construct the extended
subspace, which is more comprehensive to reflect the real situation
of the ground objects. Finally, the original HSI is projected to the
subspace and classified by the neighborhood activity degree-driven
representation-based classifier. Experimental results on three real
hyperspectral datasets demonstrate the practicality and effective-
ness of the proposed method for HSIC tasks.

Index Terms—Dimensionality reduction, hyperspectral remote
sensing, labeled sample size, supervised classification.
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1. INTRODUCTION

EMOTE sensing is a comprehensive technology used for
R earth observation. Hyperspectral remote sensing is such
a technique characterized by imaging land surface at numerous
spectral bands [1]-[3]. With the high spectral resolution, hyper-
spectral remote sensing image (HSI) enables a complete spectral
diagnosis of ground objects; thus, allowing a fine classification
of land cover and land use classes [4], [5]. Some deep learning
methods are also used for HSI classification (HSIC) in recent
years [6], [7]. However, its accuracy of classification was usually
limited by the spectral redundancy of HSI and the size of training
samples.

Although the increase of spectral resolution in the HSI can
capture more details, high correlations between adjacent bands
induce high redundancy, meaning that the hyperspectral data can
be condensed into a subspace with lower dimensions [8]. Two
common approaches have been used to reduce the dimension of
HSI, band selection, and feature extraction. Band selection aims
to use the most discriminative bands to construct a simplified
feature space [9], [10]. Maximum variance principal component
analysis (PCA) [11], [12] and constrained band selection [13],
[14] are two classic methods that have been proved effective in
band selection. Feature extraction is another way of dimension-
ality reduction. It focuses on creating a new feature space which
synthesizes information or enhances desired features through
a mathematical transformation of original spectral space [15].
Some classical methods include PCA [16]-[18] and maximum
noise fraction [19], [20], both of that aim to optimize the spectral
features. Subspace projection algorithm has also been employed
for spectral feature extraction [21], [22]. Its basic assumption is
that high-dimensional samples of each class can be expressed by
a set of vectors in a lower dimensional subspace. However, due
to the existence of mixed pixels and intraclass spectral variation
[23], the effectiveness of this algorithm is easily affected by the
selection of training samples.

Another limitation is the vulnerability of supervised classi-
fication to training samples. With insufficient training samples,
its accuracy could be improved by increasing spectral bands
but to a limited degree as a result of the Hughes phenomenon.
So, the abundance of training samples is required to achieve
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a high accuracy in supervised classification [24]. However, it
is challenging to acquire plentiful labeled samples in practice
without consuming a lot of time and labor. Sometimes the
limitation of objective factors makes it impossible to obtain
enough training samples at all. In [25], based on the correlation
of spectral bands, the original labeled samples were divided into
several subsamples to alleviate this issue for HSIC. In [26], Cui
et al. used the image segmentation algorithm to randomly select
unlabeled samples in the same region where the original labeled
samples are located to enlarge the sample set. These methods
have a certain effect on training sample enlargement, but there
is still a shortage of using global spatial information.

To improve the accuracy of HSIC, current methods mainly
focused on either reducing spectral dimension or increasing the
size of training sample. For instance, subspace-based support
vector machine (SVM) [27]-[29] could effectively reduce spec-
tral dimension but it does not consider automatically expanding
the sample size used for classification. As dimensionality reduc-
tion and sample expansion are both critical in determining the
accuracy of classification, balancing them could be an alterna-
tive way to improve the accuracy of supervised classification.
However, seldom classification algorithms incorporated the two
aspects altogether into their frameworks.

In this article, we proposed a new method named extended
subspace projection upon sample augmentation based on global
spatial and local spectral similarity (ESSA-GLSC) for HSIC,
which takes both dimensionality reduction and sample augmen-
tation into consideration. First, we applied a novel algorithm that
exploited both global spatial and local spectral information to
increase the number of training samples. Specifically, we take
advantage of the spatial information of the region where the
labeled pixel is located to find another non-neighborhood area
that has similar structures. The central pixel of the found area will
be marked as the same label. The basic assumption is that there
may be some regions in the image with different distribution
locations but have similar spatial characteristics, such as texture
and material composition. By this way, the labeled sample size
can be extended twice as much as before. Then, we make use
of the spectral information to find a similar pixel in the neigh-
borhood, the labeled sample is located. The found pixel is also
marked as the corresponding class label to enlarge the labeled
sample size. This method was inspired by the pixels adjacent
to each other in space have a high probability of belonging
to the same category. Since then, the training sample size has
been tripled and can be effectively used to train the supervised
classifier. Second, the extended subspace projection is intro-
duced to reduce spectral dimension. Compared with the sub-
space projection, the proposed method exploits the augmented
training samples and the original labeled samples together to
construct the subspace, which is more comprehensive to reflect
the real situation of the ground truth. Ultimately, we combine
the above-mentioned implements with the neighborhood activity
degree (NAD) driven representation-based classifier (NADRC)
for HSIC. The NADRC is an improved version to the classic
sparse representation-based classifier (SRC) [30]-[38], which
has lower computational cost and takes spatial coherence into
consideration. The main contributions of this article can be
summarized as follows.
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1) The proposed method takes both sample augmentation and
dimensionality reduction into consideration, which further
alleviates the effect of the Hughes phenomenon and en-
hances the performance of HSIC. The proposed method is
more stable for the situation with limited training samples.

2) A concise and low-cost method that effectively expands
the number of training samples through exploiting GLSC
[39]-[46]. Then, the enlarged labeled samples and the
original samples are used to construct the extended sub-
space, which is a more stable feature space and unties the
concentration of spectral features caused by mixed pixels.

3) The projected image is classified by the spectral-spatial
classifier NADRC, which was based on our previous work
and gets a great performance in HSIC tasks.

The rest of this article is organized as follows. Section II
introduces related subspace projection algorithm and sparse rep-
resentation (SR) based models. Section III presents the proposed
ESSA-GLSC in detail. Section IV evaluates the performance
of the proposed method with three real hyperspectral datasets
and compared with the results of other classic HSIC methods.
Section V concludes this article with some remarks.

II. RELATED MODEL DESCRIPTION
A. SR-Based Classification

The original hyperspectral image is denoted as X with totally
N pixels, B spectral bands and containing K thematic classes.
SRC randomly selects the training samples from each class to
construct the dictionary D. Then, D is used to represent the
testing pixel x; ;, as x; ; =~ Da, where a is a weighted vector.
Theoretically, SRC adopts the /y-norm to measure the sparsity of
«, which calculates the number of nonzero values in «. However,
because the optimization of the /y-norm is an NP-hard problem,
the /;-norm minimization as the closest convex function is
adopted in practice [47]. Therefore, SRC can be formulated as
a Lagrange formulation as follows:

~ . 2
i = argmin {xi; ~ Dol + 2l f

s.t. || Xij — Dam-||1 <eg

where [|a; ;|1 = > _; |aun| denotes the 4-norm constraint,
and X is a scalar regularization parameter. The constant € is used
to balance the error of representation. Then, the class label of
x;, ; is determined by evaluating the residual errors between the
obtained approximation and the x; ;.

B. Subspace Projection

The linear mixture model assumption has been used to the
subspace projection algorithm to reduce the dimension of HSI.
For any pixel x; ; € X, it can be represented as follows:

K
xij =y UMz, 4y, 2
k=1

where U®) = {ul® .. u,u (k)} is aset of 7(¥)-dimensional
orthonormal basis vectors for the subspace, associated with

(k) denotes the

class k € [1, K]. n; ; represents noise, and z; ;
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Fig. 1. Subspace spanned by the original labeled samples (o).

coordinates of x; ; with respect to the basis U®). In order to
T

get the appropriate U®), let RW=E{z!}) z[)} denotes the

self-correlation matrix associated with class k, and x;x) (k) is

the training set associated with class k containing [(*) sam-

ples. According to R =E® AR E® ™
trix A = dzag( AR kg))

, the eigenvalue ma-
and eigenvector matrix E(F) =

{egk), ...ey )} can be calculated. The retention ratio r(*) of the
original spectral information is controlled by the parameter 7
r(k) d
r%) = min {r(}“) : Z/\,f-’“) > Z)\Ek) X T}. 3)
i=1 i=1

Then, UK = {egk),.
r(®) < B. Therefore, the pixel x; ; can be transformed as fol-
lows:

2
b(xi) = {nxi,jn s

The dimension of ¢(x; ;) is (K + 1), which is unrelated with
the number of the original bands and training sample size. Thus,
the effect of the Hughes phenomenon was largely avoided. On
this basis, the original image X can be projected as follows:

(b(X) = [¢(X1), IR (b(XN)] &)

For example, the original labeled samples shown in Fig. 1(a)
can be used to construct the U(®), and the original HSI can be
projected to obtain the lower dimensional image ¢(X), which
is shown in Fig. 1(b).

(k)} can be obtained, where

9 T
x| } e

III. PROPOSED METHODS

To alleviate the problem of insufficient labeled samples and
band redundancy, this section first introduces a sample augmen-
tation algorithm based on GLSC. Then, the ampliative labeled
sample set is further applied to extended subspace projection
which randomly selects some clusters from each class to con-
struct a lower dimensional subspace. Finally, a new classifier
named ESSA-GLSC is proposed, which applies the spectral-
spatial classifier NADRC [48] to the projected image for the
better classification performance.

A. GLSC-Based Sample Augmentation

1) Global Spatial Similarity-Based Sample Augmentation:
Nonlocal self-similarity (NLSS) was first proposed in the field
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of image denoising [49]-[52]. NLSS was motivated by a fact
that natural images contain many similar patches in different
areas. Inspired by NLSS, the proposed sample augmentation
method makes use of the texture information of the region where
the labeled pixel is located to find another non-neighborhood
area with similar structure. The central pixel of the area will
be marked as the same class and be put into the dictionary to
represent testing samples.

Let x;; = [z} ;,..., 2] at the location (i,j) of X be a
labeled pixel belonging to the original training sample set 5.
In order to search its global spatial similarity information in the
image, X is first expanded to a (r +w; — 1) X (c+wy — 1)
pixel-sized image, where r and c are the size of original rows and
columns. Then, we denote a x; j-centered w; X w; pixel-sized
patch as P; ; and extract the set of wq X w; pixel-sized patches
centered on each pixel in X, denoted as P. To search the global
spatial similarity of x; ; is actually to find a patch lsa, p in P with
the highest similarity to P; ;. The similarity here is measured by
the sum of Euclidean distances between pixels at corresponding
positions in the block except for central pixel. The process of
search can be expressed as follows:

U}2

mindist(Pij,f’a p) = min< > d(Xpm,Xm)

a, ,,, L aab m=1 (6)
xeP; j,X€Pqp

m;ﬁ%wQ

where x,, is the myj, pixel in P; ; and X,,, is the myy, pixel in
f’a,b, and d(x,,, X, ) represents the Euclidean distance between
X, and X,,,. It should be noted that the search process should
follow the principal that there is nonoverlapping between 15(171,
and P; ;. The purpose of the decentralized search is to reduce
the influence of spectral variability and other objective factors,
such as weather or imaging conditions. Considering the compu-
tational cost, the calculation is suggested to perform on the first
p components of singular value decomposition (SVD), which
maintains the relative distance of the original space under the
orthogonal projection transformation. In the experiments, the
original hyperspectral image has been processed by SVD to
reduce the computational complexity and maintain the accuracy
of the measurement of similarity. The execution steps of this
method are summarized in Algorithm 1-1.

Through the above-mentioned implementation, the size of the
labeled sample set So has been extended twice as much as before
in the nonlocal spatial level.

2) Local Spectral Similarity-Based Sample Augmentation:
The spectral information of adjacent pixels can also be used
to find another pixel that belongs to the same class to enlarge
the labeled sample size. Based on the basic assumption that the
pixels adjacent to each other in space have a high probability
of belonging to the same category. Therefore, the proposed
algorithm, named local spectral similarity-based sample aug-
mentation, aims to search the pixel x,,,, in P; ; , which is most
like x; ;. The search process can be expressed as follows:

B
= d(a;,2h,) )
b=1

min dist(X; j, Xu,v)
Fu,v Xu,v€EP,j
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Algorithm 1-1: SA-GS.

Input: Original HSI X, original labeled sample set S1, the
size of neighborhood wy .
1. Pre-processing: obtain the dimension-reduced image
X'y by SVD.
2. expand X', toX", with size
of(r +wy — 1) X (c+w; — 1)
3. fori=1tor,j=1tocdo
patch < cube
/[ extract the set of patches P x/
4. fori=1tor,j=1tocdox.p = f(xi;)
/+search the most similar pixel x, 3 to x; ; in S via
(6) */
5. So=A{S1,%qp}
/* augment the original training sample set Sy to Sg */
Output: S5.

Algorithm 1-2: SA-LS.

Input: Original HSI X, the size of neighborhood ws, the
augmented labeled sample set Ss.
1. Pre-processing: obtain the dimension-reduced image
X'; by SVD.
2. expand X’; toX"; with size
of(r + wy — 1) X (c+we — 1)
3. fori=1tor,j=1tocdo patch < cube
/x extract the set of patches P x/
4. fori=1tor,j=1tocdox,, = f(x;;)
/* search the most similar pixel x,, , to x; jin S; via
(7) «/
5. 53 = {52, qu}
/% extend S to Sg */
Output: Sj3.

b b :
where z7 ; and -, , represent the pixel x; ; and x,, ,, at the band

b€ [1,B], respectively.d(z? ., %

i.j»Tu.p) Tepresents the Euclidean
distance between «? ; and 2, . The pixel X, and x,, ,, maybe
the same one in the experiments. In this case, only one of them is
put into the labeled sample set. The pseudocode is summarized
in Algorithm 1-2.

Now, the labeled sample set S5 has been effectively tripled in
the local spectral level, and can be further used as input to serve

the subsequent subspace expansion.

B. Extended Subspace Projection

Based on the subspace projection algorithm, the extended
subspace projection constructs the set of self-correlation ma-
trixes in each class by randomly selecting several clusters
from the appropriately labeled samples. With the selected
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[U,.. U ]

Fig. 2. Extended subspace spanned by the original labeled samples (o) and
augmented labeled samples (+).

clusters, the subspace can be spanned by more basis vec-

tors, which is closer to the real situation of the ground truth.
T

As defined before, let R(k’m):E{aﬁffij@xEﬁ’;ﬂ) } represents

the self-correlation matrix calculated by the labeled samples,

(k,m)
jo  de-

notes [(¥) labeled samples chosen at my, time from the class
k. According to R*m) =EFm) Akm) Bk, m)T | Ukm) =
{egk’m), e eff,;?q')} can be obtained. Then, a more compre-
hensive basis for constructing the subspace of class &k can be
determined, denote as U = {Uk:m)IM_ “\where M is the
number of clusters. Therefore, the projected pixel is represented
as follows (8) shown at the bottom of this page: where || o |2
denotes the lo-norm. Thus, the projected image can be repre-
sented as follows:

(X) = [p(x1), .., d(xn)]- ©)

The ¢(X) is an r-dimensional image where » = K x M ,
independently of the size of labeled samples. As shown in Fig. 2,
the extended subspace projection constructs a more comprehen-
sive subspace to regard the distribution of the ground objects
by the augmented labeled samples than the original labeled
samples.

which are randomly selected at my, time, and x

C. Neighborhood Activity Degree (NAD) Driven
Representation-Based Classifier (NADRC)

As introduced in Section II, a testing pixel can be noted
as x; ; ~ Da by the classic SRC, the sparse coefficient o is
processed in conjunction with the dictionary to calculate the ap-
proximate value of testing pixel, and the class label is determined
by the class-dependent minimum residual error. However, there
is latent discriminant information under the sparse coefficient,
which can be further investigated. Specifically, « is sparsely
constrained, most elements in it are zero. It means that only the
labeled samples whose weight values are not zero participated in
the representation, namely they are active in the current process.
Moreover, the labeled samples with higher degree of activity
play important roles in determining the class of the testing pixel.

2

x;; TUD ’

o3 = { sl

geeey

2
T 1,M
Xi,j U( )Hz,...,’

o T
x,,; UM HQ} ®)
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Fig. 3. Principal diagram of ESSA-GLSC.

Based on the abovementioned, a new concept is defined
which calculates the contribution of the labeled samples in the
dictionary to the representation of the testing pixel, called AD.
The AD of a certain class k is calculated as follows:

ADy = Haﬁde

(10)
where || @ || ; denotes a /4-norm (d = 1 or 2) constraint. However,
this decision mechanism only considers the spectral information
of the testing pixel but without integration of spatial information,
which may lead to misclassification in the HSIC tasks. To utilize
the spatial information, for a testing pixel x;; , we extract
a w X w pixel-sized neighborhood from X, denoted as A; ;,
and define a new concept NAD to evaluate the contribution of
different class-dependent subdictionaries to the representation
of the testing neighborhood. The basic assumption is that spatial
adjacent pixels are likely to belong to the same class. The NAD
of a certain class is calculated by the sum of AD as follows:
2

NAD, =" AD” (11)

where v represents the index of vector in the neighborhood.
Therefore, the NADRC takes advantage of the spatial informa-
tion and effectively corrects the latent misclassification.

D. Extended Subspace Projection Upon Sample Augmentation
Based on Global Spatial and Local Spectral Similarity

In this context, the proposed approach can be implemented
as three steps: First, augment the training samples by taking
advantage of the GLSC so that the classifier can be better trained.
Second, reduce the dimension by projecting the original HSI to
a lower dimensional subspace, which was spanned by the ex-
tended labeled samples. Finally, integrate the above-mentioned
implements with NADRC to bring better characterization of fea-
tures and improvement of classification. Therefore, the objective

Xy Yiow jow Dy Dy Dy

(& fETac=nas

.........

O] 2
<] <]

U Order of L norm i
Neighborhood activity degree (NAD)-driven representation

Classification
(ESSA-GLSC)

Algorithm 2: ESSA-GLSC.
Input:

Original HSI X , the augmented labeled sample set
Ss.
1. obtain X’ by normalization.
2. construct the dictionaryD¥ by randomly selecting
training samples from S5 ={x; j,Xa. ;.- -, Xu,0 }
3. p(X)X; o(DFS)DF
/x exploit D¥ to construct a lower-dimensional
subspace and project the original scene to it. */
4., fort=1tor,j=1tocdo
k = class(¢(x; )k € [1, K]
/x the image is classified by (12) =/
Output: the identity of the testing pixel.

function of ESSA-GLSC can be finally expressed as follows:

a5 = argmin { [6(x.) — (D)3 + 4], }
class(¢(xi ;) = argmin {|| ¢(xi ;) — S(DF)a7 3}
12)

where ¢(D®9) denotes the dictionary, which has extended
labeled samples and be projected into a lower dimensional
subspace. The pseudocode for the proposed ESSA-GLSC is pre-
sented in Algorithm 2. Fig. 3 illustrates the schematic diagram
of it.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, ESSA-GLSC is evaluated via three real hy-
perspectral datasets from different sensors, of which the de-
tails are provided in Section IV-A. The related parameters of
the sample augmentation stage, extended subspace projection,
and NADRC are illustrated in Section IV-B. For comparison,
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Class 1: Alfalfa
Class 6: Trees

Class 2: Shadows
Class 7: Bare soil

Class 3: Meadows
Class 8: Bitumen

Class 4: Bricks Class 5: Gravel
Class 9: Metal sheets

Fig. 4. ROSIS University of Pavia dataset. (a) False-color composite image.
(b) Reference map.

the SVM, SRC, support vector machines-Markov random field
(SVM-MRF), and joint SRC (JSRC) [53] are used to compare
the performance of the proposed method. Moreover, labeled
sample size and the number of dimensions is also used as
variables to measure the effectiveness of the proposed method.
From the perspective of the overall accuracy (OA) and the
class-dependent accuracy (CA), Section IV-C presents the anal-
ysis of the classification results of different methods mentioned
earlier.

A. Data Description

1) ROSIS University of Pavia Scene: The University of Pavia
scene was acquired by the reflective optics system imaging
spectrometer (ROSIS) sensor. The size of this scene is 250 x 200
pixels, and the spatial resolution is 1.3 m. The scene consists of
103 bands, with 12 bands are removed due to the high noise
and water absorption, the spectral range is from 0.43 to 0.86
pm. Nine ground-truth classes, with a total of 12 889 labeled
samples are provided in the reference data. Fig. 4(a) shows the
false-color composite image, and Fig. 4(b) is the corresponding
reference map.

2) AVIRIS Kennedy Space Center Scene: The Kennedy
Space Center scene was collected by the airborne visi-
ble/infrared imaging spectrometer (AVIRIS) sensor. The scene
contains 512 x 614 pixels with 176 bands after removing the
high noise and water absorption bands. Its false-color image is
shown in Fig. 5(a). Thirteen ground-truth classes, with a total of
5211 labeled samples are provided in the reference data shown
in Fig. 5(b).

3) HYDICE Washington DC Mall Scene: The Washington
DC Mall scene was collected by the hyperspectral digital image
collection experiment (HYDICE) sensor over the Washington,
DC, USA. The size of this scene is 280 x 307 x 191, with a
spatial resolution of 3 m. The reference data of this image con-
tains six classes, with a total of 10 190 labeled samples. Fig. 6(a)
shows the false-color composite image and the reference map
of this scene is shown in Fig. 6(b).
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@ (b)
Class 1: Hardwood swamp Class 3: Scrub
Class 4: Salt marsh Class 6: Willow swamp
Class 7: Slash pine Class 9: Cabbage plam/oak hammock
Class 10: Cattall marsh Class 12: Mud flats
Class 13: Oak/broadleathammock

Class 2: Graminold marsh

Class 5: Cabbage plam hammock
Class 8: Spartina marsh

Class 11: Water

Fig. 5. AVIRIS Kennedy space center dataset. (a) False-color composite
image. (b) Reference map.

(b)

M Class 1: Roof [l Class 2: Grass B Class 3: Road Ml Class 4: Trail [l Class 5: Tree

Class 6: Shadow

Fig. 6. HYDICE Washington DC Mall dataset. (a) False-color composite
image. (b) Reference map.

B. Parameter Setting

There are some key parameters are investigated in detail in
this section. First, at the sample augmentation stage, the size
of the patches plays an important role in the classification.
Considering the true ground texture and the spatial resolution
synthetically, the size of the patch that used for global spatial
similarity search w; and used for local spectral similarity search
wy 1s set to 5 and 3, respectively, for all the datasets. And the
number of components kept by SVD is set to 4. Second, when
using the extended subspace projection to reduce the original
dimension, the number of the clusters M that randomly selected
from each class is also an important parameter to determine
the performance of feature extraction. According to the cross
validation, M is given to the values ranging from 1 to 6 for
the University of Pavia scene and the Kennedy Space Center
scene, for the Washington DC Mall scene, the M is denoted
as 1 to 13. Moreover, the parameter 7 which controls the re-
tention ratio of the original spectral information is denoted to
99%. When the projected image is classified by the NADRC,
the size of neighborhood w is set to 5 according to the cross
validation.

Due to the limitation of objective factors, it is laborious to
obtain sufficient training samples. Therefore, in practical appli-
cation, the number of labeled samples is often insufficient, which
leads to the poor performance of many classifiers. The method
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TABLE I
OVERALL AND CLASS-DEPENDENT ACCURACIES (IN PERCENT) OBTAINED BY THE DIFFERENT TESTED METHODS FOR THE ROSIS UNIVERSITY
OF PAVIA SCENE
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Class SVM SRC SRCsub SRCsa-aLs SRCEssa-GLs SVM-MRF JSRC ESSA-GLSC
1 64.89% 23.69% 48.54% 59.77% 65.67% 84.59% 23.10% 93.37%
2 67.93% 60.70% 49.69% 68.75% 89.04% 85.75% 82.37% 97.38%
3 66.30% 81.98% 80.25% 84.59% 85.26% 46.78% 80.83% 95.76%
4 92.40% 96.37% 96.58% 94.44% 96.58% 89.14% 96.15% 97.86%
5 96.16% 99.55% 99.41% 99.55% 99.93% 97.99% 99.85% 100.00%
6 67.74% 62.82% 59.47% 65.29% 62.85% 67.42% 61.05% 72.65%
7 70.65% 87.52% 78.65% 89.77% 86.02% 71.34% 85.56% 95.41%
8 58.75% 69.16% 67.58% 70.57% 62.73% 75.57% 85.31% 82.27%
9 99.50% 87.24% 93.83% 94.03% 96.91% 97.88 % 58.02% 99.18%

OA 71.50% 69.21% 68.25% 75.76% 77.97% 77.17% 73.03% 89.14%

The best results are highlighted in bold typeface (in all cases, 5 labeled samples per class were used).

TABLE II
OVERALL AND CLASS-DEPENDENT ACCURACIES (IN PERCENT) OBTAINED BY THE DIFFERENT TESTED METHODS FOR THE AVIRIS KENNEDY
SPACE CENTER SCENE

Class SVM SRC SRCsub SRCsa.aLs SRCEssa-GLs SVM-MRF JSRC ESSA-GLSC
1 75.81% 88.44% 85.55% 89.75% 95.01% 90.57% 90.67% 97.90%
2 73.74% 67.49% 75.72% 74.49% 77.37% 82.69% 75.72% 78.60%
3 58.29% 92.58% 67.19% 94.53% 90.63% 48.53% 81.25% 96.88%
4 24.17% 28.17% 40.08% 38.49% 48.81% 12.51% 74.21% 51.19%
5 48.40% 67.08% 69.57% 70.81% 73.29% 43.97% 75.78% 93.17%
6 44.29% 41.48% 38.43% 58.95% 47.60% 41.79% 38.86% 63.32%
7 83.60% 83.81% 94.29% 91.43% 99.05% 91.10% 100.00% 99.05%
8 45.26% 81.90% 78.42% 91.88% 77.26% 67.56% 77.26% 94.43%
9 64.76% 88.65% 89.04% 87.12% 94.62% 81.69% 90.00% 99.81%
10 69.10% 91.09% 82.43% 92.57% 92.33% 88.75% 94.55% 97.28%
11 87.73% 87.11% 87.35% 87.83% 83.77% 93.94% 89.26% 85.68%
12 80.36% 64.21% 70.58% 67.59% 78.93% 85.40% 71.57% 91.45%
13 97.91% 99.35% 99.68% 99.57% 99.68% 100.00% 100.00% 100.00%

OA 71.53% 81.12% 80.33% 84.48% 85.72% 79.41% 84.99% 91.67%

The best results are highlighted in bold typeface (in all cases, 5 labeled samples per class were used).

we proposed is committed to improving the classification accu-
racy in the case of small size of labeled samples, so we used 5
samples per class in the experiments to simulate the insufficient
situation and illustrate the performance of this method.

C. Results Analysis and Discussion

In our experiments, we randomly select 5 labeled samples per
class to construct the dictionary and train the classifier, where the
remaining labeled samples are applied for validation. Tables I, II
and II provide the results of OA and CA acquired by the compar-
ative experiments, with their corresponding classification maps
shown in Figs. 7-9. Fig. 10 shows the time complexity of the
proposed method and other spatial-spectral SR-based classifiers.
Based on these results, several conclusions can be drawn as
follows.

1) Comparison of the Spectral Classifiers: Compared with
SVM, SRC has nearly the same performance in the clas-
sification. The results are testaments to the effectiveness of
representation-based framework in HSIC.

2) Comparison of Labeled Sample Size: The dictionary of
SRC has 45 labeled samples in the University of Pavia scene,
65 labeled samples in the Kennedy Space Center scene and
30 labeled samples in the Washington DC Mall scene. After
using the GLSC to sample augmentation (SRCga_grs), the
dictionary contains 127 labeled samples, 192 labeled samples,
and 81 labeled samples, respectively. The classification accuracy
is obviously improved (from 69.21% to 75.76% in the University
of Pavia scene, from 81.12% to 84.48% in the Kennedy Space
Center scene and from 80.40% to 81.17% in the Washington DC
Mall scene) due to more training samples are used to train the
supervised classifier.
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W Class 1: Alfalfa [l Class 2: Shadows [ll Class 3: Meadows Class 4: Bricks Class 5: Gravel Class 6: Trees [l Class 7: Bare soil [l Class 8: Bitumen [J] Class 9: Metal sheets

Fig.7. Classification maps obtained by the different tested methods for the ROSIS University of Pavia dataset. The overall accuracies are given in the parentheses.
() SVM (71.50%). (b) SRC (69.21%). (c) SRCsub (68.25%).(d) SRCsa-GLs (75.76%). (e) SRCrssa-cLs (77.97%). (f) SVM-MREF (77.17%). () ISRC (73.03%).
(h) ESSA-GLSC (89.14%).

e =
©
M Class 1: Hardwood swamp [l Class 2: Graminold marsh B Class 3: Scrub M Class 4: Salt marsh W Class 5: Cabbage plam hammock M Class 6: Willow swamp
Class 7: Slash pine Class 8: Spartina marsh [l Class 9: Cabbage plam/oak hammock M Class 10: Cattall marsh M Class 11: Water
Class 12: Mud flats M Class 13: Oak/broadleathammock

Fig. 8. Classification maps obtained by the different tested methods for the AVIRIS Kennedy space center dataset. The overall accuracies are given in the
parentheses. (a) SVM (71.53%). (b) SRC (81.12%). (c) SRCsub (80.33%). (d) SRCsa-gLs (84.48%). (e) SRCEssa-cLs (85.72%). (f) SVM-MREF (79.41%).
(g) JSRC (84.99%). (h) ESSA-GLSC (91.67%).
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TABLE III
OVERALL AND CLASS-DEPENDENT ACCURACIES (IN PERCENT) OBTAINED BY THE DIFFERENT TESTED METHODS FOR THE HYDICE
WASHINGTON DC MALL SCENE

Class SVM SRC SRCsub SRCsa.cs SRCissacis ~ SVM-MRF JSRC ESSA-GLSC
1 78.94% 60.07% 61.93% 58.28% 76.23% 86.37% 54.63% 80.57%
2 77.34% 70.39% 48.24% 72.69% 65.09% 77.00% 80.04% 66.61%
3 75.60% 81.28% 70.93% 81.87% 78.85% 69.18% 92.17% 74.64%
4 88.38% 80.12% 17.41% 82.59% 84.87% 92.34% 90.06% 84.39%
5 98.39% 76.86% 55.96% 80.03% 83.97% 91.92% 85.18% 80.52%
6 88.90% 77.23% 27.92% 76.71% 78.10% 92.18% 95.32% 80.84%
0A 83.28% 80.40% 52.08% 81.17% 86.73% 84.95% 78.52% 87.59%

The best results are highlighted in bold typeface (in all cases, 5 labeled samples per class were used).

(&
B Class 1: Roof [l Class 2: Grass Class 3: Road Class 4: Trail [l Class 5: Tree [l Class 6: Shadow
Fig. 9. Classification maps obtained by the different tested methods for the HYDICE Washington DC Mall dataset. The overall accuracies are given in the

parentheses. (a) SVM (83.28%). (b) SRC (80.40%). (c) SRCsub (52.08%). (d) SRCsa-gLs (81.17%). (e) SRCEssa-gLs (86.73%). (f) SVM-MRF (84.95%).
(g) JSRC (78.52%). (h) ESSA-GLSC (87.59%).

B Computing Time ==#==Overall Accuracy E Computing Time ==#==Overall Accuracy BN Computing Time ==#==Overall Accuracy
300 100% 15000 100% 240 100%
8s.a70s  89:14% ss.87%  167% 87.59%
o - 13000 | 84429%/.—__—_‘ 1 90% o 200 | 83.81% 1 90%
T 240 | 73.03% { 80% g b 2 > 78-12%//’ L:r
2
g E & 11000 [ 083143 18% & g 160 | 3008 1 8% E
= 179.86 S =~ S = 5]
AOEQ 180 1 60% < 'Eﬂ 9000 | 170% < .‘:‘._.." 120 S04 104.22 170% <
S i E 5 = E : E
2 125.65 5 2 7000 | oo 60% B E 50 1 60% 5
5 120 { 40% & g 451001 5338.58 3 5 1)
© 74.50 O 5000 | 220 { s0% U 40 1 s50%
60 20% 3000 40% 0
ISRC NADRC  ESSA-GLSC ISRC NADRC  ESSA-GLSC JSRC NADRC  ESSA-GLSC
SR-based methods SR-based methods SR-based methods
(a) (b) (©)

Fig. 10. Comparison of computing time and OA for three SR-based methods for three datasets. (a) University of Pavia scene. (b) Kennedy Space Center scene.
(c) Washington DC Mall scene.
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3) Comparison of Dimensionality Reduction Effects: The
subspace-based SRC (SRCsub) has a lower OA compared with
SRC for all datasets (from 69.21% to 68.25%, from 81.12% to
80.33%, and from 80.40% to 52.08%). Based on the abovemen-
tioned, there are some limitations in the subspace projection that
constraint its application.

Compared with SRCga_gLs, the SRCgssa-grs which ex-
ploits extended subspace projection to SRCsa_g1.s, achieves
suitable improvements for all the experimental datasets (from
75.76% to 77.97%, from 84.48% to 85.72%, and from 81.17% to
86.73%), which demonstrates the effectiveness of the extended
subspace projection as a feature extraction method.

4) Comparison of Other Spectral-Spatial Classifiers: The
ESSA-GLSC we proposed as a comparative test with other
spectral-spatial classifiers such as SVM-MRF and JSRC to
illustrate the effectiveness of our method, and obtains the best
performance for all datasets, with the overall accuracies of
89.14%, 91.67%, and 87.59%, respectively. Considering the
time complexity, the spatial-spectral SR-based classifiers JSRC
and NADRC are compared to illustrate the effectiveness of the
proposed method. For the University of Pavia scene, the time cost
of ESSA-GLSC (179.86 s) is slightly higher than JSRC (125.65
s) and NADRC (74.59 s), but the accuracy can be improved by
about 10%. For Kennedy Space Center scene, the time complex-
ity of ESSA-GLSC is similar to that of NADRC, but much lower
than that of JSRC, and its classification accuracy has reached
the highest than other classifiers (84.99% and 88.87%). For the
Washington DC Mall scene, ESSA-GLSC achieves the highest
OA in the time close to the other two classifiers. The results
demonstrate that the time complexity of these methods is close
and acceptable. Meanwhile, the proposed method can achieve a
better classification performance. The above-mentioned results
are shown in Fig. 10 in a more intuitive form. It needs to be
reiterated that the number of training samples in all experiments
was 5.

V. CONCLUSION

This article proposed a method which takes both insufficient
labeled samples and redundant bands into account in HSIC.
Specifically, a sample augmentation method based on the GLSC
is put forward to enlarge the original labeled sample set, which
guarantees that the HSIC can obtain more prior information than
before. Then, the extended labeled sample set is used to construct
a lower dimensional subspace, which is more comprehensive to
reflect the distribution of ground objects. Finally, the original
HSI is projected to the subspace and classified by the spectral-
spatial classifier NADRC. Experimental results on three real
hyperspectral datasets from different sensors demonstrate the
availability and effectiveness of the proposed method.
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