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HLSTM: Heterogeneous Long Short-Term Memory
Network for Large-Scale InSAR Ground

Subsidence Prediction
Qinghao Liu , Yonghong Zhang , Jujie Wei, Hongan Wu , and Min Deng

Abstract—Accurate prediction of ground subsidence is of great
significance for the prevention and mitigation of this type of geolog-
ical disaster. It is still a challenge when wide area is concerned. In
this article, a heterogeneous long short-term memory (HLSTM)
network is proposed for large-scale ground subsidence predic-
tion based on interferometric synthetic aperture radar (InSAR)
data. First, the study area is divided into homogeneous subregions
through spatial clustering of InSAR-derived subsidence velocity.
Second, a specific LSTM model is constructed to capture com-
plex nonlinear temporal correlations embedded in InSAR-derived
subsidence time series for each subregion. Essentially both spatial
heterogeneity and temporal correlation are incorporated into the
HLSTM prediction. In the experiment part, the HLSTM predictor
is validated using a subsidence monitoring result from 80 Sentinel-1
images acquired over Cangzhou, China, from 2017 to 2019. The
HLSTM result shows the highest prediction accuracy through
comparisons with the results from other seven methods.

Index Terms—Deep learning, heterogeneity, interferometric
synthetic aperture radar (InSAR), long short-term memory
(LSTM), subsidence prediction.

I. INTRODUCTION

IN ORDER to meet the needs of rapid development of econ-
omy, many kinds of underground natural resources such

as coal, petroleum, and groundwater have been extensively
exploited. As a result, large-scale ground subsidence has taken
place, which usually causes serious harm to the environment
and human life [1], [2]. Therefore, high-precision prediction
of ground subsidence is of great significance in the practice of
taking actions of subsidence prevention. At present, most of
the ground subsidence prediction methods rely on in situ data
obtained by traditional surveying techniques [3], [4]. Although
related technologies have high observation accuracy, some
shortcomings severely restrict the development of large-scale,
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high-precision deformation predictions, such as low spatial den-
sity, high acquisition costs, long observation periods, etc. [5].
With the development of remote sensing technology, continuous
large-area ground monitoring provides strong support for the
prediction of ground subsidence.

In general, the existing prediction methods of ground subsi-
dence can be divided into three categories: physical methods,
statistical methods, and machine learning methods. The phys-
ical methods usually start from a physical model describing
the subsidence mechanism, and then need to determine sev-
eral physical parameters such as lithological and hydrological
parameters through field testing and experiments, and finally
predict the ground subsidence at a future moment. The re-
searches on mining subsidence model [6], subway subsidence
model [7], and groundwater coupling model [8] are within this
category. However, it is usually difficult to know the physical
parameters. The statistical method aims to establish a time-based
mathematical function to predict subsidence. Fan and Zhang
[9] and Li [10] outlined some typical statistical methods. Some
scholars have also proposed methods that additionally consider
spatial location to predict subsidence [11]–[14]. However, linear
assumptions make it difficult for them to resolve the nonlinear
relationship between spatiotemporal data. On the other hand,
since the constitutive relationship of underground geotechnical
medium is not considered, such methods are usually difficult
to promote. Comparatively, machine learning methods are not
restricted by the complex physical parameters, such as geology
and hydrology. In addition, they do not require an interpretable
relationship (e.g., interpretable mathematical formulas) to be
formalized between independent and dependent variables. Ex-
isting methods such as support vector regression (SVR) [15],
artificial neural network [16], Bayesian network [17], etc., have
all been used in subsidence prediction. However, due to the
difficulty of feature extraction or the difference in data granular-
ity, the existing machine learning methods are usually difficult
to obtain high prediction accuracy. Besides, a global model
cannot handle well the variations in the relationship between
the dependent variable and the independent variable in different
regions, this leads to a common problem that the results lack
interpretability.

In the realm of interferometric synthetic aperture radar
(InSAR) time series prediction, many predictions based on
hyperbolic model [18], probability integration method [19], sup-
port vector regression [20], recurrent neural network [21], and
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other methods have been carried out. However, these works have
ignored the fact that the statistical characteristics of subsidence
driving factors will vary with geographic locations [9]. In fact,
subsidence at any location can be attributed to these factors, such
as geological structure, rainfall distribution, land use, etc. If the
spatial heterogeneity of these factors is not well considered, the
constructed prediction model may be invalid in local areas [22].
Deep learning methods can obtain valuable knowledge from
InSAR time series about how those factors affect subsidence,
but the spatial heterogeneity between them cannot be modeled
by neural networks. Therefore, it is necessary to consider more
reasonable strategies to predict subsidence.

In this article, the spatial heterogeneity between subsidence
sequences is considered in the deep learning algorithm. This
strategy learns different subsidence sequence patterns separately
instead of constructing a globally unique model. Specifically,
first, we use a time series clustering strategy to divide the study
area into several InSAR homogeneous subregions; then, we
construct long short-term memory (LSTM) models in parallel
between different subregions to understand their subsidence
patterns; finally, we verified the effectiveness of heterogeneous
long short-term memory (HLSTM) from the perspective of error
analysis and spatial pattern.

The main contributions of our work are as follows.
1) In order to handle the spatial heterogeneity of ground sub-

sidence, the method of time series clustering is integrated
into the data preparation process.

2) The HLSTM model is proposed, which can automatically
learn the complex nonlinear subsidence patterns of het-
erogeneous regions.

3) The validity of HLSTM is verified from the perspective of
error analysis and spatial pattern.

II. METHODOLOGY

In this section, we construct HLSTM in two steps. First,
introduce how to use clustering to reduce spatial heterogeneity.
Second, multiple deep learning networks are trained to fit the
subsidence patterns in different subregions. Finally, Section II-C
of this article explains the operation process of HLSTM.

A. Clustering to Handle Heterogeneity

If the spatial heterogeneity is ignored, the training of the neu-
ral network is usually insufficient and may affect the prediction
performance [23]. There are three main methods to solve spatial
heterogeneity: 1) Build a local model. 2) Transform/decompose
the nonstationary data. 3) Space partition [24]. However, the
complexity and quantity of time series limit the feasibility of
the first two methods. According to the similarity and separation
between time series, cluster analysis can divide the data set into
different clusters to describe similar feature mapping (see Fig. 1).
Therefore, the clustering strategy can be used to determine the
spatial partition [25]. However, when it comes to large-volume,
nonsignificantly aggregated spatiotemporal data, the proposed
clustering methods [26]–[29] all face the following challenges,
such as nonunique number of clusters, low efficiency, single
partition shape, complex parameter settings, etc., which severely

Fig. 1. Partition processing to handle spatial heterogeneity.

limit the application of InSAR ground subsidence partitioning.
It has been found that the two-step strategy based on K-means
[30] and Delaunay triangulation [31] can efficiently solve the
partition problem. The two-step strategy (called KDP) considers
not only the attribute distance between the object and the center
of a certain category, but also the adjacency relationship between
the object and the existing spatial object in the category by
adjusting the side length constraint constant α. So, it can obtain
reasonable partitioning results.

In this article, the Euclidean distance of the mean subsidence
velocity is chosen as the similarity measure. The effectiveness of
clustering results is evaluated by the Davies–Bouldin (DB) index
[32]. Where Si and Sj , respectively, represent the diameter of
the clusters, dij represents the distance between the two clusters,
and k represents the number of clusters. The smaller the DB
index, the better the clustering effect

Rij =
Si + Sj

dij
(1)

DB =
1

k

i = 1∑
k

maxi�=jRij . (2)

Clustering results with different cluster numbers k are ob-
tained using K-means method, considering the mean subsidence
velocity and Pearson correlation, respectively, to calculate the
DB index, and the number of clusters meeting the metrics will be
selected, and the further subregion division is based on Delaunay
triangulation [31]. The KDP algorithm flow is described as
follows:

Enter: D(m,n), K, α
Output: S{subregion 1, . . . , subregion p}
1 for each k in 2 : K
2 get K_Clu{clu 1, . . . , clu k} from D(m,n) by k
3 calculate DB
4 evaluate K_Clu by DB
5 get the most suitable k with a smaller DB
6 for each clu in K_Clu
7 get Delaunay triangulation
8 constrain Delaunay triangulation by α
9 get S{subregion 1, . . . , subregion p}
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Fig. 2. HLSTM subsidence prediction framework.

where D(m,n) represents the deformation space-time matrix,
m and n represent the length of their time series and the number
of space point targets; S represents the spatial partition result of
point targets; K_Clu represents the result of K-means cluster-
ing.α represents the constraint parameter of the side length in the
Delaunay triangulation network. If the side length is greater than
the mean of all side lengths by more than α times the standard
deviation, then this side is regarded as an abnormal connection
and will be interrupted.

B. HLSTM Prediction Framework

As shown in Fig. 2, the main body of the prediction framework
is composed of three modules, including clustering module,
training module, and prediction module. Among them, the clus-
tering module is responsible for heterogeneous processing of
spatiotemporal data to meet network input requirements, the
training module is designed to generate a pretrained model, and
the prediction module is designed to run the model and obtain
prediction results. The key to the entire framework is a deep
neural network, including input layer, hidden layer, and output
layer. Among them, the hidden layer is modeled by the LSTM
model to learn the characteristics of each subsidence sequence,
and the output layer is a collection of prediction results under
different subregions. The input data of HLSTM is a matrix of
geocoded subsidence sequences. In the clustering module, the
mean subsidence velocity and the spatial distance between point
targets need to be extracted from the input data. In the training
module and the prediction module, the differential subsidence
sequence needs to be extracted as samples.

In this article, we assume that some fixed-length sequences
contain important deformation patterns, and record the subsi-
dence sequence of each point target asDm = {d1, d2, . . . , dm} .

In order to accurately learn these deformation patterns, a training
sample with an adjustable length of parameter L can be ex-
tracted and recorded as Dtrain = {dm−L, dm−L+1, . . . , dm−1}
in each subsidence sequence, where the last Y values of the
sample are used as the sample label, and the first L− Y
values is used as the sample input, and it satisfies constraint
{2 ≤ L < m, 1 ≤ Y < L}. Besides, the z-score standardiza-
tion method is applied to each sample to reduce the negative
impact of the deformation range on model training. An example
of sample division is shown in Fig. 3. In addition, the length
of the sample label can also be adjusted according to actual
needs. According to this division method, n samples can be
extracted from the entire deformation area. Specifically, the
standardized sample data is divided into p clusters, and the local
network model is used to learn the subsidence patterns under
each subregion.

C. Model Details and Optimization

Heterogeneity processing and network training are the main
content of running HLSTM models. Clustering can divide the
study area into several deformation zones based on subsidence
characteristics. Each deformation zone is further divided into
several homogeneous subregions based on the Delaunay trian-
gulation [31], and each subregion is used to build a local network
model. Network training is a process of adjusting weights and
biases until the user-defined stopping criteria are met. In this
article, when the error-epoch curve of the training set and the test
set are both converged, the pretrained model can be accepted.
Generally, we used 30 epochs to train the target model. This
process is mainly based on hidden layers and other connections.

When training the HLSTM prediction model,L,K, and S are
the most critical network parameters, which, respectively, rep-
resent the length of the sequence, the number of network layers,
and the number of features in each hidden layer. Generally, grid
search strategy is used to optimize model parameters. Taking
reducing the mean prediction error as the metric for parameter
optimization. For each subregion, a random sampling of 70%
of the sample sequences is enough to train a high-performance
network, while considering the modeling time. The objective
function can be expressed as

minε (Yreal, Ypred) = |Yreal − Ypred| (3)

s.t.

⎧⎪⎪⎨
⎪⎪⎩

2 ≤ L < m, stepL
2 ≤ K < i, stepK
2 ≤ S < Smax, stepS
L,K, S ∈ N

. (4)

In the formula, stepL, stepK , and stepS are the search steps
of related parameters, respectively. Generally, the grid search
range i and Smax need to be set by human experience based
on the error convergence effect. In this article, the Adam [33]
estimation algorithm is used as the training optimizer.

After the network training reaches the convergence require-
ment, the network prediction is performed. First, we intercept
Dpred = {dm−L+1, dm−L+2, . . . , dm} from the subsidence se-
quence of each point target as a prediction sample. And the
accuracy of model training and prediction can be quantitatively
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Fig. 3. Sample division in single subsidence sequence.

given as follows:

μ = 100 ∗
(
1− MAE

MAD

)
% (5)

MAE =
1

n

∑
|Yreal − Ypred| (6)

MAD =
1

n

∑
|Yreal| (7)

where μ represents the prediction accuracy of the model, MAE
represents the mean absolute error, and MAD represents the
mean actual deformation.

Overall, HLSTM is a predictor driven by InSAR data. Specif-
ically, the training set and the test set are only used to train or ad-
just the pretraining model, and the time cost is much lower than
the SAR image update cycle (usually 12 days). Furthermore, the
subsidence at the mth moment can be predicted by the pretrained
model, when the real subsidence data at the mth moment is
updated,Dpred is immediately submitted to the pretrained model
to update the model parameters. This means that we can use the
latest observations to predict future subsidence in a short time.

III. EXPERIMENT RESULT ANALYSIS

A. Dataset

The Cangzhou area of China [34] has experienced a maximum
cumulative subsidence of at least 398 mm in the past 4 years.
A test site is chosen in this area, and 80 Sentinel-1A images
acquired between January 2017 to December 2019 were used as
the data source. Furthermore, we use multiple Master-image
Coherent Target Small-baseline Interferometric SAR method
[35] to generate InSAR deformation time series (see Fig. 4).
As a result, we obtained 430476 subsidence sequences derived
from the same number of high-coherence points. Local linear
interpolation is used to fill in the data at the missing moment,
which is caused by poor coherence. As a result, each point target
has 89 deformation data at equal time intervals. The accuracy
verification results show that the root-mean-square error of the
deformation inversion process is 7.2 mm.

In order to verify the effectiveness of HLSTM, we also
generated a set of simulation data according to the actual char-
acteristics of ground subsidence. First, we assume that there are

Fig. 4. Spatial distribution of cumulative deformation in Cangzhou area.

Fig. 5. Change of differential deformation with time series (random case).

some meaningful subsidence patterns derived from heteroge-
neous geographic environments. Then, using the sum of random
values and trend items to simulate 5 subsidence patterns (see
Fig. 5): stable pattern (blue), uniform uplift (yellow), uniform
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TABLE I
COMPOSITION OF SIMULATED DIFFERENTIAL DATA

subsidence (red), increased uplift (green), and increased subsi-
dence (indigo). In total, 10 000 sequences are generated for each
subsidence pattern, with a total time step of 11. The composition
of the simulated differential data is shown in Table I. In fact, the
simulated data of each subsidence pattern represents a preset
spatially independent subregion.

B. Homogeneous Subregion Partition

In order to reduce the influence of spatial heterogeneity on
subsidence prediction, the KDP algorithm is used to divide the
real research area into several homogeneous subregions. The
two-step clustering strategy only needs to set an additional side
length constraint constant α (α = 3 in this article) to obtain
clusters with similar attributes and spatial proximity. When the
number of clusters (usually less than 10) is 2, a smaller DB index
can be obtained (see Fig. 6). The clustering results are further
constrained into 6 homogeneous subregions by the method [31]
(see Fig. 7). Each homogeneous subregion is a collection of
highly coherent points with similar subsidence characteristics
and adjacent spatial locations. This strategy not only describes
the similarity of the deformation sequence, but also highly
coincides with the spatial pattern of the deformation funnel (see
Figs. 7 and 4). In addition, in Table II, the measurement re-
sults based on q-statistic [36] shows that partitioning effectively
weakens the stratified heterogeneity in the study area. Therefore,
the KDP algorithm can weaken the spatial heterogeneity of the
subsidence mechanism well.

C. Network Parameter Analysis

First, we analyzed the impact of the sample label length on
the prediction effect. The MAE heatmap (see Fig. 8) shows that
as the increase of the sample label length (SLL), the model error
under different sample input lengths (SIL) also increases. The
color bars indicate the range of MAE values in each grid. It is
also important that although the error difference is small, it can
be clearly found in the vertical direction that the length of the
sample input is not always a significant linear trend. Therefore,
the findings in the heat map inspired us to set the SLL to 1.

Second, we analyzed the prediction effect under different
network parameters. In Fig. 9, the error results under different
parameter settings (SIL and SLL) show that the model prediction
accuracy is not always positively correlated with the model
complexity, but there is a better combination locally. When the
grid search range is determined, the distribution of the optimal
parameters tends to be consistent. For example, when SIL =
60 and SLL = 1, the optimal parameters always focus on "the
number of network layers is 3, and the number of neurons is 10.

Fig. 6. Evaluation indexes changes with different cluster numbers. (a) DB
index considering the mean subsidence velocity. (b) DB index considering
Pearson correlation.

Third, we further analyzed the prediction results of subregions
under different sample input lengths. As shown in Fig. 9, the blue
subregions 1–3 are divided by zone 2 and the red subregions 4–5
are divided by zone 1, the black noise point polyline represents
a collection of isolated points and smaller clusters. Fig. 10
suggests that after the SIL reaches a certain level, the minimum
prediction error of different subregions gradually increases. This
means that the prediction effect does not always improve as
SIL increases. Besides, although some subregions are in the



8684 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 7. Division of homogeneous subregions based on KDP algorithm.
(a) Initial space partition results (2 deformation zones). (b) Final space partition
results (6 subregions).

TABLE II
SIGNIFICANT CHANGES IN HETEROGENEITY AFTER PARTITIONING

same level of deformation zone, the difference of geographical
environment makes it produce different deformation patterns
(For example, the first 3 subregions constrained by zone 2 have
different optimal SILs), which means that it is necessary to
consider spatial constraints when dividing subregions. It should
be noted that when it comes to small-scale ground subsidence,

Fig. 8. Grid search results of MAE (K = 30, S = 2).

Fig. 9. Optimal combination of network parameters in grid search results
(SIL = 60, SLL = 1).

training a well-fitted neural network will become difficult, and
the performance of HLSTM will be affected by the volume of
data. As shown in Fig. 9, suboptimal models are usually trained
based on smaller subregions or noise point data. Therefore, we
merge clusters with a number of point targets less than 1000 into
a set of noise points.

As shown in Fig. 11(a), in order to compare the mean absolute
error of the deformation zone 1-2, the subregion errors are
merged, which is a weighted strategy based on the number of
point targets. Fig. 11(a) shows the results of the two deformation
zones based on the merger of the subregions, it shows that there
is a slight difference in the optimal training sample length:
87 periods and 78 periods, which indicates the most relevant
duration of ground subsidence, and each period represents 12
days. This difference can be attributed to the long-term defor-
mation patterns obtained by the InSAR time series, in addition,
the long-term correlations of the subsidence information in
different geographic environments (homogeneous regions) are
different [see Fig. 11(b)]. Therefore, blindly inputting a longer
deformation sequence introduces a certain noise error.
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Fig. 10. Relationship between SIL and MAE under subregions.

Fig. 11. Analysis on the optimal SIL. (a) Error analysis. (b) Visualization of
highly relevant data.

D. Performance Comparison

We compared the HLSTM model with other seven methods,
the modeling time (including preprocessing) and prediction error
are selected as evaluation indicators, and all benchmark methods
use the same data source.

TABLE III
COMPARISON OF EXPERIMENTAL RESULTS OF DIFFERENT PREDICTION MODELS

MAE: mean absolute error; SD: standard deviation; MSE: mean square error.

Fig. 12. Comparison of error distribution between HLSTM and LSTM.

It can be seen from Table III that compared to other algo-
rithms, LSTM and HLSTM have better performance. The au-
toregressive integrated moving average (ARIMA) model and the
space-time ARIMA (STARIMA) model need to be constructed
once for each point target. Therefore, they are not suitable
for large-scale ground subsidence prediction. In Table III, the
modeling time of these two methods is the estimated value of
sampling. The experimental results reflect: 1) When predict-
ing subsidence, the deep learning network designed for time
series prediction is better than typical statistical methods and
machine learning methods. 2) Long-term dependence does have
an impact on the prediction of ground subsidence (compare
RNN and LSTM). 3) The newly proposed spatial heterogeneous
processing strategy increases the prediction accuracy of LSTM
by 0.3% and get a more homogeneous absolute error distribution
(compare HLSTM and LSTM). Fig. 12 shows that the red point
target (HLSTM) is closer to the Y = X line than the blue point
target (LSTM) under the same truth value. Obviously, HLSTM
has a certain inhibitory effect on the overall variance of the
point target prediction results, especially as the real deformation
increases, this improvement will be more significant. 4) The
proposed HLSTM obtains the lowest MAE and MSE, which
proves the effectiveness of the proposed method.
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Fig. 13. Prediction results of differential deformation in Cangzhou. (a) Differential deformation prediction results. (b) Error distribution of differential deformation
prediction.

TABLE IV
PERFORMANCE COMPARISON OF HLSTM AND LSTM MODELS

In order to further prove that the advantages of HLSTM over
LSTM do exist, we retrained the model based on simulated
data. The results in Table IV show that the strategy of spatial
predivision to weaken spatial heterogeneity significantly im-
proves the prediction accuracy and time efficiency. Therefore,
the prediction results of this set of simulation data further prove
the advantages of the HLSTM model.

It should be noted that the significance of this improvement
will also be affected by the subsidence data, especially the sub-
sidence patterns of different research areas and the revisit period
of the SAR satellites. For example, in general, samples with a
larger differential deformation value (with a faster subsidence
velocity or lower time resolution) will get a larger relative error
under the same termination training criterion. This is why the
real data in Cangzhou area has not improved more significantly
than simulated data. In fact, how to determine the best time
resolution to extract the deformation pattern is still a challenge,
and we will propose our multiscale modeling strategy in another
work.

E. Spatial Analysis

Fig. 13 shows the results of our prediction of subsidence in
Cangzhou from the scale of the entire image. Combined with
the large-scale representation of the real deformation, it can be
found that our prediction results are highly consistent with the

real deformation, the subsidence funnel is clearly displayed, and
85.2% of the point target prediction errors are within ±0.5 mm.
The running results of HLSTM show that among the 430476-
point targets, the largest difference (cumulative) deformation
prediction error is 8.75 mm, and the mean prediction accuracy
reaches 71.1%. Because HLSTM trains each subregion indepen-
dently, the main modeling time in Cangzhou area is consumed
in the clustering module (18 s) and subregion 4 (173 s).

InSAR time series analysis provides an important reference
for revealing the macroscopic ground subsidence patterns and
evolution laws [5], but the prediction result of a single high
coherence point is not significant. In order to explore the ef-
fectiveness of our prediction model, we use ArcGIS and other
tools to compare and analyze the spatial statistical characteristics
of the prediction results and real subsidence information. For
the characteristics of spatial autocorrelation, hierarchical het-
erogeneity, and spatial pattern existing between the prediction
results, the classic indicators Moran’s I, Getis G∗, q− statistic,
NNI , etc., are used to measure them separately. The results
show that our prediction results did not significantly change
the spatial statistical characteristics of real subsidence. That
is to say, the deformation pattern of the original InSAR in-
version result is still maintained, which spatially ensures the
feasibility of the deep learning method in ground subsidence
prediction. The detailed results of the spatial analysis are shown
in Table V.
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TABLE V
ANALYSIS OF SPATIAL CHARACTERISTICS OF TIME SERIES PREDICTION RESULT

IV. CONCLUSION

In this article, by constructing the HLSTM network model,
the spatial heterogeneity is integrated into the field of ground
subsidence prediction, and large-scale subsidence prediction is
realized with high precision and time efficiency. The experimen-
tal results show that as follows.

1) The accuracy and processing time are marginally im-
proved compared to classic deep learning approaches
(RNN and LSTM).

2) The subsidence prediction method based on HLSTM can
effectively maintain the spatial pattern of ground subsi-
dence. And the effectiveness of the method is verified by
comparing the spatial analysis metrics.

3) Using subsidence sequences to predict ground subsidence
can avoid difficulties in obtaining hydrological data. Com-
pared with other physical methods and machine learning
methods, HLSTM has higher prediction accuracy without
relevant data.

Although the pretrained model of this research is only applica-
ble to the Cangzhou area, HLSTM can be extended to any large-
scale, monitorable deformation area. This article is a prediction
attempt driven by InSAR data. Some error sources in the InSAR
results will inevitably affect the actual prediction performance
of ground subsidence. In addition, the spatial heterogeneity of
ground subsidence will change over time, and how to accurately
capture geographic similarity is a problem worthy of research. In
further work, we will implement a subsidence prediction method
that considers more driving factors.
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