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Abstract—Recently, hyperspectral image classification based on
deep learning has achieved considerable attention. Many con-
volutional neural network classification methods have emerged
and exhibited superior classification performance. However, most
methods focus on extracting features by using fixed convolution
kernels and layer-wise representation, resulting in feature extrac-
tion singleness. Additionally, the feature fusion process is rough and
simple. Numerous methods get accustomed to fusing different levels
of features by stacking modules hierarchically, which ignore the
combination of shallow and deep spectral-spatial features. In order
to overcome the preceding issues, a novel multiscale dual-branch
feature fusion and attention network is proposed. Specifically, we
design a multiscale feature extraction (MSFE) module to extract
spatial-spectral features at a granular level and expand the range of
receptive fields, thereby enhancing the MSFE ability. Subsequently,
we develop a dual-branch feature fusion interactive module that
integrates the residual connection’s feature reuse property and
the dense connection’s feature exploration capability, obtaining
more discriminative features in both spatial and spectral branches.
Additionally, we introduce a novel shuffle attention mechanism
that allows for adaptive weighting of spatial and spectral features,
further improving classification performance. Experimental re-
sults on three benchmark datasets demonstrate that our model
outperforms other state-of-the-art methods while incurring the
lower computational cost.

Index Terms—Convolutional neural network (CNN), dual-
branch feature fusion (DBFM), hyperspectral image (HSI)
classification, multiscale feature extraction (MSFE) module, shuffle
attention block.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) have recently gained
increased attention in the field of remote sensing. Hyper-

spectral remote sensing is a multidimensional signal acquisition
technology that combines imaging and spectroscopy technology,
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which not only detect 2-D space characters but also 1-D spectral
information of targets. HSIs have the following advantages over
conventional remote sensing images. To begin, the spectral reso-
lution is high, making for the acquisition of continuous spectral
curves for varieties of ground objects. Meanwhile, the spectral
coverage range is expanded, allowing for more detection of
ground object responses to electromagnetic waves. Additionally,
HSIs incorporate both spatial and spectral features and contain
a greater amount of detailed information. Exactly due to these
characteristics, HSIs play a significant role in agricultural detec-
tion [1], [2], medical diagnosis [3], [4], atmospheric monitoring
[5], [6], hydrological detection [7] and other fields. The essence
of the hyperspectral remote sensing image classification is as-
signing each pixel vector to a specific land cover class. How to
fully exploit the abundant spatial and spectral features becomes
a great challenge in HSIs classification.

The traditional classification methods of HSIs are all based on
the handcrafted feature. Early-stage classification methods such
as support vector machine (SVM) [8], random forest (RF) [9],
and multiple logistic regression [10], they are all aimed at utiliz-
ing 1-D spectral features to complete the classification. Although
the large number of spectral bands usually implies more potential
information, the classification accuracy rises at first and then
decreases owning to the high-dimensional data characteristics
of HSIs that contribute to the Hughes phenomenon [11]. As
a result, more and more studies focus on the dimensionality
reduction of the spectral dimension [12]. Currently, the widely
used methods include principal component analysis (PCA) [13]
and LDA [14]. While these methods compress the spectral
dimension and reduce the spectral redundancy, noise typically
exists, which is caused by lighting and imaging equipment. Due
to the spatial resolution limitation and the complexity of the
imaging process, the phenomena of the same land-cover may
exhibit spectral dissimilarity, while the spectral properties of
different materials may be indistinguishable [15].

In recent years, deep learning (DL) occupies a dominant
position in computer vision due to its robust feature repre-
sentation ability. DL eliminates the tedious process of feature
engineering. Through an end-to-end structure, the network can
automatically extract abstract features hierarchically. DL has
achieved great success in the fields of image classification [16],
target recognition [17] and semantic segmentation [18]. For the
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first time, Chen et al. [19] apply DL to HSIs classification.
Till then, more and more DL methods [20]–[25] have been
existed in HSIs classification. For instance, [26] perform the
feature extraction and classification with deep belief network
simultaneously. Yuan et al. [27] generate HSIs classification
map by combination of stacking encoders. While both of the
preceding methods have demonstrated considerable success,
whereas they rely on the spectral vector of pixels to complete the
classification and miss the spatial distribution of image pixels.
The spatial context information of the original data is destroyed,
resulting in the loss of useful spatial information. As a result,
the research on HSIs classifications need to be further carried
on. Researchers begin to place great emphasis on the spatial
structure information of HSIs. A lot of methods based on 2-D
CNN have been proposed to apply in the HSIs classification
[28]–[31]. For instance, Makantasis et al. [28] developed a
neural network model based on 2-D CNN. The intermediate
pixels are packed into fixed-size cubes by filling surrounding
pixels and then sent into the neural network to extract spatial
information. This data processing technique is quite novel and
achieve an excellent classification performance. Li et al. [32]
proposed a novel pixel-pair method to exploit the similarity
between pixels and use a majority voting strategy to generate
the final label. Pan et al. [33] designed a small-scale data-driven
method, multigrained network to deal with the limited samples in
HSIs classifications. Cao et al. [34] developed a Bayesian HSIs
classification method, which combines the CNN and a smooth
Markov random field to exploit the spatial information. How-
ever, the most distinguishing features of HSIs are the spectral
diversities. Studies frequently place a greater emphasis on spatial
characteristics but appear to overlook spectral characteristics.
Therefore, later researches begin to explore the combination
of spatial and spectral features to complete the classification
tasks. For the first time, [35] proposed an HSI classification
algorithm based on the spectral-spatial features, in which spec-
tral information was fused with the spatial information through
the transformation of the network. The classification task was
carried out on the fused features, and the results were excellent.
Li et al. [36] proposed a double-branch spatial-spectral extrac-
tion and fusion method based on 2-D convolutional network
which further improved the discriminative feature extraction
capacity. Liu et al. [37] introduced LSTM to HSIs classification
in a novel way, including spectral and spatial LSTM blocks.
The method passed each pixel’s spectral-spatial features to the
softmax layer, which generated two distinct types of results, and
then used the decision fusion method to generate classification
renderings.

CNN has strong feature extraction capabilities which can
achieve the high-level abstract features by stacking modules
and deepening the network layers. Nonetheless, On the one
hand, a deeper network introduces additional parameters into
the training process and lengthens the training time. On the other
hand, gradient vanishing impairs back propagation and degrades
the classification performance. For the former, the continued
developments of the high-performance graphics processing units
(GPUs) [38] have resulted in a significant reduction in training
time when confronted with a large training parameter network.

For the latter, He et al. [39] propose a residual network that
uses skip connections to ensure that gradients circulate smoothly
in the deeper network, alleviating the problem of gradient
vanishing. Soon after, residual networks gained popularity in the
field of computer vision, and they were also applied to the classi-
fications of HSIs. For instance, Nickolls and Dally [38] designed
a spectral-spatial residual network (SSRN) with two consecutive
residual blocks in order to learn the discriminative features in
the HSIs, which can perform well with small training samples.
Lee et al. [41] enhance the learning efficiency of traditional
CNN models by introducing residual network and use multiscale
convolution kernels to explore the spatial-spectral features in
HSIs. Song et al. [42] develop a deep residual network with
an attention mechanism to learn HSIs discriminative features
and obtain further improvement in classification performance.
Paoletti et al. [43] designed a deep pyramidal residual network
for HSIs classification.

Recent works in attention mechanisms have shown it to be an
extremely powerful tool to boost the classification performance
According to the biological cognitive research, human being
receive significant information by focusing on a few critical
items and ignoring others [44]. Similarly, attention in neural
networks has the same function, which has been successfully
applied to various tasks in the computer vision [45], [46]. In the
HSIs classification tasks, many methods based on existing atten-
tion mechanism also emerged, demonstrating the effectiveness
of improving the classification performance.

Meanwhile, multiscale feature extraction (MSFE) is a critical
component of HSI classification, as it has a significant impact
on the classification performance. Existing multiscale extractors
[47] are limited to extracting features from fixed receptive fields,
and thus cannot extract both global and local features simulta-
neously. To say the least, even if the multiscale features have
been extracted from the front layers of the network, the fusion
process of the features is rough, resulting in information loss in
front layers.

Drawing intuition from the success of the abovementioned
methods, a novel 3-D dual-branch feature extraction and fusion
attention network is proposed for HSIs classification. The main
contributions of this article are summarized as follows.

1) Many existing classification methods based on CNN ex-
tract the multiscale spatial-spectral features with layer-
wise representations and fixed kernel size. Different from
them, we design a 3-D MSFE module which refers to
the multiple available receptive fields at a more granular
level. The MSFE is capable of performing MSFE in a
lightweight and efficient manner.

2) In order to fully excavate the potential of spatial and
spectral feature representation of HSIs, a 3-D dual-branch
feature interactive module (DBFM) is proposed for clas-
sification. Different from the existing parallel processing
network with stacked convolution modules, DBFM is a
dual-branch structure that consists of multiple filters with
additive links and concatenative links. To be brief, con-
catenative links focus on new effective feature exploration
in HSIs, while additive links enhance the feature reuse
in previous layers. We integrate the two types of links
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Fig. 1. (a) Overall flowchart of the proposed MSDBFA. (b) Structure of the MSFE. (c) Structure of the DBFM.

in DBFM for fusing the spatial and spectral features in
different levels of the network and assimilate the particular
features from previous layers.

3) Given that the significant contribution of distinct spatial
and channel features to classification results in HSIs, we
introduce a 3-D spatial-channel attention block to boost
the network’s feature representation capability. Existing
attention blocks focus on capturing the dependencies in
spectral dimension, while our proposed 3-D attention
block improves classification performance by creatively
altering the conventional weight distribution method in
both channel and spatial dimensions.

4) Extensive experiments on four publicly available datasets
are conducted. The results indicate that our model outper-
forms state-of-the-art methods.

The rest of this article is organized as follows. The proposed
MSFE, DBFM, attention block and corresponding algorithms
are described in Section II. The Section III details the associated
experiments and analysis. Finally, Section IV concludes this
article.

II. PROPOSED METHOD

This section begins with a brief overview of the proposed
MSDBFA model. And next we will elaborate the MSFE, DBFM
and attention block.

A. Overview of Proposed Model

The main procedure of the proposed MSDBFA is shown in
Fig. 1(a). We take the Indian Pines dataset for example to
illustrate the detail process of the algorithm. First, PCA is applied
to reduce the spectral dimension and suppress the band noise
in original HSIs. Additionally, PCA effectively mitigates the
Hughes effect and thereby improves classification performance.
The HSIs are then segmented into 3-D image cubes centered on
labeled pixels and sent to the MSFE. The MSFE is intended to
extract multi-scale spatial-spectral features at a granular level
and thus expand the range of receptive fields. Following that,
the MSFE-processed image is evenly divided into two feature
subsets and fed into the 3-D DBFM. To achieve deep feature
fusion in both spatial and spectral dimensions, we use hierar-
chical layers comprised of three DBFM modules with different
kernel filters. Each DBFM has a spatial and spectral branch
corresponding to it. The two branches combine shallow and deep
features via additive and concatenative links to produce discrim-
inative spatial-spectral features. Additionally, a Shuffle attention
block is inserted into the network to adaptively filter out critical
features for classification, allowing the network to focus more on
sensitive features while suppressing weaker ones. As a result, we
will have discriminative feature maps for various classes. After
completing abovementioned operations, the feature maps are
converted to vectors using an average pooling layer and then fed
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Fig. 2. Architecture of the SA Block.

TABLE I
CONFIGURATION OF THE MSDBFA MODEL FOR THE INDIAN PINES DATASET (SPATIAL SIZE=15×15)

into the fully connected layers via softmax function to obtain the
final classification maps. A detailed summary of the proposed
model in terms of the layer names, input map dimensions, and
number of parameters is given in Table I.

B. Structure of MSFE

Multiscale feature representations are essential for various
computer vision tasks. At the moment, the majority of methods
rely on stacking multiple kernel filters in hierarchical layers
to extract multiscale features. For instance, [46] makes use of
spatial pyramid pooling to enhance the multiscale ability in each
layer. Deng et al. [47] develops a feature pyramid that combines
features at various scales.

However, these methods extract features in a layer-wise man-
ner and with relatively fixed receptive fields. In contrast to these

existing methods, we aim to improve the layer-wise multiscale
representation capability and to achieve multiple available re-
ceptive fields at a more granular level. As a result, we developed
the MSFE module for the purpose of extracting multiscale fea-
tures from HSIs. As shown in Fig. 1(b), the input of original HSIs
can be denoted as U ∈ ∗ ∗ R∗∗C×D×W×H ,where U represents
the image patch. C, D, W, and H denotes the channel, spectral
dimension, width, and height of the image patch, respectively.
We subdivided the original feature map into four subsets along
the channel, denoted byUi,where i ∈ {1, 2, 3, 4}. They all retain
the same spatial sizes and spectral dimensions, but the channel
count is reduced to 1/4 in comparison to the original feature map
U . Subsequently, each feature subset is sent to the convolutional
sequential (Conv-BatchNorm-ReLU) with kernel size 3×3×3
to generate a new feature map. To avoid size inconsistency,
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Fig. 3. Illustration of two type of links. (a) Additive links. (b) Concatenative
links.

we fill the data with the padding operation. The convolutional
sequential operation is denoted byFi(). To strengthen the feature
reuse of previous layer and reduce the calculating parameters, we
omit convolution for U1 in the process of forward propagation,
namely U1 = Y1. After adding with the output ofFi−1(), the
remaining feature subsets Yi,i∈{2,3,4}are fed into Fi(). As a
result,Yi can be written as

Yi =

⎧⎨
⎩

U1 i = 1
Fi(U1) i = 2
Fi(Ui + Yi−1) 2 < i ≤ 4

. (1)

According to the forward propagation, it can be found that
the potential receptive field of each convolutional layer is a
segmentation of {Ui, i ≤ 4}. Each time a convolutional operator
is applied, the outputs will have a larger range of receptive
field. Due to the effect of the combination, the final output of
the module may contain multiple receptive fields with varying
scales. In order to further improve the representative ability of
the model, we concatenate all the feature subsets and pass them
through a 1×1×1 convolution with ReLU activation to obtain
more nonlinear characteristics.

C. Structure of DBFM

As is well known, ResNet [39] can be achieved by sequentially
stacking residual blocks. The features are added element-wisely
to the output ones through shortcut connections, which not only
enhances the information propagation but also speeds up the
network’s training. While concatenative links in DenseNet [50]
enable each layer to receive raw data generated by preceding
layers, which is useful for exploring new feature. Fig. 2 shows
the connection pattern differences between additive links and
concatenative links. To sum up, we propose a 3-D DBFM
for fusing these multiscale features in a novel way that in-
cludes multiple filters with additive and concatenative links in
order to obtain discriminative spatial-spectral fused features.
As is shown in the Fig. 1(c), the original input HSI cube
X is indicated by X ∈ RC×D×H×W , which has been evenly
divided into two cubes along the channel C, denoted by Xi ∈
RC/2×D×H×W , i ∈ {1, 2}. We pass the two feature subsets into
spatial and spectral branch separately in the DBFM block. In
the spatial branch, for the feature subset X1, we adopt 1×3×3
spatial kernels with subsampling strides of (2, 1, 1) to obtain fea-
ture maps with representative spatial features. Similarly for the
spectral branch, we apply 5×3×3 kernels with strides of (2, 1, 1)

to convolve with X2 to achieve discriminative spectral features.
Consequently, the outputs of two branches take advantage of the
desired spatial and spectral features. To further reduce the com-
putational parameters, we divide the feature maps X1, X2into
two subsets respectively, denoted by X1

j ∈ RC/2×D×H×W j ∈
{1, 2},X2

k ∈ RC/2×D×H×W k ∈ {1, 2}. Due to theX1
1 andX1

2

contain rich original features, we reserve them for subsequent
concatenative link with previous fused feature map to explore
new mied features. While for the X2

1 and X2
2 , we combine them

by additive links to strengthen the spatial-spectral feature fusion.
Mathematically, it can be described as:

Xfus = X2
1 ⊕X2

2

Xspatial = concat
[
X1

1 , Xfus

]

Xspectal = concat
[
X1

2 , Xfus

]
(2)

where Xfus represents the fused features which contain discrim-
inative spatial and spectral features.cocnat[. · .]is indicated that
concatenative links between the original feature subset and fused
features. It will enhance the feature fusion and explore some new
features in other way.

D. Structure of Attention Block

As we all know, various features contribute differently to the
HSIs classification. Based on the fact, we introduce the attention
mechanism here to allow the network to focus on useful features
and neglect unsignificant ones. Existing attention block includes
SENet [51], CBAM [52], GCNet [53], etc. Among them, SENet
is a representative channel attention architecture which apply
the global average pooling (GAP) and fully connected lay-
ers to recalibrate channel-wise feature response and remodel
interdependencies between channels. GCNet is a lightweight
and effective attention block which is used to construct global
context feature. CBAM separates spatial and channel attention
in order to capture representative features respectively, and then
combines them to create a weighted feature map. Based on the
fact that both spatial and channel attention are critical for HSI
classification. Inspired by [54], we propose a novel lightweight
spatial-channel attention block capable of effectively combining
two distinct types of attention. As shown in Fig. 3, for a given
HSI cube X ∈ RC×D×W×H , where C, D, W, and H refers
to the channel, dimension, width and height respectively. We
divide X into G groups along the channel dimension, denoted
by X = [X1, . . . , XG], Xk ∈ RC/2G×D×H×W . Each feature
map will be segmented along the channel dimension into two
branches, denoted byXk1, Xk2 ∈ RC/2G×D×H×W . One branch
is used to generate channel attention feature maps by acquiring
the inter-relationship of channels, while the other branch gen-
erates spatial attention maps via the analysis of space location
relationships.

For the channel attention branch, we first adjust the channel-
wise dimension of the feature map Xk1 via GAP operation,
and then use sigmoid activation to recalibrate the channel-wise
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weights. The output of the channel attention can be obtained by

X ′
k1 = σ

⎡
⎣w1 ∗

⎛
⎝ 1

H ×W

H∑
i=1

W∑
j=1

Xk1(i, j)

⎞
⎠+ b1

⎤
⎦ ∗Xk1

(3)
where 1

H×W

∑H
i=1

∑W
j=1 Xk1(i, j) represents the GAP oper-

ation. w1 ∈ RC/2G×1×1×1and b1 ∈ RC/2G×1×1×1 are the two
dynamic parameters to scale the feature map, (i, j)refers to
the specific spatial position in HSIs cube, and σis the sigmoid
activation. For the spatial attention branch, we first use group
norm (GN) to obtain spatial-wise statistics, and then, similarly
to the channel attention branch, we introduce sigmoid activation
to create a gating mechanism and generate the weighted feature
map. As a result, the final output of spatial attention branch is
followed by

Xk2 = σ(w2 ∗GN(Xk2) + b2) ∗Xk2 (4)

whereGN(·) represents the GN. Other parameters are consistent
with the channel attention branch. To obtain the final weighted
feature map, the representative features obtained by the spatial
and channel attention branches require to be aggregated with
concatenative links, denoted byXk = concat[Xk1, Xk2]. Then,
we use the channel shuffle operation to allow cross-group infor-
mation to flow along the channel dimension, which results in
a more discriminative feature. The attention block is flexible
and can be inserted anywhere in network. To optimize the
classification performance, we place the attention block after
the DBFM. This allows the network to focus on and highlight
the most critical components.

III. EXPERIMENTS AND DISCUSSION

A. Datasets Descriptions

The IP dataset was collected in 1992 over the Indian Pines
agriculture experimental area by the AVIRIS sensor. It has
a spatial resolution of 145×145 pixels and 220 bands with
a wavelength range of 0.4–2.5 um. After eliminating the 20
bands contaminated by water vapor, there are 200 bands used
for classification. The IP dataset contains 16 labeled material
classes.

The Salinas dataset was captured by the AVIRIS sensor in
the SA Valley in California. It covers 512×217 pixels with
spatial size of 3.7m and 224 bands across the wavelength of
0.36–2.5um. In addition, 20 bands were abandoned due to
the water absorption. In total, 16 labeled material classes are
available in the SA dataset.

The Botswana dataset was collected by the NASA EO-1 Hy-
perion sensor over the Okavango Delta. The dataset is 1476×256
pixels in size with a spatial resolution of 30 m per pixel, and 242
bands span the spectral wavelength range of 0.4–2.5 um. After
removing uncalibrated and noise bands, it contains 14 different
categories in total. Fig. 4(a)–(c) illustrates the false-color image
and corresponding ground truth maps of three HSIs datasets.

Fig. 4. False color image and the ground truth maps of the datasets. (a) Indian
pines dataset. (b) Salinas dataset. (c) Botswana dataset.

B. Experimental Setup

All experiments are carried on with a desktop PC with
NVIDIA RTX 2060 Super GPU and 64GB RAM. The proposed
model DBMFA is implemented by using Pytorch with Python
language. We take the overall accuracy (OA), average accuracy
(AA), and kappa coefficient (kappa) to evaluate the classifi-
cation performance quantitatively. Considering the unbalanced
categories in three benchmarks, we use the different portions
of training samples for each dataset to verify the effectiveness
of our proposed model. Specifically, 1% labeled samples is
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TABLE II
NUMBERS OF TRAINING AND TESTING SAMPLES FOR IP DATASET

TABLE III
NUMBERS OF TRAINING AND TESTING SAMPLES FOR SA DATASET

TABLE IV
NUMBERS OF TRAINING AND TESTING SAMPLES FOR BT DATASET

randomly selected in SA dataset as the training set and the
remaining 99% samples as the testing set. We randomly choose
10% samples per class for training and 90% for testing for the
IP and Botswana dataset. Tables II–IV inform the detail of the
sample division of all datasets. In addition, the batch size and
epochs are 16 and 200, respectively. We adopt the Adam to

optimize the parameters. The initial learning rate is 0.0025 and
decreases by 1% every 50 epochs. We repeat all the experiments
five times and average the results in order to avoid errors.

C. Analysis of Parameters

The classification performance is based on the proposed
model structure and the selection of network parameters. PCA
is first used to process the HSIs in order to obtain the C principal
components. Then, the input datasets are neighborhood blocks
with C×d×s×s centered on the label pixels, where s×s refers to
the spatial size of input data. We will elaborate on the analysis
of the effects of these parameters.

1) Effect of Principal Component C: This section examines
the effect of varying the number of principal components C on
the proposed model’s classification performance. We adopt PCA
to decrease the dimension of the spectral. C is empirically set to
10, 20, 30, and 40. It can be observed in Fig. 5(a) that the overall
accuracies rise significantly from 10 to 30 and then plateau at 30.
However, when the number of principal components exceeds 30,
the OA begins to decline. The phenomenon demonstrates that
in a certain degree, the greater the number of principal compo-
nents, the more detailed the spectral information contained in
HSIs. Simultaneously, the neural network can extract additional
discriminative features from these components. As the number
of principal components continues to increase, the classification
performance degrades due to spectral redundancy. In addition,
excessive principal components will inevitably generate com-
putational complexity. Therefore, C is set to 30 for all three
datasets.

2) Effect of Spatial Size s×s: In HSIs classification, the
spatial size of the image cube means how many pixels are pro-
cessed simultaneously by the neural network. We select image
patches with different sizes to test the classification performance.
Specifically, the spatial sizes are varied from 7×7 to 17×17
with the interval of 2. The overall accuracies of our model
classification performance on different spatial sizes are shown
in Fig. 5(b). From the observation of the figure, we can find the
7×7 spatial size has the worst performance, as it is too small to
extract sufficient spatial-spectral information for classification.
With the continuous expansion of spatial size, the patch contains
more discriminative information, and classification performance
improves steadily. The peak value for different datasets appears
at 15×15. When the spatial size exceeds 15×15, the overall
accuracies begin to decline due to the excessive redundant
features. As a result, we conclude that either an excessively large
or excessively small spatial size is detrimental to classification
performance.

D. Impact of Training Ratio

It is a difficult and time-consuming task for HSIs to find
sufficient samples. In this section, we will examine the model
classification performance under different training ratios. We
randomly select 1%, 2%, 5%, 7%, 9%, 10%, and 15% of samples
on IP and Botswana datasets. For the SA datasets, the training
sets portion is set to 0.1%, 0.2%, 0.5%, 0.7%, 0.9%, 1%, and
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Fig. 5. Results of parameter analysis and ablation study. (a) Effect of C on overall accuracies on three HSIs datasets. (b) Effect of spatial size on overall accuracies
on three HSIs datasets. (c) Effect of MSFE module on three HSIs datasets. (d) Effect of attention block on three HSIs datasets. (e) Effect of DBMA module on
three HSIs datasets.

TABLE V
CLASSIFICATION RESULTS OF THE PROPOSED MODEL WITH DIFFERENT TRAINING RATIOS

1.5% of each land-cover category. Table V gives the overall ac-
curacies of different ratios of training samples in three datasets. It
can be observed that the overall accuracies rise steadily with the
increase of the training samples. Simultaneously, the proposed
model exhibits robust performance when training samples are
insufficient.

E. Ablation Study

In order to demonstrate the effectiveness of the proposed
MSFE module, attention block and DBFM module, we design
three specific ablation experiments. The models used for com-
parison are consistent with the network of the proposed method
except for the removal of the MSFE module and attention block
from the original networks. While for the DBFM, we replace the
module with single branch layer-wise 3-D CNN. The principal
components and the spatial size are set to 30 and 15×15 to
guarantee the fairness of the experiments. The overall accuracies

of three datasets of comparison models are displayed in
Fig. 5(c)–(e). It can be observed that the MSFE module improve
the value of overall accuracies by approximately 0.18%–0.41%.

The reason for the phenomenon is that the MSFE module
introduces multiple sizes of kernels to capture the rich spatial-
spectral information and more effectively fuse information at
different scales. Simultaneously, the model with the attention
block achieves higher overall accuracies (approximately 0.19%–
0.52%) than the model without the attention block, demon-
strating that the proposed attention block can adaptively assign
different weights to spatial-channel regions and selectively
strengthen valuable features during the HSI feature extraction
process. Simultaneously, the proposed DBMA module exhibits
the superior performance compared with single-branch 3-D
CNN network in three HSIs datasets. DBMA module is com-
posed of multiple filters with additive links and concatenative
links, which improves the spatial-spectral feature fusion with
low resolution land-cover and captures discriminative features.
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Fig. 6. Classification maps for IP. (a) Ground truth. (b)–(j) Predicted classification maps for SVM (OA=81.78%), MLR (OA=75.49%), RF (OA=73.09%),
1D-CNN (OA=80.60%), 2-D-CNN (90.27%), Hybird-SN (OA=97.17%), SSRN (OA=97.69%), A2S2KResNet (OA=98.63%), and proposed HSMSN-HFF
(99.14%).

F. Compare With Different Methods

In order to evaluate the performance of our proposed method
MSDBFA, we select eight classification methods to compare
with our model. The eight methods are SVM with radial ba-
sis function kernel, multinomial logistic regression (MLR),
RF, spectral CNN (CNN-1-D), spatial CNN with 2-D kernels,
Hybrid-SN [55], SSRN [40], A2S2KResnet [56]. The Fig. 6–8
show the classification maps on IP, SA and Botswana dataset.
Among them, SVM, RF, and MLR are classical machine learn-
ing classification methods. They complete the classification
using the spectral dimension of HSIs, which has been widely
used in previous classification research, but has low accuracies.
In order to highlight the progressiveness of our method, we also
employ a variety of DL-based methods. 1-D CNN is an early
neural network model using spectral dimension to classify HSIs;
2-D CNN classifies based on spatial features; SSRN is a classical
spatial-spectral classification model that incorporates residual
connections to mitigate gradient disappearance and shorten
training time. Hybrid-SN creatively utilizes the 3-D and 2-D
convolution to explore the shallow and deep features respectively
in HSIs. A2S2kResnet introduces an adaptive spectral-spatial
kernel improved residual network with spectral attention for the
purpose of capturing discriminative spectral-spatial features in
HSIs.

In order to ensure the fairness of experiments, the spatial size
and the number of principal components are set to 15×15 and
30 for all DL methods, respectively. Due to the fact that SSRN
does not follow the PCA as described in the original paper, so
we do not apply PCA operation to the SSRN model. Other
parameters of the network are configured according to their
papers. Our proposed method outperforms the other methods by
approximately 0.51%–26.05% in terms of OA, 0.5%–40.78%
in terms of AA, and 0.58%–30.27% in terms of Kappa in IP
dataset. The sample distribution is extremely unbalanced across

the IP dataset’s various classes. The class of Alfalfa, Grass-p-m,
and Oats, for example, has only 46, 28, and 20 samples per class,
respectively. That is a great challenge for the HSIs classification
resulting in problems with unbalanced sample training. Notably,
our proposed method achieves 100% overall accuracies on the
grass-pasture, grass-t, grass-p-m, hay-w, and oats classes. By
comparison, SVM, RF, and MLR have relatively poor classifica-
tion performance. To be precise, the SVM classifier has the high-
est OA among the three machine learning methods. The MLR
classifier’s values fall precipitously when dealing with small
sample sizes. While RF classifier performs the worst (OA =
76.09%). Comparatively, some DL classification methods have
superior performance; for example, the A2S2Resnet method
achieves the best classification results with 98.63% value of OA
among all the comparative methods.

For the SA and Botswana datasets, our proposed model
MSDBFA also achieves the highest value of OA. Among all
the classification method, RF model performs the worst again,
indicating that the random forest algorithm cannot deal well
with the complex spatial-spectral features in HSIs. At the
same time, some simple DL methods such as 1-D CNN and
2-D CNN, the classification accuracy has been significantly
improved compared with the conventional machine learning
methods. However, they still have their own limitations. For
example, 1-D CNN utilizes the redundant spectral information
to complete the classification, which is bounded to be affected
by the Hughes phenomenon. 2-D CNN relies on the spatial
distribution and characteristics of ground objects to classify,
whereas ignoring the characteristics of rich spectral of HSIs. For
many recent DL methods that employ spatial-spectral feature
fusion strategies, including SSRN, Hybrid-SN, A2S2KResnet,
they generally outperform the former methods (1-D-CNN and
2-D-CNN), especially when the number of training samples is
relatively small. It’s demonstrated that in the case of a limited
number of training samples, the hierarchical fusion mechanism
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Fig. 7. Classification maps for SA. (a) Ground truth. (b)–(j) Predicted classification maps for SVM (OA=90.25%), MLR (OA=89.79%), RF (OA=86.18%),
1-D-CNN (OA=90.81%),2-D-CNN (OA=95.58%), Hybird-SN (OA=97.68%), SSRN (OA=97.09%), A2S2KResNet (OA=97.01%), and proposed HSMSN-HFF
(99.71%).

Fig. 8. Classification maps for Botswana. (a) Ground truth. (b)–(j) Predicted classification maps for SVM (OA=92.65%), MLR (OA=92.40%), RF (OA=84.49%),
1D-CNN (OA=93.51%), 2-D-CNN (OA=98.63%), Hybird-SN (OA=98.07%), SSRN (OA=98.27%), A2S2KResNet (OA=98.31%), and proposed HSMSN-HFF
(99.91%).
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TABLE VI
CLASSIFICATION RESULTS OF DIFFERENT METHODS ON THE IP DATASET

TABLE VII
CLASSIFICATION RESULTS OF DIFFERENT METHODS ON THE SA DATASET

can combine the complementary and relevant information from
the output of distinct convolutional layers, making the extracted
features more effective for classification. Tables VI–VIII show
the results in terms of the OA, AA, and Kappa for above-
mentioned methods. Additionally, to evaluate the computational
cost and complexity of the proposed model. Table IX gives
the total trainable parameters (TTP), floating-point operations
(FLOPs), and training times for various models with the IP
dataset. As can be seen, hybrid-SN has the largest parameters and
highest FLOPs compared with other methods, owning to its large
kernel filters and batch size. A2S2KResNet has approximately
the same number of parameters as SSRN, but SSRN takes higher
FLOPs due to the fact that it does not use PCA to reduce the
spectral dimension of the HSIs as conventional methods do.
Instead, it utilizes a 3-D kernel filter to squeeze the dimen-
sion hierarchy. Our method has the lowest FLOPs due to the
lightweight multiscale extraction module and effective shuffle
attention block. In terms of training time, our method is only

slightly longer than the Hybrid-SN, but achieves significantly
better classification performance in all three datasets. On the
whole, the MSDBFA model outperforms other methods in terms
of both classification performance and computational cost.

IV. CONCLUSION

In this article, a novel multiscale dual-branch feature fusion
and attention network has been proposed. Specifically, we pro-
pose an MSFE by constructing multiple residual-like connec-
tions, thus the structure of the module can obtain multiscale
features at a granular level. Moreover, we design the DBFM to
complete the deep fusion of spatial-spectral features via concate-
native and additive links, which can not only enhance the feature
reuse at shallow level but also explore new discriminative infor-
mation from the fused spatial-spectral features. In addition, we
introduce a novel shuffle attention block to improve performance
over the network by creatively altering the conventional weight
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TABLE VIII
CLASSIFICATION RESULTS OF DIFFERENT METHODS ON THE BOTSWANA DATASET

TABLE IX
TRAINABLE PARAMETERS, FLOPS, AND TRAINING TIMES OF DIFFERENT

MODELS FOR IP DATASET

distribution method in channel and spatial dimensions, thereby
enhancing the representation ability of the feature map. The
obtained results on three HSIs datasets reveal that our proposed
MSFDBA model provides competitive results compared to the
other state-of-the-art approaches for classification performance.
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