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ShipRSImageNet: A Large-Scale Fine-Grained
Dataset for Ship Detection in High-Resolution
Optical Remote Sensing Images

Zhengning Zhang

Abstract—Ship detection in optical remote sensing images has
potential applications in national maritime security, fishing, and
defense. Many detectors, including computer vision and
geoscience-based methods, have been proposed in the past decade.
Recently, deep-learning-based algorithms have also achieved great
success in the field of ship detection. However, most of the existing
detectors face difficulties in complex environments, small ship
detection, and fine-grained ship classification. One reason is that
existing datasets have shortcomings in terms of the inadequate
number of images, few ship categories, image diversity, and
insufficient variations. This article publishes a public ship detection
dataset, namely ShipRSImageNet, which contributes an accurately
labeled dataset in different scenes with variant categories and
image sources. The proposed ShipRSImageNet contains over 3435
images with 17 573 ship instances in 50 categories, elaborately
annotated with both horizontal and orientated bounding boxes
by experts. From our knowledge, up to now, the proposed
ShipRSImageNet is the largest remote sensing dataset for ship
detection. Moreover, several state-of-the-art detection algorithms
are evaluated on our proposed ShipRSImageNet dataset to give
a benchmark for deep-learning-based ship detection methods,
which is valuable for assessing algorithm improvement.!

Index Terms—Deep learning, fine-grained image classification,
image dataset, remote sensing images, ship detection.

I. INTRODUCTION

EASURING and monitoring human activities at sea
have become increasingly important along with global
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economic integration. Fast-growing shipping traffic causes dra-
matically increasing infractions, such as environmentally devas-
tating ship accidents, piracy, illegal fishing, drug trafficking, and
illicit cargo. The International Maritime Organization defines
maritime domain awareness as an effective understanding of any
activity associated with the maritime domain that could impact
security, safety, economy, and environment [1]. Up to the end
of the year 2019, there are about 92 867 merchant ships and
5500 warships worldwide. With such high-variational categories
and sizes of ships distributed on the vast sea, it is essential and
technically challenging to discover and identify them quickly
and accurately.

In recent years, due to the so-called orbital revolution pro-
cessing, the spectral and radiometric resolution, revisit time,
and spatial resolution of remote sensing satellites have been
improved dramatically.

High-resolution optical remote sensing images with different
swath and resolutions are often combined and analyzed for faster
and more accurate ship detection. More information on ship fea-
tures, e.g., structure and texture, are employed. This information
has laid the foundation for fine-grained ship classification and
even identifying a specific ship.

Over the past 20 years, many automatic ship detection meth-
ods have been developed and have achieved significant results.
Kanjir et al. [1] categorized these methods into eight groups in-
cluding threshold-based methods, salient-based methods, shape
and texture features based methods, transform-domain meth-
ods, anomaly detection methods, computer vision methods, and
deep learning methods. Deep learning methods are becoming
increasingly popular because of their impressive classification
performance. Object detection in optical remote sensing images
with deep learning methods has achieved the state-of-the-art per-
formance [2]-[4]. Although deep learning methods can extract
features automatically, datasets with large-scale, high-quality
images are essential for training models.

Significant efforts have been made to build generic image
datasets, such as ImageNet [5], MS COCO [6], and PASCAL
VOC [7]. However, remote sensing images from satellites are
quite different from natural scene images. Satellite-based remote
sensing images generally capture roof information from the bird-
eye view, whereas ground-based imaging usually capture profile
information, as shown in Fig. 1. It is challenging to transfer
object detectors trained by ground-based imaging datasets to
remote sensing datasets, especially for the ship detection task.
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Fig. 1.

In addition to different imaging viewpoints, the task of ship
detection in satellite-based remote sensing images is also differ-
ent from that in ground-based images.

1) Ground-based collections in busy ports often have oc-

cluded vessels.

2) Orientation of ship instances can be extracted from the
bird-eye view.

3) Environmental effects cause different problems, such as
occlusions by clouds and sun glint in satellite data.
Several popular large-scale remote sensing datasets, such
as DOTA [8], NWPUVHR-10[9], and DIOR [10], are pro-
posed in earth observation community for general object
detection.

Many existing remote sensing datasets, e.g., DOTA [8], are
still far from satisfying ship detection tasks since these datasets
group all ships into one category. Hence, they can hardly support
the detection method to distinguish different class of ship.

General object detection algorithms can distinguish cate-
gories with large interclass diversity, such as cats and dogs
or airplanes and cars. A more challenging task is fine-grained
detection, where subdividing objects belong to the same par-
ent category, such as distinguishing different kinds of birds,
different types of ships, and various types of cars. A large-
scale dataset with fine-grained category information is necessary
for fine-grained classification. Liu et al. [11] have compiled
high-resolution ship collection 2016 (HRSC2016) to address
fine-grained ship classification in remote sensing images, where
a set of remote sensing images for ship detection from publicly
available high-resolution imagery is given. Afterward, Chen et
al. [12] released the fine-grained ship detection (FGSD) dataset
based on HRSC2016. Nevertheless, the existing publicly avail-
able optical remote sensing datasets still have shortcomings for
ship detection task in different aspects, which are as follows.

1) The number and diversity of images in the existing datasets

are insufficient to support the training of deep learning

Some ship examples, taken from (a) the PASCAL VOC dataset and (b) the proposed ShipRSImageNet dataset.

methods for fine-grained ship categorization. For example,
the HRSC2016 dataset contains only 1070 images for 25
categories.

2) Lack of detailed annotations. For example, in the Airbus
ship dataset, all ship targets are labeled “ship.”

3) The number of ship categories is small, which restricts
their applicability for fine-grained classification. For ex-
ample, there are only four categories in BCCT series
datasets [13].

4) Most of the images in existing datasets are collected
from the Google Earth database (especially in HRSC
and FGSD), which have been preprocessed and manually
selected, making the diversity of the images different from
that in practical applications.

This work aims at facilitating ship detection research and
introduces a large-scale public dataset, namely the ShipRSIma-
geNet. Our proposed dataset contains 3435 images from various
sensors, satellite platforms, locations, and seasons. Each image
is around 930 x 930 pixels and contains ships with different
scales, orientations, and aspect ratios (ARs). The images are an-
notated by experts in satellite image interpretation, categorized
into 50 object categories. The fully annotated ShipRSImageNet
contains 17 573 ship instances. There are five critical contri-
butions of the proposed ShipRSImageNet dataset compared
with other existing remote sensing image datasets, which are
as follows.

1) Images are collected from various remote sensors covering
multiple ports worldwide and have large variations in
size, spatial resolution, image quality, orientation, and
environment.

2) Ships are hierarchically classified into four levels and 50
ship types.

3) The number of images, ship instances, and ship types is
larger than that in other publicly available ship datasets.
Besides, the number is still increasing.
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TABLE I
COMPARISON BETWEEN EIGHT PUBLICLY AVAILABLE OPTICAL REMOTE SENSING OBJECTS DATASETS

#Instances

#Ship instances/

Spatial

Datasets Image Source #Images /Categorics Image Size #Ship Categories resolution Year
?IEY(;[)J VHR-10 Google Earth 800 3,775/10 1kx1k 302/1 0.5~2m 2014
WHU-RS19[12] Google Earth 1,005 -/119 600x600 50/1 0.5m 2012
F?lcﬁ)l Google Earth 232 /11 512x512 100/1 0.2m 2016
DOTA Google Earth
(18D JGE-2/IL-1 2,806 188,282/15 800x800~4kx4k 2,702/1 max 0.5m 2017
NWPU-

RESISC45 Google Earth 31,500 31,500/45 256%x256 700/1 0.2~30m 2017

([18])

HRRSD Google Earth

(1197) Beidu Map 21,761 55,740/13 - 3,886/1 0.15~1.2m 2018

?%?01]{) Google Earth 23,463 190,288/20 800x800 64,000/1 0.5~30m 2018

xView DigitalGlobe’s

( [14]) WorldView 3 1,413 800,636/60 1.5kx1.2k 5,672/9 max 0.3m 2019

TABLE II
COMPARISON OF EIGHT OPTICAL REMOTE SENSING SHIP DETECTION DATASETS
Dataset Image source #Images  Image Size #Ship . #Shlp Sp aual. Year
Categories  instances  resolution
BCCT200 800 Various size 4 - <5m 2011
(13D )
?[Clg]T)ZOO'rES’ZC 800 300x150 4 - <5m 2011
- RAPIER Ship

?ﬁ(é]T)ZOO'Sy nth Detection System 200k 300x150 4 ; <5m 2011
HRSC2016 300x300
(1) Google Earth 1,070 ~1.5kx900 25 2,976 0.4-2m 2016
?i%ﬁ ship SPOT6/7, Pléiades 192,556 768x768 1 231723 0.3-6m 2019
I(VI[/?SS]‘?TI Microsoft Bing maps 6,212 512x512 1 3,313 - 2019
F([}ISZ]])) Google Earth 2,612 930x930 43 5,634 0.12-1.93m 2020
Proposed ShipRSImageNet — Multi sources 3,435 ?\??Z?(i?k 50 17,573 0.12-6m 2020

4) We simultaneously use both horizontal and oriented
bounding boxes, and polygons to annotate images, pro-
viding detailed information about direction, background,
sea environment, and location of targets.

5) We have benchmarked several state-of-the-art object de-
tection algorithms on ShipRSImageNet, which can be
used as a baseline for future ship detection methods.

II. REVIEW ON REMOTE SENSING IMAGE DATASETS FOR
SHIP DETECTION

We investigate eight publicly available optical remote sensing
object datasets containing ship targets, including DOTA, DIOR,
and xView [14], etc. As shown in Table I, these datasets contain
different ship instances; however, they are often labeled as the
same ship-parent category. Unlike other datasets, xView is the
only generic optical remote sensing image dataset with various
ship categories.

We also investigate seven publicly available ship detec-
tion datasets in optical remote sensing images, including
BCCT200 [13], HRSC2016, FGSD, etc., for detection tasks
and MASATT [15] (see Fig. 2) for the classification tasks, as
shown in Table II. Except the Airbus ship dataset that employs
images from satellite platforms directly (see Fig. 3), all other
datasets collect images from public image resource platforms,
such as Google Earth and Microsoft Bing Maps, which causes

Weather conditions variations

Fog

Sunglint

Poor
Illumination

Fig. 2. Image examples of different classes from MASATI dataset.

insufficient diversity and variation in terms of resolution and
environment. Many of these images were selected to mini-
mize cloud coverage, to have good illumination conditions, and
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Fig. 3.

Samples of Airbus ship detection dataset.

sea surface. This selection would negatively impact training
detection techniques that are intended to operate in real-life
environmental conditions.

Another problem that needs to be addressed is that weather
conditions and scenes are not labeled in existing ship detection
datasets. Therefore, it is impossible to evaluate performance of
ship detection in different environmental conditions and scenes.

A. BCCT200 Series Datasets

In 2011, Space and Naval Warfare Systems Command pro-
posed a vessel objects dataset using optical remote sensing
images, namely, BCCT200. As far as we know, BCCT200 is
the earliest public ship detection dataset, which contains four
different classes of ships with various image sizes, includ-
ing barge, cargo, container, and tanker, with 200 images per
image category. Based on the BCCT200 dataset, BCCT200-
resize dataset was created by rotating, resizing, and aligning
BCCT200 images. Besides, another BCCT200 series dataset,
BCCT-Synth, consists of 200 000 labeled images of the same
ship classes as BCCT200, captured from 15 virtual overhead sen-
sors with different illumination conditions, weather, sea states,
and clouds [16].

B. HRSC2016 Dataset

Liu et al. [11] released the HRSC2016 dataset in 2016, a
milestone in the ship detection research community. It is the
first large-scale, detailed classified high spatial resolution optical
remote sensing image dataset for ship detection. The HRSC2016
dataset contains 1070 images from Google Earth, and a to-
tal number of 2976 ship instances of 25 categories. Before
HRSC2016, the instances are only categorized into background
and ship or few categories in most ship-detection-related works.
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Liu et al. organized the ship images into a tree structure, which
consists of three levels: ship class, ship category, and ship type.
The image size changes from 300 x 150 to 1500 x 900, as
shown in Fig. 4.
However, there is much room for the HRSC2016 dataset to
improve because of the following.
1) Diversity of images collected from Google Earth is not
enough.
2) Each category contains 144 instances on average, but the
number of instances in most types is less than 50.
3) Only limited ports are covered in the dataset.
4) Ships are grouped into general categories without further
finer categorization.
5) Variations of rotation, position, shape, and sea surface are
not enough to support practical applications.

C. FGSD Dataset

The FGSD is a new large-scale ship detection dataset released
by Chen ef al. [12]. It is expanded based on HRSC2016 and
contains 2612 images from Google Earth and 17 different ports.
It consists of a total number of 5634 instances, covers 43 classes.
All the instances in the FGSD are annotated manually with both
horizontal bounding box (HBB) and oriented bounding box.
Compared with HRSC2016, besides ship category, a new class,
dock, is annotated in the FGSD. The 42 classes of ships (except
for dock) were divided into a three-level category structure,
similar to the HRSC2016 dataset. Although the FGSD dataset
almost doubles the number of images, it also doubles the number
of classes. The average number of instances per class changed
only from 119 to 131.

Therefore, for most deep-learning-based methods, the num-
ber of images in these datasets to represent varying scale and
appearance of ship of different categories is still not enough.
Moreover, HRSC2016 and FGSD mainly focus on military ship
targets, but there are many categories of merchant ships.

III. PROPOSED SHIPRSIMAGENET DATASET
A. Images Collection

The ShipRSImageNet dataset collects images from a variety
of sensor platforms and datasets, in particular, the following are
given.

1) Images of the xView dataset are collected from
WorldView-3 satellites with 0.3-m ground resolution. Im-
ages in x View are pulled from a wide range of geographic
locations. We only extract images with ship targets from
them. Since the image in xView is huge for training, we
slice them into 930 x 930 pixels with 150 pixels overlap
to produce 532 images and relabeled them with both HBB
and oriented bounding box.

2) We also collect 1057 images from HRSC2016 and 1846
images from FGSD datasets, corrected the mislabeled and
relabeled missed small ship targets.

3) 21 images from the Airbus Ship Detection Challenge.

4) 17 images from Chinese satellites, such as GaoFen-2 and
JiLin-1.
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Fig. 4. HRSC2016 dataset samples.

B. Ship Category Selection

Determining which type of ship should be included in our
dataset is the first step for constructing ShipRSImageNet, and
significantly impacts the performance of the ship detection
algorithm. For the existing optical remote sensing datasets,
e.g., DOTA, DIOR, the categories are selected based on the
value for applications. The interclass distances between these
categories are often significant to be distinguished. For example,
the DOTA dataset contains 16 categories, including plane, ship,
large vehicle helicopter, swimming pool, etc., which are sharply
different from each other.

However, for fine-grained categorization, detailed features
between different types of ships are small. Fine-grained ship
detection is necessary for practical applications. Detecting a ship
as an Arleigh Burke Destroyer gives more valuable information
than detecting it as a Destroyer. However, it is difficult to
distinguish between different types of ships, such as Destroyer
and Frigate, or Cargo and Container through optical remote
sensing satellite images without expert information.

We inherit the classification system of the HRSC2016 and the
FGSD datasets but increase the number of levels in ship catego-
rization hierarchy from 3 to 4 and supplement the subcategory
division. The ship classification tree of proposed ShipRSIma-
geNet is shown in Fig. 5. Level O distinguish whether the object
is a ship, namely Class. Level 1 further classifies the ship object
category, named as Category. Level 2 further subdivides the

categories based on level 1. For example, Warship is subdi-
vided into Submarine, Aircraft Carrier, Destroyer, Frigate, etc.,
namely the Subcategory. Level 3 is the specific type of ship,
named as Type. For example, the Aircraft Carrier subcategory
includes Nimitz, Enterprise, etc. However, it needs to be pointed
out that for Merchant ship, the number of specific types is huge
and have limit value to be classified in practice, so they are not
further divided at level 3.

At level 0, two categories are labeled, Ship and Dock, which
means all positive targets are classified as Ship. Dock does
not belong to any ship category but is labeled because the
rectangular shape of docks influences near-shore ship detection
performance.

At level 1, ships are labeled into three categories: Warship,
Merchant ship, and Other ship. Other ship means an object is a
ship, but we cannot identify whether it is a Warship or Merchant
ship. This standard also applies to level 2 and level 3.

At level 2, we subdivide Warship into ten subcategories.
There is no unified standard for the classification of military
ships globally for Warship, especially for modern warships. It is
challenging to distinguish modern warships in the optical remote
sensing image from bird-eye view. For example, modern Frigate
and Destroyer are very similar, with only little differences in
size; sometimes, even experts cannot easily distinguish between
them. We added the Auxiliary Ship category at level 2 as a new
subcategory. The Medical Ship, Test Ship, and Training Ship in
FGSD are all subcategories of Auxiliary Ship. We also carefully
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Fig. 5. ShipRSImageNet class hierarchy.

choose 13 subcategories for Merchant ship, which are more
accurate than those given in the FGSD and HRSC2016 2016
datasets.

Finally, at level 3, ship objects are divided into 50 types. For
brevity, we use the following abbreviations: DD for Destroyer,
FF for Frigate, LL for Landing, AS for Auxiliary Ship, LSD
for Landing Ship Dock, LHA for Landing Helicopter Assault
Ship, AOE for Fast Combat Support Ship, EPF for Expedi-
tionary Fast Transport Ship, and RoRo for Roll-on Roll-off
Ship. These 50 object classes are Other Ship, Other Warship,
Submarine, Other Aircraft Carrier, Enterprise, Nimitz, Midway,
Ticonderoga, Other Destroyer, Atago DD, Arleigh Burke DD,
Hatsuyuki DD, Hyuga DD, Asagiri DD, Other Frigate, Perry
FE Patrol, Other Landing, YuTing LL, YuDeng LL, YuDao LL,
YuZhao LL, Austin LL, Osumi LL, Wasp LL, LSD 41 LL, LHA
LL, Commander, Other Auxiliary Ship, Medical Ship, Test Ship,
Training Ship, AOE, Masyuu AS, Sanantonio AS, EPF, Other
Merchant, Container Ship, RoRo, Cargo, Barge, Tugboat, Ferry,
Yacht, Sailboat, Fishing Vessel, Oil Tanker, Hovercraft, Motor-
boat, and Dock.

We assigned a specific code with four fields for each of the
50 categories, each with two digits. The first field describes the
category of level 0, the second field describes the category of
level 1, the third field describes the subcategory of level 2, and
the fourth field describes the type of level 3, respectively. As
an example, Dock would have the code 02-04-25-50. The codes
and abbreviations of ship categories are shown in Table III.

It should be pointed out that the number of types can be
expanded easily in level 3, whereas the subcategories in level
2 should be kept the same to maintain consistency of ship
categorization in the dataset.
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C. Dataset Scale and Splits

ShipRSImageNet dataset contains 3435 optical remote sens-
ing images with 17 573 ship instances, including 49 ship types
and Dock. The size of most original images in the dataset is 930
x 930, the maximum width is 1238, and the maximum height
is 930.

For evaluation, we partitioned the ShipRSImageNet dataset
into train and test splits. We randomly select 64% of the original
images as the training set, 16% as a validation set, and 20% as
the testing set. This resulted in 2198 images for training, 550
images for validating, and 687 images for testing, respectively.
For each ship category and subset, the number of instances is
given in Table III.

D. Annotation Pipeline

Motivated by existing datasets, such as MS-COCO, we design
the annotation pipeline as the following three steps. The first
step performs a two-class classification. If the image contains at
least one ship instance, it will be passed to the next step. In the
second step, each image is labeled as containing particular ship
categories using a hierarchical labeling approach. In the third
step, the individual ship instances are labeled with the location
information and weather characteristics.

Our annotation team has three groups: annotators, inspectors,
and examiners. Images were divided into subsets and were
annotated by the annotators, then checked by the inspectors.
Finally, the examiners review the quality of annotations. The
image annotation job is rejected if any error is found in any of
the steps.

E. Annotation Method

A typical HBB is presented with (x., y., w, h), where (z., y.)
is the central location of the target, w and h are the width and
height of the surrounded bounding boxes, respectively. However,
the HBB cannot accurately represent ship targets because of the
overlap between the HBBs, especially when ships are densely
distributed, as shown in Fig. 6.

To address this problem, Liu et al. have proposed to replace
the HBBs with oriented bounding boxes [21]. In this way, the
overlap between bounding boxes is minimized [22]. An oriented
bounding box is characterized with five tuples (z., y., w, h, 6),
where (z.,y.) is the central location, (w, h) is the width and
height of the surrounded orientation bounding box, respectively,
and 6 denotes the angle between the oriented bounding box
and the horizontal direction. Another equivalent representation
method is to use the coordinates of the four corners of the
oriented rectangular box, similar to the polygon labeling method,
which can be denoted as (x1, y1, T2, Y2, T3, Y3, T4, Ya)-

In our dataset, each ship instance is manually labeled by ex-
perts with a HBB, an oriented bounding box, as well as a polygon
annotation. We used the (., y., w, h,0) method to represent
the oriented bounding box. However, € is defined as the angle
at which the horizontal axis (X-axis) rotates counterclockwise
to the head vector of the ship since the head position has a
particularly significant value for identifying the direction in the
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TABLE III
NUMBER OF INSTANCES PER SHIP CATEGORY AND PER SUBSET

Type lceggleb-l-Z-S Abbv. Total Train Val  Test g"G];’; Code:
Other Ship 01-01-01-01 cl 1696 1050 297 349 (66, 77, 59)
Other Warship 01-02-02-02 c2 1455 962 209 284 (127, 224, 99)
Submarine 01-02-03-03 c3 1017 666 171 180 (17, 104, 104)
Other Aircraft Carrier 01-02-04-04 c4 46 30 4 12 (24, 135, 138)
Enterprise 01-02-04-05 c5 101 69 18 14 (233, 127, 10)
Nimitz 01-02-04-06 c6 115 84 19 12 (222, 214, 167)
Midway 01-02-04-07 c7 23 13 5 5 (53, 90, 30)
Ticonderoga 01-02-05-08 c8 440 258 77 105 (57, 2, 47)
Other Destroyer 01-02-06-09 c9 277 171 46 60 (66, 149, 21)
Atago DD 01-02-06-10 cl0 272 167 41 64 (103, 135, 239)
Arleigh Burke DD 01-02-06-11 cll 652 396 130 126 (173, 202, 6)
Hatsuyuki DD 01-02-06-12 cl2 140 88 22 30 (23, 143, 224)
Hyuga DD 01-02-06-13 cl3 108 70 16 22 (113, 178, 123)
Asagiri DD 01-02-06-14 cl4 76 48 14 14 (31, 29, 113)
Other Frigate 01-02-07-15 cls 215 140 28 47 (174, 15, 208)
Perry FF 01-02-07-16 cl6 659 423 77 159 (85, 43, 116)
Patrol 01-02-08-17 cl7 154 102 37 15 (150, 70, 208)
Other Landing 01-02-09-18 cl8 108 69 18 21 (193, 139, 220)
YuTing LL 01-02-09-19 cl9 101 61 19 21 (126, 222, 16)
YuDeng LL 01-02-09-20 c20 83 53 11 19 (154, 64, 177)
YuDao LL 01-02-09-21 c21 63 40 5 18 (233, 41, 152)
YuZhao LL 01-02-09-22 c22 44 31 6 7 (129, 133, 155)
Austin LL 01-02-09-23 c23 138 76 27 35 (217, 175, 146)
Osumi LL 01-02-09-24 c24 41 28 6 7 (16, 3, 163)
Wasp LL 01-02-09-25 c25 29 14 6 9 (103, 108, 66)
LSD 41 LL 01-02-09-26 c26 145 95 21 29 (160, 159, 111)
LHA LL 01-02-09-27 c27 192 126 31 35 (136, 157, 249)
Commander 01-02-10-28 c28 146 88 32 26 (42, 255, 213)
Other Auxiliary Ship 01-02-11-29 c29 93 60 18 15 (245, 48, 123)
Medical Ship 01-02-11-30 c30 33 22 5 6 (175, 156, 7)
Test Ship 01-02-11-31 c31 55 43 7 5 (38, 156, 133)
Training Ship 01-02-11-32 c32 55 31 11 13 (220, 213, 40)
AOE 01-02-11-33 c33 62 37 11 14 (169, 22, 232)
Masyuu AS 01-02-11-34 c34 50 28 8 14 (246, 74, 50)
Sanantonio AS 01-02-11-35 c35 73 48 13 12 (25, 194, 118)
EPF 01-02-11-36 c36 62 42 10 10 (98, 151, 99)
Other Merchant 01-03-12-37 c37 252 150 50 52 (49, 199, 150)
Container Ship 01-03-13-38 c38 376 232 72 72 (152, 115, 248)
RoRo 01-03-14-39 c39 170 107 20 43 (151, 41, 140)
Cargo 01-03-15-40 c40 1082 657 169 256 (12, 34, 202)
Barge 01-03-16-41 c41 239 161 22 56 (59, 91, 227)
Tugboat 01-03-17-42 c42 290 197 46 47 (249, 85, 231)
Ferry 01-03-18-43 c43 309 191 53 65 (134, 203, 83)
Yacht 01-03-19-44 cd44 712 501 140 71 (56, 95, 99)
Sailboat 01-03-20-45 c45 796 325 341 130 (35, 176, 189)
Fishing Vessel 01-03-21-46 c46 606 318 929 189 (172, 18, 93)
Qil Tanker 01-03-22-47 c47 204 129 32 43 (19, 240, 187)
Hovercraft 01-03-23-48 c48 334 229 31 74 (64, 9, 100)
Motorboat 01-03-24-49 c49 2091 1190 398 503 (7, 47, 41)
Dock 02-04-25-50 ¢50 1093 744 154 195 (255, 25, 180)

(a) (b)

Fig. 6. HBB and oriented bounding box annotation. (a) HBB. (b) Oriented bounding box.
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Fig. 7. Annotation method of the orientation bounding box and ship head.

densely distributed situation. When the ship’s head points to the
X-axis direction, the rotation angle 6 is 0°, and the range of 6
is [0, 27]. Since there are no clear visual clues for some types
of ships to determine the head position of the ship, such as a
ship with a V-shape at both ends, we choose the top-left point of
it as the starting point, which is consistent with the annotation
method in DOTA [8] dataset.

Polygon annotations are also provided, where the right point
is chosen carefully as the first point of the oriented bounding
box, as shown in Fig. 7. Then, we can determine the other three
points of an oriented bounding box clockwise. Finally, these
four points are denoted as (z1, y1, T2, Y2, T3, Y3, T4, y4) in the
polygon field of the ShipRSImageNet annotation file. Examples
of annotated patches in ShipRSImageNet are shown in Fig. 8. If
the image contains only part of the ship, then we use the HBB
to annotate this ship instance and add an additional tag, namely
Truncated. If a ship object is only partially visible in the image
then set Truncated to 1, otherwise set Truncated to 0.

F. Characteristics of ShipRSImageNet

We believe that, up to now, the proposed ShipRSImageNet
dataset is one of the largest public datasets in the ship detection
and classification community, with the most diversity in spatial
resolution, object size, environmental conditions, location, and
AR. Compared with existing ship detection datasets, including
BCCT, HRSC2016, FGSD, and Airbus Ship Detection, the
proposed ShipRSImageNet dataset has differentiating charac-
teristics as follows.

1) Large Variation: The proposed ShipRSImageNet dataset
has the largest variation in terms of the number of images,
number of instances, number of categories, and average num-
ber of instances in each category. Therefore, the release of
ShipRSImageNet will help the earth observation community to
evaluate different ship detection and recognition algorithms.

Fig. 9 shows the distribution of the number of ship objects in
each image of the ShipRSImageNet dataset, where most images
contain instances less than 15, and the average number of the
ship in each image is 5.12, with a maximum number of 317.
Moreover, the average number of instances of each type is 308,
with a minimum number of 23.
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TABLE IV
COMPARISON OF INSTANCE PIXEL SIZE DISTRIBUTION OF SOME REMOTE
SENSING DATASETS

Dataset
ShipRSImageNet

<1,024 pixel
0.24

1,024-9,216 pixel
0.36

>9,216 pixel
0.40

2) Variable Spatial Resolution: The spatial resolution of
ShipRSImageNet ranges from 0.12 to 6 m, which is a wider
variation than in FGSD and other optical remote sensing ship
image datasets. In the ShipRSImageNet dataset, we provide
the spatial resolution for most images, which could be used to
calculate the actual size of a ship instance.

3) Object Size: The size of a ship varies in different ship
categories, as is shown in Fig. 10.

Following the definition of the MS-COCO dataset, we divide
all the instances in our dataset into three splits according to their
area: small for the range of pixel area smaller than 1024, middle
for range from 1024 to 9216, and large for range above 9216.
Table IV illustrates the percentages of these three instances splits
in our dataset. ShipRSImageNet dataset achieves a good balance
between small, middle, and large instances, which helps deep-
learning-based detectors to capture the various size of ships.

Furthermore, the size of the ship in different categories is also
very different. Fig. 11 gives the distribution of pixel area in each
category.

4) Variable Sources: We used eight different remote sensing
platforms as image sources, and images were captured at differ-
ent locations, seasons all around the world with different spatial
resolution and image quality. Besides ships on the open sea, im-
ages are collected from 58 ports worldwide, which outperforms
six ports in the HRSC2016 dataset and 17 ports in FGSD dataset.

5) Variable Weather Conditions and Scenes: As weather
conditions impact the performance of ship detection, we provide
information on weather, including whether there are clouds or
fog, strong sea reflection, and whether the light is insufficient
(see Fig. 12). Yang et al. show ship detection accuracy decreases
drastically from a quiet sea to a cluttered sea [23]. We have added
weather-related tags, namely Ship _ env_is _ fog, Ship _ env_is
_ glint, and Ship _ env_is _ dark. Depending on the presence or
lack of clouds, reflection, and light, the tags are set to 1 or 0,
respectively.

Moreover, the spatial context also impacts detector perfor-
mance significantly. For example, annotation is provided if the
ships are on the sea, near the shore, or on the river. In this case,
ShipRSImageNet annotates the location of the ship: sea, river,
near shore, and land.

6) AR of Instances Variations: The AR of ship objects is an
important feature, often ranges from 3 to 6 and is used as one of
the main features in ship classification and recognition tasks. For
deep-learning-based methods, the AR is a critical parameter for
designing anchor-based models, such as Faster RCNN. Fig. 13
illustrates the ship aspect ratio distribution in ShipRSImageNet.

7) Variable Orientations of Instances: The orientation of
ship objects ranges from 0 to 27, the distribution of rotation
angle illustrated in Fig. 14.
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AOE Arleigh Burke DD Asagiri DD Atago DD Austin LL

Barge Cargo Container Ship DOCK

Hatsuyuki DD

Hovercraft Masyuu AS

%

Motorboat Nimitz Oil Tanker

Other Aircraft Carrier

Other Frigate

Other Landing Other Merchant Other Ship Other Warship Patrol

Sailboat Sanantonio AS Submarine

Perry FF

Training ship Tugboat Wasp LL

YuDeng LL

YuZhao LL

Fig. 8. Samples of annotated images in ShipRSImageNet.
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Fig. 10.  Ship area distribution.

IV. BENCHMARK FOR SHIP DETECTION

To evaluate state-of-the-art object detection methods on the
ShipRSImageNet, we divided the dataset into a training set,
validation set, and test set according to the ratio given in
Section III-C. We conducted all experiments on the computer
with a single Intel Xeon E5-2667 CPU, 32 GB of memory, and
two NVIDIA Tesla V100 GPU with 24-GB display memory for
deep learning acceleration.

A. Experimental Setup

To create an evaluation baseline, we used deep learning algo-

rithms, such as the following:

1) three  region-proposal-based  approaches:  Faster
RCNN [24], Mask RCNN [25], and Cascade Mask
RCNN [26];

2) two regression-based methods: SSD [22] and Reti-
naNet [27]; and

3) two anchor-free methods: FoveaBox [28] and FCOS [29].
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TABLE V
ANCHOR SETUP PARAMETERS OF FIVE REPRESENTATIVE METHODS

Methods Anchor Anclhor An.chor
scales ratios strides
Faster RCNN 8 [0.5, 1.0, 2.0] [4, 8, 16, 32, 64]
Mask RCNN 8 [0.5, 1.0, 2.0] [4, 8, 16, 32, 64]
Cascade Mask RCNN 8 [0.5, 1.0, 2.0] [4, 8, 16, 32, 64]
SSD - [12], 2, 3], [2, 3], [8, 16, 32, 64, 100, 300]
(2, 3], 2], [2]]

RetinaNet [0.5, 1.0, 2.0] [8, 16, 32, 64, 128]

ResNet-50 with feature pyramid network (FPN) or ResNet-
101 with FPN are used as backbone network for feature extrac-
tion to make comparison, as shown in Table VII.

We keep all the experiment settings and hyperparameters the
same, as depicted in MMDetection (v2.11.0) config files except
for the number of categories and parameters. MMDetection is
an open-source object detection toolbox based on PyTorch. It
is a part of the OpenMMLab project developed by Multimedia
Laboratory, CUHK [30].

Experiments are implemented on four different levels of the
proposed ShipRSImageNET, and the weights of the backbone
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Fig. 14.  Orientations distribution of instances.
TABLE VI
SEGMENTATION AVERAGE PRECISION AND RECALL OF TWO
REPRESENTATIVE METHODS
Task Metric Mask RCNN with Cascade Mask
Level ResNet-50-FPN R-CNN-ResNet50
mAP 0.440 0.430
mAP of area small 0.063 0.065
0 mAP of area medium  0.472 0.467
mAP of area large 0.544 0.542
mAR 0.507 0.495
mAP 0.347 0.365
mAP of area small 0.081 0.083
1 mAP of area medium  0.393 0.438
mAP of area large 0414 0.425
mAR 0.456 0.463
mAP 0.377 0.389
mAP of area small 0.145 0.140
2 mAP of area medium  0.337 0.341
mAP of area large 0.393 0.415
mAR 0.495 0.493
mAP 0.450 0.483
mAP of area small 0.151 0.132
3 mAP of area medium 0.349 0.333
mAP of area large 0.463 0.498
mAR 0.561 0.577

Note: The entries with the best APs and ARs for each level are bold-faced.
The task level means ship detection task from level O to level 3.

network pretrained on ImageNet and loaded. For more details,
the input images and their annotations are rescaled to 800 x
1333 during the augmentation pipeline, which is the same in
the training process and testing process; the batch size is 4. The
learning rate initialized to 0.005, and it is decreased exponen-
tially in each epoch. The number of iterations has been fixed
to 100 epochs, as it was sufficient for these five networks to
converge to a good solution. For Faster RCNN, Mask RCNN,
and Cascade Mask RCNN network, the anchor scales are set to
8, with three different ratios: [0.5, 1.0, 2.0], and five different
strides that are [4, 8, 16, 32, 64]. For SSD network, the anchor
strides are set to [8, 16, 32, 64, 100, 300]. For RetinaNet, the
anchor strides is set to [8, 16, 32, 64, 128], as shown in Table V
for detail.

B. Evaluation Measurements

The precision—recall curve and average precision are two
widely used measures in a lot of object detection works. The
precision metric is defined as the number of true positives (TPs)
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TABLE VII
DETECTION OF AVERAGE PRECISION AND RECALL (@I10U0.50:0.95) OF EIGHT REPRESENTATIVE METHODS

Faster RCNN Mask RCNN

Cascade Mask

Retinanet Retinanet FCOS

LT:VS; Metric with FPN with FPN RCNN _nggl ¢ With FPN  with FPN  with FPN E‘;Z;ae]?;’gl
-ResNet50 -ResNet50 -ResNet50 -ResNet50 -ResNet101 -ResNet101

mAP 0.550 0.440 0.568 0.464 0418 0.419 0.333 0.453

Ritinanet ~ mAP of area small 0.077 0.063 0.091 0.069 0.067 0.460 0.044 0.071
0 mAP of area medium  0.569 0.472 0.595 0.529 0.493 0.501 0.468 0.502
mAP of area large 0.682 0.544 0.702 0.580 0.520 0.526 0.444 0.567

mAR 0.605 0.507 0.617 0.543 0.543 0.548 0.480 0.535

mAP 0.366 0.456 0.485 0.397 0.368 0.359 0351 0.389

mAP of area small 0.074 0.115 0.131 0.111 0.228 0.086 0.089 0.240

1 mAP of area medium  0.383 0.513 0.561 0.490 0.458 0.458 0.475 0.473
mAP of area large 0.467 0.537 0.559 0.467 0.446 0.438 0.405 0.463

mAR 0.460 0.557 0.574 0.506 0.519 0.503 0.508 0.488

mAP 0.455 0.377 0.492 0.423 0.369 0.411 0.431 0.427

mAP of area small 0.191 0.145 0.204 0.173 0.190 0.194 0.195 0.186

2 mAP of area medium 0.421 0.337 0.446 0.402 0.375 0.397 0.425 0.387
mAP of area large 0.498 0.393 0.531 0.467 0.371 0.410 0.438 0.453

mAR 0.572 0.495 0.599 0.551 0.566 0.603 0.595 0.556

mAP 0.375 0.545 0.593 0.483 0.326 0.483 0.498 0.459

mAP of area small 0.196 0.191 0.184 0.220 0.108 0.172 0.164 0.252

3 mAP of area medium  0.406 0.467 0.456 0.406 0.350 0.424 0.467 0.401
mAP of area large 0.559 0.563 0.612 0.520 0.320 0.488 0.513 0.478

mAR 0.647 0.661 0.695 0.618 0.561 0.689 0.674 0.622

Note: The entries with the best APs for each level are bold-faced.
divided by the sum of TPs and false positives (FPs) 3) mAP(@IoU=0.75), which is a strict metric, using
TP IoU=0.75 as the threshold.
Precision = P Fp (1) In addition to different IoU thresholds, COCO challenge

The recall metric is defined as the number of TPs divided by the
sum of TPs and false negatives (FNs)

TP

Recall = —— .
= P EN

2

Intersection over Union (IoU) is defined as the area of the
intersection divided by the area of the union of a predicted
bounding box () and a ground-truth box (Byg)

area(B,, () By)

IoU = —————72. 3
© area(B), U By) ©)

AP is the precision averaged across all unique recall lev-
els. Average recall (AR) is the recall averaged over all IoU
€ [0.5,1.0]. The calculation of AP only involves one class.
However, in object detection, there are usually K classes. Mean
average precision (mAP) is defined as the mean of AP across all
K classes

K
- AP,
mAp = 2= A% @)

Mean AR is defined as the mean of AR across all K classes

K
1 AR;
mAR = Lz AR . (5)

Several mAP metrics are defined using different thresholds
following MS-COCO, including the following:
1) mAP(@IoU=0.50:0.95), which is mAP averaged over ten
IoU thresholds for all the ship categories;
2) mAP(@IoU=0.50), which is a strict metric, using
ToU=0.50 as the threshold; and

also defines mAP calculated across different object scales,
and these variants of mAP are all averaged over ten IoU
thresholds(@IoU=0.50:0.95), which are as follows:

1) mAP of area small, which is mAP for small ship objects

that covers area less than 1024 pixel;

2) mAP of area medium, which is mAP for medium ship

objects that covers area greater than 1024 but less than
9216 pixel; and

3) mAP of area large, which is mAP for large ship objects

that covers area greater than 9216 pixel.

We applied deep learning algorithms to: detection with HBBs
and segmentation with oriented bounding boxes (SBB for short).
HBB aims at extracting bounding boxes with the same ori-
entation of the image, it is an object detection task. SBB
aims at semantically segmenting the image, it is a semantic
segmentation task. We also performed detection and classifi-
cation at four levels: from level O to level 3, as defined in
Section III-B. For evaluation metrics, we adopt the same mAP of
area small/medium/large and mAP(@IoU=0.50:0.95) calcula-
tion following MS-COCO. We adopt the same mAR(max=100)
metric that is used by MS COCO, which is mAR given 100
detections per image and averaged over 10 IoU thresholds
(IoU=0.50:0.95).

C. Experimental Results

In Fig. 15, we show the testing results of HBB and SBB
tasks on the ShipRSImageNet using Cascade Mask R-CNN. The
average detection precision and an AR of different level tasks on
the test set are shown in Tables VI and VII. The average detection
precision (%) for each category in the level 3 ship detection task
is shown in Table VIII. Three categories of the detectors are
shown in Tables VII and VIII. They include: two-stage detectors
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TABLE VIIT
DETECTION AVERAGE PRECISION (@I0U0.50:0.95) OF EIGHT REPRESENTATIVE METHODS ON THE PROPOSED SHIPRSIMAGENET IN LEVEL 3 TASK

Methods Backbone cl c2 c3 c4 c5 c6 c7 c8 c9 cl0
) ResNet50 0087 0207 0350 0.640 0633 0488 0517 0553 0226 0393
Faster RCNN with FPN ResNet-101 0209 0332 0.601 0647 0728 0820 0671 0779 0333 0511
Two stage . ResNet-50 0256 0338 0599 0559 0709 0764 0744 0768 0336  0.530
Mask RCNN with FPN ResNet-101 0241 0375  0.614 0627 0767 0803 0672 0760 0334  0.504
Cascade Mask RCNN with FPN ~ ResNet:50  0.271 0386  0.601 0740 0701  0.861 0.809 0.807 0410  0.613
SSD VGGI6 0223 0305 0522 0742 0723 0.707 0.684 0634 0286 0363
One stage RetinaNet with FPN ResNet-50 0.138  0.195 0349 0471 0.565 0560 0308  0.614  0.154  0.433
RetinaNet with FPN ResNet-101 0230 0302 0572 0730 0618 0792 0738 0753 0252 0445
Anchorfree | FOveaBox ResNet-10I  0.188 0292 0562 0410 0.685 0659 0288 0719 0318 0491
FCOS with FPN ResNet-101 0208 0323 0564 0551 0685 0674 0676 0722 0248 0434
Methods Backbone cll cl2 cl3 cl4 cl5 clé6 cl7 cl8 cl9 c20
) ResNet50  0.625 0327 0866 0392 0284 0608 0098 0005 0.92 0.189
Faster RCNN with FPN ResNet-101  0.821  0.634 0880 0307 0426 0730 0354 0.146 0447  0.260
Two stage - ) ResNet-50  0.832  0.675 0.888 0512 0355 0733 0256 0.120 0448  0.386
Mask RCNN with FPN ResNet-101  0.849  0.630  0.892 0551 0380 0781 0459  0.096 0453 0283
Cascade Mask RCNN with FPN  ResNet-50  0.854 0724 0942  0.615 0433 0771 0401 0156 0525 0.87
SSD VGGI6 0698 0510 0855 0516 0397 0662 0358 0088 0374  0.266
One stage RetinaNet with FPN ResNet-50  0.646 0229 0772 0205 0065 0576 0.127 0060 0.119  0.169
RetinaNet with FPN ResNet-101 0767 0579  0.896 0308 0403 0670 0320 0051 0377 0337
Anchorfree | FOVveaBOX ResNet-101 0763 0553 0842 0.151 0334 0673 0336 0055 0284 0397
FCOS with FPN ResNet-101 0783 0.629  0.865 0380 0331 0.690 0346 0072 0507  0.428
Methods Backbone c21 c22 c23 c24 c25 c26 c27 c28 c29 c30
) ResNet50  0.000 0543 0430 0872 0914 0469 0579 0414 0276 0.049
Faster RCNN with FPN ResNet-101 0534 0913 0.649 0961 0895 0740 0730 0804 0363  0.570
Two stage . ResNet-50 0366 0787 0718 0944 0980 0667 0761 0808 0375  0.608
Mask RCNN with FPN ResNet-101 0722 0858  0.625 1000 0938 0618 0810 0753 0381  0.550
Cascade Mask RCNN with FPN ~ ResNet:50  0.583 0909 0735 0983 0953 0759 0799  0.832 0420  0.699
SSD VGGI6 0360 0797 0556 0860 0900 0545 0727 0621 0340 0299
One stage RetinaNet with FPN ResNet-50 0.000 0422 0307 0.888 0.792  0.195 0.625  0.351 0.101 0.019
RetinaNet with FPN ResNet-101  0.628 0792 0434 0955 0811 0326 0.803 0433 0.157 0.263
Anchorfree | FOveaBox ResNet-10I 0516 0.762 0463 0966 0909 0417 0.761 0479 0381 0222
FCOS with FPN ResNet-101 0478  0.897 0.612 0929 0823 0477 0726  0.652 0339  0.405
Methods Backbone c31 c32 c33 c34 c35 c36 37 c38 c39 c40
) ResNet50 0142 0291 0299 0780 0442 0540 0028 0401 0533 0471
Faster RCNN with FPN ResNet-101 0559  0.670 0499 0818 0734 0682 0059 0513 0749 0574
Two stage ) ResNet-50  0.583 0702 0557 0815 0752 0687 0042 0495 0654 0.564
¢ Mask RCNN with FPN ResNet-101 0522 0.889 0414 0880 0.689 0770 0042 0579 0734 0.614
Cascade Mask RCNN with FPN  ResNet-50  0.536  0.848  0.676 0962 0.815 0747 0035 0536 0.696 0.610
SSD VGGI6 0520 0676 0392 0670 0584 0587 0049 0448 0687 0535
One stage RetinaNet with FPN ResNet-50  0.036 0259  0.173  0.650 0471 0419 0025 0381 0509  0.456
RetinaNet with FPN ResNet-101  0.565  0.814 0277 0866 0477 0549 0026 0528 0.658  0.590
Anchorfree | FOVveaBOX ResNet-101 0552 0.748 0442 0677 0589 0535 0013 0511 0655  0.501
FCOS with FPN ResNet-101  0.590 0564 0409 0.627 0671 0663 0081 0490 0.667 0.520
Methods Backbone c41 c42 c43 cd44 c45 c46 c47 c48 c49 c50 mAP
Facter RONN with FPN ResNet50 0112 0276 0230 0453 0002 0070 0420 0466 0048 0437 0375
ResNet-101 0202 0475 0358 0598 0016 0238 0598 0402 0055 0577  0.543
Two stage . ResNet-50 0226 0450 0370 0593 0019 0.89 0.634 0447 0068 0575  0.545
Mask RCNN with FPN ResNet101 0226 0462 0397  0.602 0014 0216 0.679 0521 0053 0569 0564
Cascade Mask RCNN with FPN ~ ResNet:50  0.226 0449 0367  0.602  0.029 0205 0.669 0445 0.065 0570  0.593
SSD VGGI6 0219 0414 0271 0422 0002 0223 0577 0489 0036 0446 0483
One stage RetinaNet with FPN ResNet-50 0.099 0314 0277 0426 0.004 0.118 0376 0456 0.032 0357 0326
RetinaNet with FPN ResNet-101  0.184 0360 0350 0514 0007 0.187 0530 0469 0034 0439 0483
Anchorfree | FOveaBox ResNet-10I 0133 0400 0274 0533 0012 0.123 0505 0466 0029 0379 0459
FCOS with FPN ResNet-101 0210 0412 0395 0507 0018 0207 0.623 0467 0045 0293  0.498

Note: The short names for types are defined in Table III. The entries with the best APs for each level are bold-faced.

that use either ResNet-50-FPN or ResNet-101-FPN for feature
extraction, one-stage detectors, and the anchor-free detectors.

D. Experimental Analysis

According to the experimental results, we got the following
observations.
1) FPN [21] improves the ship detection accuracy due to its

capacity of feature extraction for different sizes of the
target. Faster RCNN, Mask RCNN, and Cascade Mask
RCNN with FPN methods show better advances for detect-
ing ship objects in comparison with one-stage methods,
such as SSD and RetinaNet. These results are consistent
with detection results in the DIOR dataset using the same
methods.

2)

3)

4)

A deeper backbone network performs better than a shallow
backbone network because it has a stronger representation
capability. The performance of ResNetlO1 outperforms
ResNet50.

Cascade RCNN significantly improves high-quality detec-
tion on large objects. The Cascade RCNN method has the
highest average accuracy in detection and segmentation
at the level 3 task. The Performance of small ships is far
from satisfactory due to their small size and usually a dense
packed groups of small ships in optical satellite images.
On the contrary, for medium and large ship objects, the
detection accuracy is higher.

Compared with the RetinaNet and ResNet101 backbone
network, the FCOS method improved the AP by 1.5%, as
shown in Table VII. These results prove that anchor-free
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(b)

Fig. 15.  Visualization results of testing on ShipRSImageNet using Cascade
Mask R-CNN. Left and right, respectively, illustrate the results for HBB and
SBB tasks in cases of large ships near shore, small ships on the sea, and densely
distributed ships near shore. Different colors correspond to different ship types.
(a) HBB. (b) SBB.

methods could significantly improve ship detection per-
formance in striking contrast with the one-stage detector
and avoid extra computation and hyperparameters related
to predefined anchors.

5) The evaluation results for HBB ship detection in level 3 are
significantly lower than the results produced by the Faster-
RCNN methods on the FGSD and HRSC2016 dataset.
Our experiments illustrate that ShipRSImageNet dataset
is challenging.

V. CONCLUSION

In this article, we proposed ShipRSImageNet, an overhead
ship detection dataset in high-resolution optical remote sensing
images. To the best of our knowledge, the proposed dataset is
the largest ship detection dataset in the computer vision and
earth observation communities. We extensively benchmarked
the dataset on ship instance segmentation and object detection
tasks in remote sensing images using various state-of-the-art
deep-learning-based approaches. The experimental results can
be used as a useful performance baseline.

We will keep extending ShipRSImageNet. In particular, we
will evaluate few shot learning [31] and fine-grained recogni-
tion [32] algorithms and add ship images taken under different
environmental conditions and spatial context.
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We hope the release of ShipRSImageNet will facilitate devel-
opment and validation of new deep learning techniques for ship
detection in remote sensing imagery.
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