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Background Purification Framework With Extended
Morphological Attribute Profile for Hyperspectral
Anomaly Detection

Ju Huang ™, Kang Liu ", Mingliang Xu

Abstract—Hyperspectral anomaly detection has attracted exten-
sive interests for its wide use in military and civilian fields, and
three main categories of detection methods have been developed
successively over past few decades, including statistical model-
based, representation-based, and deep-learning-based methods.
Most of these algorithms are essentially trying to construct proper
background profiles, which describe the characteristics of back-
ground and then identify the pixels that do not conform to the
profiles as anomalies. Apparently, the crucial issue is how to build
an accurate background profile; however, the background profiles
constructed by existing methods are not accurate enough. In this
article, a novel and universal background purification framework
with extended morphological attribute profiles is proposed. It
explores the spatial characteristic of image and removes suspect
anomaly pixels from the image to obtain a purified background.
Moreover, three detectors with this framework covering different
categories are also developed. The experiments implemented on
four real hyperspectral images demonstrate that the background
purification framework is effective, universal, and suitable. Fur-
thermore, compared with other popular algorithms, the detec-
tors with the framework perform well in terms of accuracy and
efficiency.

Index Terms—Anomaly detection, background purification,
extended attribute profile (EAP), hyperspectral image (HSI),
sparse representation (SR), stacked autoencoder (SAE).

1. INTRODUCTION

YPERSPECTRAL images (HSIs) involve hundreds of
I I narrow bands in the spectral range from visible to in-
frared, which makes them provide nearly continuous spectral
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curves. Compared with other remote sensing images [1], HSIs
can provide more abundant spectral information to recognize
essential attributes of different land covers. Therefore, HSIs
have shown advantages in various remote sensing applications,
including scene classification [2], change detection [3], target
detection [4], anomaly detection [5], etc. Among them, hyper-
spectral anomaly detection (HAD) has attracted much attention
for its wide use in military and civilian fields [6]-[8]. HAD
is a special target detection task, which is to detect rare and
distinctive objects without any prior information about the target
and the background [9].

In the past few decades, researchers have developed lots
of methods based on different techniques. Generally speaking,
most of the current HAD methods can be roughly divided into
three categories: statistical-model-based, representation-based,
and deep-learning-based. The statistical-model-based detectors
were brought up early. The foremost work is the Reed—Xiaoli
(RX) [10] detector. It assumes that the background data satisfy
a multivariate Gaussian distribution, and anomaly pixels can be
identified by computing the Mahalanobis distance between test
pixel and statistical characteristics of the background. However,
a multivariate Gaussian model is not exact enough for real HSIs;
one major reason is that background modeling may be contami-
nated by anomaly pixels [11]. Some techniques are employed to
improve the RX detector, including kernel technique [12], [13],
Gaussian-mixture-model-based method [14], etc.

Another popular category is the representation-based meth-
ods. These methods are based on the assumption that background
pixels can be approximately represented by a set of bases in
a dictionary extracted from the original image, but anomalies
cannot [15], [16]. The collaborative representation-based detec-
tor (CRD) [17] is another important work, which is based on
the assumption that background pixels can be approximately
constructed by their spatial neighbors. The low-rank decom-
position technique [18] is introduced in the HAD task, which
explores the low-rank properties of the background. Moreover,
a tensor-decomposition-based method [19] is also researched.

The deep-learning-based methods have drawn much atten-
tion in HAD. Different from traditional algorithms, they can
automatically learn the abstract and high-level feature represen-
tation. In [20] and [21], the autoencoder (AE), as a classical
unsupervised feature learning model, is adopted to learn a hid-
den representation of input, and the reconstruction errors are
used to identify anomalies. In addition, other networks, such
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as deep belief network [22], convolutional neural network [23],
generative adversarial network [24], are utilized in HAD.

As a matter of fact, most of the aforementioned methods are
essentially similar. They are all trying to construct the profile of
the background [5] and then identify pixels that do not with meet
the profile as anomalies. For the statistical-model-based meth-
ods, the profiles are the background statistical models. For the
representation-based methods, the profiles are the background
dictionaries, which are composed of a group of atoms extracted
from the input image. For the deep-learning-based methods, the
profiles are the learned network models. Due to the absence
of prior information about anomaly and background, the whole
image instead of the background is generally used to construct an
approximate background profile. They are not accurate enough,
although the proportion of anomalies is very low. Hence, it
is necessary to filter the input in advance to obtain a purified
background.

There are many ways to purify the background; some algo-
rithms are based on the iterative strategy. For example, Taitano
et al. [25] proposed a locally adaptable iterative RX method that
purifies the background using the RX detector iteratively until
the detection results being unchanged. In [26], the background
dataset is expanded and updated by using the RX detector
iteratively until the size of that being unchanged. Some methods
are based on the probability statistics model. Gao et al. [27]
proposed a probabilistic anomaly detector, which separates the
HST into anomalies and background with the RX detector via an
automatic threshold. Additionally, some algorithms are based
on suspected outlier removal. Zhang et al. [28] compared the
similarity between each pixel and mean vector by using the
spectral angle distance, and the pixels with larger distances are
suspected outlier. In [29], Hou et al. proposed a collaboration
representation with background purification and saliency weight
(CRDBPSW) for HAD, where an outlier removal strategy based
on representation coefficients is designed. However, the afore-
mentioned methods, especially iterative-strategy-based, spend
much computational time cost. Furthermore, they focus on the
spectral difference between anomaly and background. Actually,
anomaly objects have obvious difference in spatial domain,
and they usually appear as isolated and small-size pixel blocks
intuitively compared with the background. Hence, we can ex-
tract those pixel blocks and remove them to obtain a purified
background. As we all know, the morphological attribute pro-
files (APs) [30] can extract different spatial characteristics of
an image according to attribute settings; hence, we use this
technique to obtain desired pixel blocks. As the AP is used to
process a grayscale image, for a multivariate image (e.g., the
HSI), the extended attribute profile (EAP) [31]-[33] is utilized
instead. More specifically, we propose a novel background
purification framework with extended morphological APs for
HAD. This framework mainly consists of three key steps. First,
the pixel blocks meeting with the given area attribute threshold
are identified as suspected anomaly objects. Then, a strategy of
background pixel selection is adopted according to the suspected
anomaly detection map. Finally, the background dataset is used
to obtain an accurate profile, and those pixels that do not meet
with the profile are identified as anomalies.
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To evaluate the effectiveness and applicability of our frame-
work, we choose one classic and fundamental detector in each
category and then employ the framework to improve it. The
comparison experiments before and after using the framework
will demonstrate its effectiveness. Compared with other popular
methods, the detectors with this background purification frame-
work all perform well in terms of efficiency and accuracy. To
summarize, the major contributions are twofold.

1) Considering the difference between anomaly and back-
ground in spatial domain, a background purification
framework with the extended morphological AP is pre-
sented, which can explore the spatial attributes of anomaly
objects.

2) The framework can significantly improve the performance
of existing three categories of HAD methods, merely
adding a little more time. Furthermore, this framework
is common, suitable, and parameter insensitive. We verify
them on real datasets and obtain competitive results.

The rest of this article is organized as follows. Three typical
and fundamental methods in each category are reviewed briefly
in Section II. The proposed background purification framework
and three anomaly detectors with this framework are detailedly
introduced in Section III. Section IV shows the experiments and
parameter analysis. Finally, Section V concludes this article.

II. RELATED WORKS
A. RX Detector

The RX detector is a classic statistical-model-based method.
It is a constant false alarm rate (FAR) detector derived from the
generalized likelihood ratio test [10]. The formula of the RX
detector is as follows:

Drx = (x — p10) " 57" (x — o) )

where Dry is the detection result for a pixel vector x, p is the
background mean vector, and 3 is the background covariance
matrix.

B. Sparse Representation (SR)-Based Detector

The SR-based detector is a fundamental representation-based
method. The SR-based detectors assume that the background
pixels can be constructed by a sparse linear combination of atoms
in a background dictionary, whereas the anomaly pixels cannot.
It can be described as follows:

x=Aa+N 2)

where A € RP*? with p < ¢ is the background dictionary, NNV is
the noise term, x € RP is a pixel vector in the HSI, p is spectral
dimension, and ¢ is the number of atoms in A.

We can obtain the sparse vector a¢ by solving the following
optimization problem [15]:

a = argmin |[Aa — x| s.t. [lal, < Ko 3)

where K is the given upper bound on the sparsity level [34]. Ob-
viously, the issue is NP-hard. Generally, there are two possible
optimization methods: the greedy pursuit-based techniques [35],
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[36] and the convex programming techniques [37]. Then, the
reconstruction error is used to detect anomalies

r=x— Ad|3 ©)

where & is an estimation of « and 7 is the reconstruction error;
if r of a pixel x is larger than the given threshold, the pixel x is
identified as anomaly.

C. Stacked Autoencoder (SAE)-Based Detector

The AE-based detector is a deep-learning-based method in
HAD field. The AE learns a hidden representation and then
recovers the original input from the hidden representation with
an unsupervised manner [20], [38]. A single AE is composed of
an encoder, a hidden layer, and a decoder. The training process
of the AE contains two phases: encoder and decoder. Given
a pixel x € RP, the input is mapped to a lower dimensional
representation y € R* by the encoder with the corresponding
function:

y=f (W<1>x n b(1>) 5)

where u < p. Then, the latent representation y is mapped back
to an approximation x of the input x with the decoding function:

x=g(W?y + W®) (6)

where x € RP? is the reconstruction of original input x. f(z) =
g(z) = 1/(1 + exp(—z)) is the nonlinear activation function.
0 = (WO b1 W b)) are the network parameters. The
training process of an AE is to find the optimal 6 to minimize
the reconstruction error J(6) [39]

| K
J(9)=ﬁ2(\lxi—iillé) (N
=1

wherex;,7 = 1,2,..., K,isthetraining pixels in HSI. The SAE
consists of a multiple of single AEs. When the training process is
ended, the reconstruction error can be used to detect anomalies.
The average reconstruction error of training data is computed as

1 K
e:gi;(\lxi—fci\l%)- ®)

A test pixel x is fed into the network to obtain the reconstruc-
tion x of the original input. Then, the reconstruction error r can
be computed as follows:

r=|x—%|3>Ce )

where C' is the parameter according to the needs of users. The
pixels whose reconstruction errors are greater than this threshold
are identified as anomalies.

III. PROPOSED METHOD

Our background purification framework aims to acquire a pure
background dataset, so as to make the background profile more
accurate. In this section, the background purification framework
is first introduced in detail. Based on this framework, three
improved algorithms covering three main categories of existing
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methods are then proposed. The flowchart of our framework is
depicted in Fig. 1.

A. Suspected Anomaly Detection With EAPs

The AP [30] is based on the attribute filter. The attribute
filter performs morphological transformation on the connected
components (CCs) in a grayscale image, according to a criterion.
More specifically, the criterion compares the attribute (e.g., area,
diagonal length, volume, etc.) of a CC against a threshold x.
For example, if the attribute value of a CC is larger than x,
the CC will be unchanged; otherwise, it will be set as the gray
value of their adjacent regions. If the gray value of the CC is
brighten, the operation is called morphological attribute thick-
ening; otherwise, it is called morphological attribute thinning.
Attribute filters can be efficiently computed with the Max-tree
algorithm [40]. It can be seen that the attribute filter can extract
the CCs, whose attribute values are smaller than the predefined
threshold «; hence, we can use it to obtain desired pixel blocks.
When the threshold is a sequence, the AP for a grayscale image
is the combination of a group of attribute thickening and thinning
operations [32].

Since the AP is for grayscale image, the multivariate im-
age (e.g., HSI) should perform a feature reduction transfor-
mation [41], [42] first. The EAP for a multivariate image is
assembled by the APs of its extracted features [31], [32]. Let
an HSI be denoted as I € R¥*"*P_where w x h is the spatial
size and p is the number of the spectral bands. For convenience,
the I is reshaped into a 2-D matrix X = {z;}_, € R"*P. First,
the principal component analysis [41] is adopted to extract first
d principal components (PCs). Then, the EAP for the HSI is
computed as follows:

EAP = {AP(PC,),AP(PC,),...,AP(PC,)}. (10)

As for our framework, the main purpose is to find pixel blocks,
whose attribute values are smaller than a predefined threshold,
not to extract multilevel or multiattribute spatial features. Hence,
we only select area attribute rather than multiple attributes,
according to the spatial characteristic of anomaly objects. And
we set the attribute threshold as a scalar « rather than a sequence.
The influence of parameter « on detection performance is dis-
cussed in Section IV-D. The AP for each PC in this article is
simplified as follows:

AP (PC;) = {¢¥™ (PC;) ,PC;,7&* (PC;)}, i=1,....d
Y
where ¢ and 72" denote morphological attribute thickening
and thinning operators [43], respectively.

The morphological attribute thickening and thinning opera-
tions have already brighten and darken the desired pixel blocks.
In order to extract and highlight the desired pixel blocks, a
differential operation is adopted. Since ¢*™(PC;) > PC, and
PC; > 2™ (PC;) are always satisfied according to the defini-
tion, the difference map for PC; is computed as follows:

S; = |p¥™(PC;) — PC,| + |PC; — y¥*(PC;)|

= ¢¥(PC;) — ¥ (PC;). (12)
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Fig. 1.

Flowchart of the proposed method.

(© ®

Fig. 2. (a) Pseudocolor image of the San Diego dataset. (b) First PC of the
image. (c) AP obtained by attribute thinning. (d) AP obtained by attribute
thickening. (e) Difference map for the first PC. (f) Final suspected detection
map.

Fig. 2(e) shows the difference map for PC; . Finally, the differ-
ence maps for all PCs are averaged to obtain the final suspected
detection map, as shown in Fig. 2(f). The suspected anomaly
detection map D is computed as follows:

d .
p- 25

7 13)

B. Background Purification With Pixel Selection

In comparison with the background, anomaly objects gener-
ally appear as small and isolated pixel blocks from the perspec-
tive of spatial structure. Hence, with the help of the aforemen-
tioned step, the small-size pixel blocks can be detected, and those
pixels can be roughly regarded as suspected anomalies. The AP,
as a mathematical morphological methodology, only utilizes
the spatial information of anomalies, so the detection results
after the aforementioned step contain false anomaly targets. It
is reasonable that removing those suspected anomalies from
the original image can obtain the background dataset. Let the
matrix D be sorted by value descending. Considering that the

Background pixels
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proportion of anomaly pixels in an HSI is low generally, this
framework selects the proportion 7 of the original image, whose
position indices are corresponding to those of smaller values in
matrix D. The parameter n will be discussed in Section I'V-D.
Finally, the purified background B can be constructed with those
selected pixels.

C. RX Detector With a Background Purification Framework

After the background purification step, the classic RX detector
can be adopted to obtain the final detection map. The background
mean vector and covariance matrix can be recalculated with the
purified background B

£ =) 6= pm) (x — un)”

i=1

(14)

where 3 is the background covariance matrix and ppg is the
background mean vector. The RX detector with a purified back-
ground can be computed as follows:

Drx(xt) = (x¢ — ps)" =7 (% — um) (15)

where Drx(x;) denotes the final detection result and x; is the
test pixel in the HSI. When the results of all pixel in X are
computed, the final detection map is obtained. For convenience,
this method is abbreviated as RX-BP in this article.

D. SR-Based Detector With a Background Purification
Framework

After the background purification step, the next important
work is to construct background dictionary A according to
Section II-B. However, the dictionary A is unknown in advance
and should contain as much background information as possible.
One simple way is that the purified background B is used as
dictionary. Obviously, it is impractical and time consuming.
Another way is to randomly select some background pixels to
form the dictionary A. This way can reduce time cost, but
may sacrifice some background information. As is conveyed by
Fig. 4, the background scene is complex and covered by some
kinds of major ground materials generally, and it is preferable
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Fig.3. SAE with three hidden layers. The output of the encoder is an abstract
low-dimensional representation of the input. The output of the decoder is a
reconstruction of the input.

that the dictionary A can cover all kinds of the ground materials.
We can choose a small number of representative pixels in each
class and assemble them to form the dictionary. Specifically, we
use the K-means method to divide all pixels in B into K clusters
and select some representative pixels in each cluster to form the
dictionary. In addition, K is greater than the actual number of
classes.

After the background A is obtained, the sparse « is computed
by solving (3). In our article, the problem in (3) is approximately
solved by the orthogonal matching pursuit method [15]. Then,
the residual error r of a test pixel x; is computed as (4). When
the reconstruction error r of each pixel is computed, the final
detection map is obtained. For convenience, this method is
abbreviated as SR-BP in this article.

E. SAE-Based Detector With a Background Framework

After the background purification step, the SAE network can
be trained with the purified background. In this article, the
architecture of the SAE stacked by two single AEs is shown
in Fig. 3. The number of units in the input and output layers
are equal to the number of spectral bands p. The number of
units in the hidden layer is {l1,12,, I3}, where Iy = l3. The B
as the training dataset is used to update the network parameters
0 — (W(l)’ b1, W2 b W), b(3),W(4),b(4)) by min-
imizing the loss function as (7) with stochastic gradient descent.

When the SAE is trained, a test pixel x; traverses through the
network model to obtain the reconstruction x;. The reconstruc-
tion error 7 for x; is computed as (9). When the reconstruction
errors for each pixel are computed, the final detection map
is obtained. For convenience, this method is abbreviated as
SAE-BP in this article.

IV. EXPERIMENTS AND DISCUSSION
A. Datasets

Four different datasets covering various scenes are utilized
to assess the performance of the proposed framework. These
datasets have different properties, including satellite-borne data
acquisition sensors, the diverse land covers, the size and type
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of anomaly objects, etc. These datasets and the corresponding
ground truths are download from a website.

The first dataset is the San Diego dataset, which was collected
by the airborne visible/infrared imaging spectrometer (AVIRIS)
from the San Diego airport area, CA, USA. The size of the origi-
nal image is 400 x 400, and a slice with the size of 100 x 100 is
chosen as the test image. The spatial and spectral resolution
is 3.5 m/pixel and 10 nm, respectively. This image has 189
spectral bands ranging from 370 to 2510 nm, after removing
poor-quality bands. For this image, three airplanes are chosen as
anomaly objects, and the background substances mainly include
airstrips, hangars, and meadow. The pseudocolor image and the
corresponding ground truth map are displayed in Fig. 4(a) and
(e), respectively.

The second dataset is the HYDICE dataset, which was col-
lected by the hyperspectral digital imagery collection experi-
ment (HYDICE) sensor from an urban area, CA, USA. The
size of original image is 307 x 307, and a slice with the size
of 80 x 100 is selected as the test image. It has 175 spectral
bands ranging from 400 to 2500 nm, after removing poor-quality
bands. For this image, vehicles and buildings are taken as
anomaly objects, and the background substances mainly include
parking lots, pools, roads, and soil. The pseudocolor image and
the corresponding ground truth map are displayed in Fig. 4(b)
and (f), respectively.

The third dataset is the Urban dataset, which was also col-
lected by the AVIRIS from an urban area, TX, USA. The size of
selected test part is 100 x 100. The spectral resolution is 10 nm,
and the spatial resolution is 17.2 m/pixel. This image has 204
spectral bands ranging from 400 to 1350 nm, after removing
poor-quality bands. For this dataset, the houses are taken as
anomaly objects, and the background substances mainly include
meadow and vegetation. This image is heavily polluted by some
strip noises, and it is a huge challenge to suppress the strip noises
and recognize all anomalies simultaneously. The pseudocolor
image and the corresponding ground truth map are shown in
Fig. 4(c) and (g), respectively.

The fourth dataset is the Pavia dataset, which was captured
by the reflective optics system imaging spectrometer over a city
center in Pavia, Italy. The size of selected slice is 108 x 120.
It has 102 spectral bands ranging from 430 to 860 nm, and its
spatial resolution is 1.3 m/pixel. The background substances
mainly include a bridge and water, and some vehicles in the
bridge are taken as anomaly objects. The pseudocolor image
and the corresponding ground truth map are shown in Fig. 4(d)
and (h), respectively.

B. Comparison Methods and Evaluation Indexes

To evaluate the effectiveness of our proposed background
purification framework, the comparison experiments between
the original detector (i.e., RX [10], SR-based [15], and SAE-
based [21]) and that with the background purification frame-
work (i.e., RX-BP, SR-BP-based, and SAE-BP-based) will be
carried out. The performance changes before and after using
this framework will demonstrate the validity of the proposed

![Online]. Available: http://xudongkang.weebly.com/
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San Diego dataset: (a) pseudocolor image and (e) ground truth. HY DICE dataset: (b) pseudocolor image and (f) ground truth. Urban dataset: (c) pseudocolor

image and (g) ground truth. Pavia dataset: (d) pseudocolor image and (h) ground truth.

framework. Moreover, other popular algorithms are also se-
lected as competitors, including CRD [17], CRDBPSW [29],
BJSR [16], and kernel-isolation-forest-based detector (KIFD)
[44]. Among them, the CRD and BJSR are classic
representation-based methods, which employ collaborative rep-
resentation and SR techniques, respectively. The CRDBPSW is
based on background purification, which uses the representation
coefficients to remove outlier automatically. The KIFD is a
latest detection algorithm based on the theory of isolation forest,
which split anomalies directly without constructing background
profiles.

In order to assess and compare the performance of comparison
methods, two evaluation indexes are utilized. One is the receiver
operating characteristic (ROC) [45] curve, which describes the
relationship between the detection probability (DP) and the FAR.
The DP and the FAR are defined as

Pp Pr

DP= -2 FAR=-L

Pr P (16)

where Pp denotes the number of pixels, which are detected
as anomalies. Pr denotes the total number of anomaly pixels,
which are given in the ground truth, Pr denotes the number of
pixels, which incorrectly detected as anomalies, and P denotes
the total number of pixels in the image. If the curve of a detector
is nearer to the top-left, it indicates that the detector has a better
detection performance. The another is the area under ROC curve
(AUC). If the AUC value of a detector is larger, it means the
detector performs better.

Additionally, some critical parameters involved in the com-
parison experiments will be set in advance. For the background
purification framework, the number of PCs d, the predefined
area threshold x, and the proportion 7 are set to 6, 25, and

85%, respectively. They are same on four datasets according
to the parameter analysis in Section IV-D. For the specific three
detectors, there are some extra parameters to set. Specifically,
for the SR-based and SR-BP-based detectors, the parameter K
is set as 25. For the SAE-based and SAE-BP-based detectors,
the parameters {l;,ls , I3} are set to {48, 16, 48}, {32, 20, 32},
{48, 36,48}, and {42, 36,42}, respectively. These parameters
are selected carefully according to the results of plenty of
experiments. For other competitors, the optimal parameters are
set according to the corresponding papers. The detection perfor-
mance of the CRD, CRDBPSW, and BJSR is closely related to
the window size (the inner window W, and the outer window
Woutr)- Hence, Wi, is changed from 3 to 19, and W, is changed
from 7 to 35, in order to select the optimal window sizes. The
regularization parameter A for the CRD and CRDBPSW method
is fixed at 1075, For the KIFD method, the parameters ¢, ¢, and
M are set as 300, 1000, and 3% x N (N is the number of pixels
in the HSI), respectively.

C. Detection Performance

For the San Diego dataset, the visualized results are shown
in Fig. 5. In this picture, the results of comparison experiments
before and after using this framework are marked with different
color dotted boxes. It is obvious that the performance improve-
ment is quite dramatic. For three classic methods, the framework
can significantly suppress the influence of the background and
reduce the FAR without sacrificing the DP. Moreover, com-
pared with other competitors, the detectors with the frame-
work, especially the SAE-BP-based detector, can not only locate
anomaly objects but also recognize their shape information. The
CRDBPSW method also does well on this dataset, but it is a little
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Fig. 5.
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Detection maps for the San Diego dataset. (a) RX detector. (b) SR-based detector. (¢c) SAE-based detector. (d) CRD. (e) CRDBPSW. (f) RX-BP-based

detector. (g) SR-BP-based detector. (h) SAE-BP-based detector. (i) BJSR. (j) KIFD.

Fig. 6.
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Detection maps for the HYDICE dataset. (a) RX detector. (b) SR-based detector. (¢c) SAE-based detector. (d) CRD. (e) CRDBPSW. (f) RX-BP-based

detector. (g) SR-BP-based detector. (h) SAE-BP-based detector. (i) BJSR. (j) KIFD.

worse than the SAE-BP-based detector. In order to illustrate the
comparison results intuitively, the ROC curves are displayed in
Fig. 7(a), and the AUC values are shown in the first column
of Table I. It can be observed that the curves of the detectors
with the background purification framework marked with thick
lines are above on those without the proposed framework. The
AUC values in Table I also prove the competitiveness; the AUC
values of our proposed methods are 0.9784, 0.9665, and 0.9871,
respectively.

For the HYDICE dataset, the visualized results are shown in
Fig. 6. Similarly, the detection maps of comparison experiments
before and after using our proposed framework are marked
with different color dotted boxes. It can be observed that the

framework can reduce the FAR of the fundamental detector,
especially for the SAE-based detector. In Fig. 6(h), the anomalies
are detected, while background pixels are ignored, leading to
high DP and low FAR. For the CRD detectors, few background
pixels are falsely identified as anomalies, but few anomalies
are correctly detected. The BJSR and KIFD methods have poor
ability to separate the anomaly pixels and background pixels,
leading to high FAR. Moreover, the ROC curves are displayed
in Fig. 7(b), and the AUC values are shown in the second column
of Table . It can be observed that the curves of the detectors with
the background purification framework marked with thick lines
are nearer to the top-left than those without this framework, and
the proposed RX-BP-Based detector has the best performance.
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TABLE I

AUC VALUES OF COMPETITORS AND OUR PROPOSED DETECTORS
(LE., RX-BP, SR-BP, AND SAE-BP) FOR FOUR DATASETS

Data Sets
Methods San Diego HYDICE  Urban Pavia
RX 0.9403 0.9857 0.9907  0.9901
RX-BP 0.9784 0.9940 09913  0.9982
SR 0.9349 0.9914 0.9704  0.9660
SR-BP 0.9665 0.9934 0.9966  0.9642
SAE 0.9303 0.9807 0.9726  0.9832
SAE-BP 0.9871 0.9926 0.9948  0.9942
CRD 0.9678 0.9933 0.9669  0.9883
CRDBPSW 0.9864 0.9779 0.9755  0.9229
BJSR 0.8915 0.8573 0.9291  0.9558
KIFD 0.9906 0.9967 0.9374  0.7282

The AUC values also demonstrate the competitiveness, and the
AUC values of the proposed three methods are 0.9940, 0.9934,
and 0.9926, respectively.

For the Urban dataset, the visualized results are shown in
Fig. 8. The detection maps of comparison experiments before
and after using our proposed framework are marked with differ-
ent color dotted boxes. It is clear that the effect of our background
purification framework is quite dramatic. These detectors with
our framework can suppress the strip noises to some extent. In
particular, the RX-BP detector can detect all anomaly objects,
while the nearly all of strip noises are well suppressed. Further-
more, the location and shape information of anomaly objects are
very clear. The CRD and CRDBPSW methods can suppress strip
noises effectively, but fail to identify some anomalies, leading to
low DP. The SR-based, SAE-based, BJSR, and KIFD methods
have poor ability to suppress the strip noise. Hence, it can be
concluded that the statistical-model-based methods are better
than the represented-based and deep-learning-based methods at
wiping off strip noises. Moreover, the ROC curves and AUC
values of competitors are shown in Fig. 10(a) and the third
column of Table I, respectively. It can be seen that the curves of
detectors with the background purification framework marked
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ROC curves of different algorithms on (a) the San Diego dataset and (b) the HYDICE dataset.

TABLE II
COMPUTING TIME (IN SECONDS) OF THE PROPOSED BACKGROUND
PURIFICATION FRAMEWORK FOR FOUR DATASETS

HYDICE  Urban
1.42 1.46

Pavia

1.36

San Diego
1.23

with thick lines are closer to the top-left than those without the
framework. Furthermore, the curves of the proposed detectors
are above on those of competitors, and the curve of the SR-BP-
based detector is closest to the top-left corner. The AUC values
in Table I also prove the competitiveness; the AUC values of the
proposed methods are 0.9913, 0.9966, and 0.9948, respectively.

For the Pavia dataset, the visualized results are shown in Fig. 9.
The detection maps of comparison experiments before and after
using our proposed framework are marked with different color
dotted boxes. It can be observed that the framework can improve
the detection performance. Compared with the SAE-based de-
tector, the SAE-BP-based detector can avoid the edge of bridge
being identified as anomalies. The BISR, CRDBPSW, and KIFD
methods perform poorly, and lots of background pixels, such
as the edge of bridge, are falsely detected as anomalies. The
CRD method has low FAR, but low DP. Moreover, the ROC
curves are displayed in Fig. 10(b), and the AUC values are
shown in the fourth column of Table I. We can find that the
curves of detectors with the background purification framework
marked with thick lines are nearer to the top-left corner than
those without the framework. The AUC values in Table I also
illustrate the superiority of our methods; the AUC values of our
proposed methods are 0.9983, 0.9642, and 0.9942, respectively.

In addition, the time complexities are discussed. First, the
computing time experiments of the background purification on
four datasets are implemented, and the results are shown in
Table II. Then, the computing time experiments of all com-
petitors are carried out, and the results are shown in Table III.
The SAE-based and SAE-BP-based detectors are performed
using the software PyCharm 2020, and the others are performed
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Fig. 8.
(g) SR-BP-based detector. (h) SAE-BP-based detector. (i) BISR. (j) KIFD.

Fig. 9.
(g) SR-BP-based detector. (h) SAE-BP-based detector. (i) BISR. (j) KIFD.

using the software MATLAB R2017a. The executing machine
is a desktop with 2.9-GHz CPU and 16-GB RAM. The results
demonstrate that the framework is highly efficient.

To summarize, the background purification framework can
significantly improve the performance of RX, SR-based, and
SAE-based detectors on four datasets, merely adding a little
more time. The key point is that the framework can suppress the
influence of the background and avoid the background pixels
being identified as anomalies, yielding to low FAR. In addi-
tion, the selected detectors are representative and fundamental
algorithms in each category of HAD methods. The selected
datasets have different features, including the acquisition sensor,

8121

(O] (k)

Detection maps for the Urban dataset. (a) RX detector. (b) SR-based detector. (c) SAE-based detector. (d) CRD. (e) CRDBPSW. (f) RX-BP-based detector.

(O] (k)

Detection maps for the Pavia dataset. (a) RX detector. (b) SR-based detector. (c) SAE-based detector. (d) CRD. (e) CRDBPSW. (f) RX-BP-based detector.

spatial and spectral resolution, size of image, type and shape of
anomaly objects, etc. It can be concluded that the background
purification framework has extensive universality and suitability.
Furthermore, compared with other competitors, the detectors
with our framework all get good performance in terms of accu-
racy and efficiency.

D. Parameter Analysis and Discussion

The parameter analysis is performed on four real datasets.
There are three parameters involved in the background purifi-
cation framework: the number of PCs d, the predefined area
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TABLE III
COMPUTING TIME (IN SECONDS) OF DIFFERENT METHODS FOR
FOUR DATASETS

Data Sets
Methods San Diego  HYDICE Urban Pavia
RX 0.10 0.09 0.11 0.12
RX-BP 1.34 1.52 1.57 1.49
SR 135.74 77.62 118.40 98.28
SR-BP 137.20 80.11 120.26 99.68
SAE 53.44 48.30 52.63 58.12
SAE-BP 55.88 50.32 54.18 60.68
CRD 3553.78 219431 3830.12  2694.65
CRDBPSW 212.73 34.19 210.77 63.08
BJSR 5.33 3.88 6.25 5.94
KIFD 85.44 58.90 70.33 60.05

threshold x, and the proportion 7 of overall pixels used to form
the background dataset. Since the RX detector is nonparametric
and concise, we take the RX-BP-based detector as the example
to illustrate the influence of these three parameters on detec-
tion performance. Here, the AUC value is used to evaluate the
detection performance.

Influence of the three parameters on detection performance of our proposed framework. (a) Number of PCs d. (b) Predefined area threshold x.

1) Number of PCs d: The parameter d is the number of PCs,
which determines the number of APs. Before performing this
parameter experiment, the other two parameters x and 7 are set
as 20 and 0.85, respectively. The value of d varies from 3 to 30,
and the AUC values on four datasets are shown in Fig. 11(a). It
can be observed that the influences of d on performance are very
small. For the San Diego dataset, the AUC values first increase,
then reach the peak at 6, and finally decrease slowly.

2) Predefined Area Threshold k: The parameter « is the area
threshold, which determines how big a pixel block needs to be
removed. Similarly, the other two parameters d and 7 are set as
6 and 0.85, respectively, in advance. The value of « varies from
5 to 50, and detection performance is shown in Fig. 11(b). It
can be seen that the parameter  has a little influence for the
HYDICE and Pavia datasets. For the Urban dataset, the AUC
value increases slightly as « varies. For the San Diego dataset,
the AUC value goes up and down irregularly.

3) Proportion n): The proportion 1) of overall pixels is selected
to form the background B. The larger the 7 is, the fewer suspect
pixels are removed. The other two parameter d and x are set as
6 and 20, respectively, in advance. The value of 7 varies from
0.5 to 1. n = 1 means none of pixels being removed. As shown
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in Fig. 11(c), the area marked by the red dotted box illustrates
that the proposed framework can significantly improve detection
performance. For the HYDICE, Urban, and Pavia datasets, when
1 drops to 0.95, further reduction of 1 will not increase the AUC
value. For the San Diego dataset, the turning point is at 0.85.
The main reason is that the proportion of anomaly pixels in the
HSI s very small. In reality, the proportion of anomaly pixels for
four datasets is 1.34%, 0.26%, 0.67%, and 0.52%, respectively.
We set the removal ratio to 5%.

As a whole, these three parameters discussed above have little
influence on detection performance for the HYDICE, Urban, and
Pavia datasets. However, these parameters have some effects
for the San Diego dataset. The chief reasons are as follows:
1) the proportion of anomaly pixels in the San Diego dataset
is larger than that in other three datasets; and 2) for the San
Diego dataset, three airplanes are taken as anomaly objects by
researchers; however, some other objects such as buildings can
also be regarded as anomaly objects according to the definition
of HAD, but they are not actually. In other words, anomalies
are diverse. As for the other three datasets, the type and size of
anomaly objects are similar.

V. CONCLUSION

In this article, we have developed a novel background pu-
rification framework with extended morphological APs for
HAD. It can exploit the spatial property of anomalies to purify
the background by removing suspected anomalies, in order to
build an accurate background profile. Besides, three improved
detectors belonging to different categories of HAD methods are
also introduced with this framework. Since the selected datasets
and methods are representative, the experiments with those can
demonstrate that our background purification framework has
effectiveness, universality, and applicability. In addition, three
proposed detectors with the framework have good performance
on four datasets.
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