
8160 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Dual Graph U-Nets for Hyperspectral
Image Classification
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Abstract—Graph convolutional neural networks (GCNs) have
been widely used in hyperspectral images (HSIs) classification
for their superiority in processing non-Euclidean structure data.
The performance of GCNs relies on the initial graph structure.
Most GCN models only utilize spectral information to construct a
graph, which is inaccurate because they fail to take the relationship
between adjacent nodes into consideration. In addition, due to
the over-smooth phenomenon, most GCN models are shallow and
unable to extract effective features. To address these issues, a dual
graph u-nets is proposed by integrating spatial graph and spectral
graph for HSIs classification, denoted by DGU-HSI. To integration
the spectral and spatial information, two graphs are constructed
for feature extraction. The spectral graph is created by spectral
similarity among all pixels where multirange spectral information
is retained, and the spatial graph is constructed by exploiting the
neighborhood relationship of the center pixel, which describes spa-
tial information. Then, a dual GCN is utilized to extract spatial and
spectral graph features simultaneously. To relieve the over-smooth
phenomenon, the graph u-nets structure is applied on constructed
spectral and spatial graph to extract effective features. Finally, the
extracted spectral and spatial features are fused for classification.
Experiments conducted on the public datasets demonstrate the
effectiveness of the proposed method on HSIs classification.

Index Terms—Graph convolutional networks(GCN),
hyperspectral image (HSI) classification, spectral-spatial fusion,
spectral-spatial graph.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) contain hundreds of
continuous and narrow spectral channels with rich spatial

and spectral information. Emerging as one of the most rapid
developments in earth science and remote sensing field, HSIs
classification aims to assign each pixel to a set of land-use/land-
over classes with a classifier. In the past decades, HSIs classi-
fication has attracted extensive attention in atmospheric envi-
ronment research [1], ocean remote sensing [2], environmental
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monitoring [3], [4], urban planning [5], [6], and so on. However,
HSIs classification still faces numerous challenges, particularly
in dealing with the influences of high spectral similarity and
spectral variability among materials.

In the early stage of HSIs classification, several conventional
pattern recognition methods have been studied, such as k-nearest
neighbor classifier and linear classifier [7]. Meanwhile, better
classifiers from machine learning, such as e support vector ma-
chine (SVM) [8] and random forest [9], have also been applied
in HSIs classification to obtain satisfactory classification perfor-
mance. Notably, these methods employ spectral information of
a single pixel to determine its class label and have the advantage
of conceptual simplicity and easy implementation. Nevertheless,
given the phenomenon that the same objects may have different
spectral reflectance and different objects share the same spectra
characteristics, it is difficult to get satisfactory classification
performance from spectral data alone. Besides, the single pixel
spectral data have limited feature representation ability for lack-
ing effective data fitting ability. Subsequently, because spatially
neighboring pixels usually carry correlated information, the spa-
tial context is regarded as naturally helpful information for HSIs
classification. For example, Markov random field (MRF)-based
models [10] and morphological profile-based methods [11] have
been employed to integrate spectral and spatial features.

The aforementioned methods adopt a series of handcrafted
spectral-spatial features that rely heavily on professional exper-
tise and parameter setting. However, they fail to fully represent
spectral and spatial information. Recently, the deep learning
methods [12]–[16] have displayed satisfactory performance in
HSIs classification for their ability to extract higher quality
features automatically. The stack auto-encoder obtained the
high-level feature, the first attempt to classify HSIs with deep
learning methods [17].With the development of computer vision,
the convolutional neural network (CNN) has been regarded as
one of the most effective methods to deal with image processing
problems. Therefore, more attention has been paid to HSIs
classification methods based on CNN [18]–[21]. Hu et al. [22]
employed CNN to extract features for HSIs classification, whose
performance is better than that of SVM. Li et al. [23] developed
a 1-D CNN with the pixel-pair features strategy to learn spectral
features, which boasted a robust classification performance.
In addition, CNN-based methods have shown great potential
for integrating spectral and spatial features. For instance, Lee
et al. [24] established a 2-D CNN similar to AlexNet to extract
the spectral and spatial features using a multiscale windows
sensing field. Pan et al. [25] proposed a multigrained network to
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extract the joint spectral-spatial information and combine
different grains spectral and spatial relationship for HSIs
classification.

Although the CNN-based methods have demonstrated great
capability in HSIs classification [26]–[28], there are still some
drawbacks. A common feature of these methods is that CNN
can only be conducted on data with a grid-like structure. Conse-
quently, they cannot naturally catch the geometric characteristics
variations of different regions in HSIs. Besides, due to the
spectral similarity and spectral variability among pixels, the
relevant characters of spectral cannot be extracted adequately
with a fixed convolutional kernel. Therefore, the convolutional
kernel with fixed size and weights is not suitable for all the
regions in HSIs. To address this issue, graph convolutional net-
work (GCN) has been applied to HSIs classification [29]–[31],
which can aggregate and transform feature information from
the neighbors of each graph node [32]–[34]. Qin et al. [35]
developed a semisupervised GCN-based network that explicitly
utilized the adjacency nodes in the graph to approximate the con-
volution. Nevertheless, owing to the well-known over-smooth
phenomenon of GCN-based methods, the nodes may converge
to the same state with the increase of network layers, which limits
the depth of GCN to extract discriminative features. Therefore,
the increase of the depth of the GCN network to improve the fea-
ture extracting ability remains challenging. Furthermore, most
GCN methods perform semisupervised node classification on
graphs. With the increase of nodes, the required huge computing
resources will limit the application of these methods. Therefore,
scaling down computing resources is another challenge for GCN
in the HSIs classification.

To tackle the problems mentioned above, a dual graph u-nets
to integrate spatial graph information and spectral graph feature
was built for HSIs classification, denoted by DGU-HSI. Images
divided by original HSIs were applied in HSIs classification
to reduce the computation cost. Then, the spectral graph was
constructed based on the spectral similarity among all pixels, and
the spatial graph was designed based on the neighbor pixel sim-
ilarity of the central pixel. For feature extraction, the dual graph
structure was deployed to acquire spectral and spatial features
separately, and a u-nets structure was applied to extract effective
features to improve the network depth. Finally, the spectral
and spatial features were fused and sent to full connection for
HSIs classification. To summarize, the main contributions of this
article are as follows.

1) To solve the problem that node-based classification meth-
ods require a high computational cost, a graph-based
method is proposed for HSIs classification.

2) Spectral graph and spatial graph are constructed to resolve
the inaccuracy of spectral graph. The spectral graph retains
the spectral similarity among pixels, while the spatial
graph contains the neighboring information of the central
pixel.

3) A graph u-net is employed to reduce the influence of
over-smooth, which utilizes the pooling and unpooling
layers and attention mechanism to acquire effective feature
extraction ability.

4) Experimental results conducted on the public datasets
demonstrate the effectiveness of the proposed DGU-HSI,
which achieves competitive performances based on exist-
ing methods.

The rest of this article is organized as follows. In Section II, the
related work of proposed DGU-HSI is expounded. Section III
describes the details of proposed method DGU-HSI. The exper-
imental results and analysis are shown in Section IV. Finally,
Section V concludes this article.

II. RELATED WORK

A. Graph Convolutional Network

A graph is a non-Euclidean structure Data that is applied
to introduce the nonlinear relationship of data nodes. In this
study, the relations of spectral and spatial information can be
represented as an undirected graph. Consider an undirected
graph as G = (V,E), in which V and E denote the vertex and
edges sets of the graph. Besides, the adjacency matrix is denoted
as A ∈ RN×N (N is the number of vertexes), which contains
the relationships between vertexes and can also be regarded as
the matrix representation of edge.The corresponding Laplacian
matrix L of a graph G can be defined as

L = D −A (1)

where D is the degree matrix of A, D is a diagonal matrix and
can be calculated by Dii =

∑N
j=1 Aij .

Generally, the above mentioned Laplacian matrix is called
Combinatorial Laplacian. To improve the generalization ability
of the graph, the Symmetric normalized Laplacian is proposed
as follows:

Lsym = D−1/2LD−1/2

= D−1/2(D −A)D−1/2

= I −D−1/2AD−1/2

(2)

where I is an identity matrix.
Given a graph signal f ∈ Rl(the feature representation of

vertexes) and a filter gθ = diag(θ) parameterized by θ ∈ Rl,
the convolution between f and g on a graph can be formulated
as

gθ�f = UgθU
T f (3)

where � is the operation of graph convolution, U is the ma-
trix of eigenvectors of Lsym and can be obtained by eigen-
decomposition, i.e., Lsym = UΛUT . Λ is the diagonal matrix
of eigenvalues of Lsym. gθ is the convolutional kernel of graph
convolution and can be treated as the function of the eigenvalues
of, i.e., gθ(Λ).

However, (3) has a high computational complexity because it
involves eigen decomposition of Laplacian matrix and a large
number of matrix calculations. Therefore, the Chebyshev poly-
nomials are deployed to approximate the filter gθ. Hammond
et al. [36] suggested that the function of the eigenvalues gθ(Λ)
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can be fitted by Chebyshev polynomials Tk(x) up to Kth order

gθ′≈
K∑

k=0

θ′Tk(Λ̃) (4)

where θ′ ∈ RK is the coefficients of Chebyshev polynomials,
Λ̃ = 2Λ

λmax
− I , λmax is the largest eigenvalue of Lsym, Λ̃ is the

rescaled diagonal matrix of eigenvalues of Lsym. The recursive
Chebyshev polynomials are defined as Tk(x) = 2xTk−1(x)−
Tk−2(x), T0(x) = 1, and T1(x) = x. Therefore, the graph con-
volution can be defined as follows:

gθ�f≈U
K∑

k=0

θ′Tk(Λ̃)U
T f

=
K∑

k=0

θ′Tk(U Λ̃UT )f

=

K∑
k=0

θ′Tk(L̃)f

(5)

where L̃ = 2Lsym

λmax
− I denotes the normalized Lsym.

Kipf and Welling [37] limited K = 1 and assigned the largest
eigenvalue λmax of L̃ to 2. By doing so, (5) can be rewritten as

gθ�f≈θ(I +D−1/2AD−1/2)f (6)

Using (6), the following propagation rule for GCN:

H l+1 = σ(D̃−1/2ÃD̃1/2H lW l) (7)

where Ã = A+ I and, D̃ii =
∑

j Ãij are the renormalization
terms of A and D. H l is the feature of GCN in lth layer and W l

represents the weighs of lth layer. σ(·)is the activation function
(i.e., ReLU).

B. Graph Pooling and Unpooling

Graph u-nets contains two important parts: graph pooling
layer and graph unpooling layer [38]. In graph pooling layer,
the information all nodes retaining is measured as follows:

y = X lP l/‖P l‖ (8)

where P ∈ Rl is a trainable projection vector, X is the feature
matrix of all nodes, ‖ · ‖ is employed to get Euclidean norm of
P .

Using y, the process of graph pooling can be defined as

idx = rank(y, k) (9)

ỹ = sigmod(y(idx)) (10)

X̃ l = X l(idx, :) (11)

Al+1 = Al(idx, idx) (12)

X l+1 = X̃ l � (ỹ1TC) (13)

where rank(·) is the operation of ranking, and rank(y, k) will
returns indices of the k-largest values in y. idx is the indices of
nodes in the current graph for the new graph. Equations (11)–
(13), is utilized to select the new feature matrix and the new

Fig. 1. Illustration of the operation of graph pooling.

adjacency matrix. 1C ∈ Rc is a vector of size C with all compo-
nents being 1, and � is the element-wise matrix multiplication.
Fig. 1 illustrates the operation of graph pooling.

In graph unpooling layer, the layer-wise propagation rule of
feature matrix is proposed as follows:

X l+1 = distribute(0N×C , X
l, idx) (14)

where 0N×C is the initially empty feature matrix for the new
graph, whose size is the same as that of X l+1. distribute(·)
uses X l to update the initial feature matrix 0N×C by the row
index of idx, and other row vectors remain zero.

In addition, because the u-nets structure needs to concatenate
two same size graphs, the adjacency matrix of unpooling layer
is the same size as the adjacency matrix of the corresponding
pooling layer.

III. METHOD

In this section, the proposed DGU-HIS is elaborated in details
that contains three blocks. The overall framework of DGU-HSI
is illustrated in Fig. 2. The first block is applied to build the
graph structure data of spectrum and spatial, the second one is
implemented to extract the spectral and spatial feature, and the
third is applied to integrate the spectral and spatial features for
HSIs classification.

A. Graph Representation for Hyperspectral Images

The spectral and spatial information contained in HSIs play
an important role in HSIs classification. The spectral and spatial
graph will be designed by the graph representation method. As-
sumeX = {x1, x2, . . ., xn} ∈ R1×1×D, whereD is the spectral
dimensions of original HSIs and n is the number of pixels that
have a ground truth label, namely Y = {y1, y2, . . ., yn} ∈ R1.
For the set ofX , an operation of dimensionality reduction is per-
formed to reduce the redundant of spectral data. Therefore, the
set X can be represented as X = {x′

1, x
′
2, . . ., x

′
n} ∈ R1×1×d,

where d is the new dimension of each pixel and d is far less
than D. For each pixel x′

i, the image patch x∗
i with a size of

w × w × d (w is the window size) are extracted, where x′
i is

its center pixel, and the ground truth of the image patch is yi.
For each image patch x∗

i , two undirected graphs are designed to
represent spatial and spectral graph respectively. A spatial graph
is defined as Gspa = (Vspa, Espa), in which Vspa is composed
of the pixels in the image patch x∗

i and Espa is the spatial
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Fig. 2. Overall frameworks of DGU-HSI.

similarity distance between each pixel and its neighbors. The
spatial similarity distance can be calculated as

Espa
ij = e−λ‖x′

i−x′
j‖2 , if x′

j ∈ Nei(x′
i) or x

′
i ∈ Nei(x′

j))
(15)

where Nei(x) is the neighbors of x, the parameter λ is empiri-
cally set to 0.2 in the experiments.

The notation Aspa denotes the adjacency matrix of Gspa,
which can be calculated as

Aij =

⎧⎨
⎩

Espa
ij , if x′

j ∈ Nei(x′
i) or x

′
i ∈ Nei(x′

j))

1, i = j
0, others.

(16)

A spectral graph is defined as Gspe = (Vspe, Espe), where
Vspe is the pixels in the image patch x∗

i , Espe is the spectral
similarity distance between each pixel and other pixels, which
can be calculate by (17)

Espe
ij = e−λ‖x′

i−x′
j‖2 . (17)

The notation Aspa denotes the adjacency matrix of Gspa,
which can be calculated as

Aij =

⎧⎨
⎩

Espe
ij , rank(Espe

ij ) ≥ k

1, i = j
0, others

(18)

where rank(Espe
ij ) is the descending order of the spectral

similarity distance of x′
i, rank(E

spe
ij ) ≥ k represents the most

relevant k pixels of x′
i.

Different from the traditional CNN, the spatial graph mea-
sures the similarity between the central pixel and its contiguous
pixels, which can provide fine spatial relation information. Com-
pared with the spectral data of original HSIs, the spectral graph
contains multirange spectral information. The pixel close to the
calculated pixel is called a short-range pixel, and the pixel far
from the calculated pixel is defined as a long-range pixel. By
calculating different range spectral information of calculated
pixel, the multi-range spectral information can be extracted and

relieve the defect of fixed CNN kernel receptive field in feature
extraction.

B. Dual Graph U-Nets

The dual graph u-nets is composed of a feature extraction
model and an attention mechanism model for acquiring the
spectral and spatial graph features. The spectral and spatial graph
u-nets are applied by the same network structure. The detailed
information of a single graph u-nets in dual graph u-nets is
illustrated in Fig. 3. In the feature extraction model, the input
of spectral and spatial feature extraction model is spectral and
spatial graph data, respectively. The graph convolutional layer
is utilized to extract spectral and spatial features. The traditional
GCN obtains information by transmitting the adjacent nodes
feature, thereby acquiring effective shallow feature by one or two
layers. However, HSIs contain complex spectral information,
and shallow features are not enough for HSIs classification. To
get abundant information, a deeper GCN is required. However,
this transfer characteristic of over smooth of deeper GCN limits
the development of GCN. Therefore, the graph pooling layers
are adopted to reduce the number of parameters in the network
and improve the generalization ability of networks. Meanwhile,
the graph pooling layers can retain the nodes with abundant key
information and remove the invalid nodes.

The input graph is defined as Gip = (Vip, Eip), and the out-
puts of a graph convolution layer are convolved features of each
node. The rule of graph convolution in DGU-HIS is as follows:

X l+1 = σ(D̃−1/2ÃD̃1/2X lW l) (19)

where Ã = A+ I , A is the adjacent matrix of Gip, D is the
degree matrix of Ã, X l is the feature matrix of layer l, and W
is the weights to-be-learned.

After a series of graph convolution and graph pooling layers,
graph features {Gi = (Vi, Ei), i = 1, 2, 3} is captured from dif-
ferent graph pooling layers. In the GCN model, early convolu-
tional layers with high spatial resolutions capture local details
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Fig. 3. Detailed information of a single graph u-nets in dual graph u-nets.

while the later convolutional layers with low spatial resolutions
extract high-level semantics, the same as the CNN model. To
fuse the advantages of the different stages, the DGU-HSI adopts
graph unpooling and skip connection to combine different scale
graph features. It is inadequate to join the two pieces of infor-
mation simply for HSIs classification. Hence, the graph convo-
lution layers are also implemented to fuse local information and
high-level features.

Then, the attention mechanism model is adopted to find the
feature weight of each node. The nonlocal network is introduced
to calculate the similarities in latent feature space, which can be
defined as

s(xi, xj) =
1∑

∀j e((Wθxi)
T (Wϕxj))

e((Wθxi)
T (Wϕxj))Wgxj

(20)
where Wθ,Wϕ,Wg represent Conv_θ, Conv_ϕ, Conv_g re-
spectively, using 1x1 convolution kernel.

Finally, a ResNet structure is utilized to add an original feature
for getting the spectral or spatial feature with attention mecha-
nism constraint. The attention mechanism finds more important
ones in the current feature map and distributes them with higher
weights. This operation makes the feature more effective in
classification.

Spectral and spatial graphs have different graph structures and
relationship features. Thus, single graph u-nets cannot extract

effective features from spectral and spatial graphs simultane-
ously. To tackle this issue, a dual graph u-nets is adopted to
acquire more discriminative spectral and spatial features for
HSIs classification.

C. Fusion Schemes

Spectral and spatial features are capable of presenting differ-
ent characteristics of HSIs. For instance, spectral features can
perform difference in different materials and spatial features are
able to reflect the influence of position. Thus, only spectral or
spatial features may not provide optimal results in terms of clas-
sification performance. In this section, two fusion strategies are
proposed to enhance feature discrimination ability. Additive(A),
Concatenation(C) are considered, and the two fusion strategies
(A, C) can be respectively formulated as follows:

F l+1
Fu−A = F l

spe ⊕ F l
spa (21)

F l+1
Fu−C = [F l

spe, F
l
spa] (22)

where the operations ⊕, [·, ·] denote the elementwise addition
and concatenation, respectively. The F l

spe, F
l
spa is the lth layer

feature acquired from the spectral and spatial feature extraction
model, respectively.

One fully connected layer is applied after the fusion model,
and it is used for dimensionality reduction of features to increase
computational efficiency. Meanwhile, it can also introduce dif-
ferent weights for fusion features to acquire effective classifica-
tion performance.

The loss function is implemented on the DGU-HIS to opti-
mize the learning process. The cross entropy is adopted for loss
function calculation

Loss = −
n∑

i=1

yi · log(pi) (23)

where n is the number of pixels, yi is the one-hot representation
of the ground truth of pixel, pi is the probability distribution of
prediction.

IV. EXPERIMENTS

A. Data Description

In this section, experiments are conducted on four publicly
available datasets: Indain Pines, Pavia University, Salinas, and
Trento. In light of each dataset, 200 labeled pixels per class are
randomly selected for training, and other pixels in the ground-
truth map for testing. The detailed descriptions of these datasets
are listed as follows.

1) The Indian Pines dataset was collected by AVIRIS sensor
over Northwestern Indiana, which contains 145× 145
pixels. This dataset contains 200 spectral bands with a
wavelength ranging from 0.4 to 2.5 μm. There are 16
land-cover classes in the ground-truth of this dataset. The
classes with fewer samples are removed, and 8 classes
with more samples are selected [39]–[41]. The numbers
of training and testing samples are listed in Table I.

2) The Pavia University dataset was captured by the ROSIS
sensor over Pavia, northern Italy. This image contains
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TABLE I
NUMBERS OF TRAINING AND TESTING SAMPLES FOR THE

INDIAN PINES DATASET

TABLE II
NUMBERS OF TRAINING AND TESTING SAMPLES FOR THE

PAVIA UNIVERSITY DATASET

610× 340 pixels and 103 spectral bands with the spatial
resolution of 1.3 m. In total, there are 9 classes and 42 776
samples. Table II indicates the numbers of training and
testing samples.

3) The third dataset is the Salinas dataset, and it is the most
sampled dataset. The Salinas dataset was gathered with the
AVIRIS sensor over Salinas Valley, which contains 512×
217 pixels, 204 spectral bands. The numbers of training
and testing samples are listed in Table III.

4) The last dataset is the Trento dataset. The Trento dataset
was gathered with the AISA Eagle sensor over a rural area
in the south of Trento, Italy, which contains 660× 166
pixels, 63 spectral bands. The numbers of training and
testing samples are listed in Table IV.

B. Effect of Different Window Sizes

The proposed DGU-HSI utilizes spectral similarity across dif-
ferent pixels to construct a spectral graph for HSIs classification.
The window size decides the number of nodes that can be utilized
in spectral graph construction.

TABLE III
NUMBERS OF TRAINING AND TESTING SAMPLES FOR THE SALINAS DATASET

TABLE IV
NUMBERS OF TRAINING AND TESTING SAMPLES FOR THE TRENTO DATASET

Fig. 4 illustrates the classification performance with different
window sizes in four benchmark datasets. The window sizes
range from 7× 7 to 13× 13. When the window size is 9× 9,
the classification performance of DGU-HSI tends to be satis-
factory. The small window size is unable to extract sufficient
spectral information and its performance is poor, such as the
Pavia University dataset. The large window size introduces the
redundancy of spectral information, which plays a negative role
in classification performance. The phenomenon is evident in the
Salinas dataset.

C. Influence of Different Graph Nodes

The effectiveness of spectral graph data depends on the win-
dow size and is related to the number of graph nodes. The number
of graph nodes affects the similarity relationship of pixels and
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Fig. 4. Classification performance with different window sizes.

Fig. 5. Classification performance with different window sizes.

indirectly affects the classification performance. Fig. 5 demon-
strates the classification performance with a different number of
graph nodes. The number of graph nodes varies from 30 to 70,
and the classification performance presents an increase followed
by a decrease. When the number of graph nodes is 50, the
classification gets the optimum performance. The spectral graph
with fewer nodes is unable to represent spectral information
and spectral similarity adequately. The excess nodes introduce
negative effects for the spectral graph, which is probably related
to the phenomenon of different materials with the same spectra
characteristics. Thus, the number of graph nodes is set as 50.

D. Effect of PCA

Since HSIs contain hundreds of spectral bands with the
nanoscale spectral resolution, the spectral information is so rich
that redundancy information is inevitable. Therefore, it is essen-
tial to analyze effective spectral information to solve redundancy
information. To address this problem, PCA is adopted to resolve
the spectral redundancy information. The purpose of PCA is to
design effective spectral and spatial graphs, and it is expected to
affect HSIs classification performance.

Table V shows the effects of PCA on classification perfor-
mance. The performance of DGU-HSI with PCA has an im-
provement of 10.96%, 3.12%, 12.76%, 1.55% on Indian Pines,

TABLE V
EFFECTS OF PCA ON CLASSIFICATION

TABLE VI
EFFECTS OF DUAL ARCHITECTURE ON CLASSIFICATION

TABLE VII
EFFECTS OF ATTENTION MECHANISM ON CLASSIFICATION

Pavia University, Salinas, and Trento, respectively. Compared to
no PCA, PCA retains the main information of HSIs and reduces
the redundancy information. On the whole, the PCA plays a
positive role in classification performance.

E. Effect of Dual Architecture

In this section, three experiments are conducted to verify the
effectiveness of dual architecture. The effects of dual architec-
ture on classification are listed in Table VI. The performance
on Indian Pines, Pavia University, Salinas, and Trento datasets
using only the spatial feature is 93.05%, 95.69%, 94.42%,
and 97.58%, respectively, and the spectral feature is 92.29%,
94.65%, 91.99%, and 97.41%, respectively. There is a 1.1% to
3.7% improvement in classification performance using spectral
and spatial union features. Spectral feature retains abundant
spectral similarity information among pixels but does not contain
the neighborhood information of contiguous pixels. The spatial
feature has the neighborhood relationship of the center pixel
while spectral information is less. For HSIs classification, it
is inadequate to utilize only utilizing the spatial feature or the
spectral feature. The union feature contains both spectral and
spatial information. In a word, the progress of dual architecture
bring for HSIs classification is considerable.

F. Effect of Attention Mechanism

In the proposed DGU-HIS, an attention mechanism is intro-
duced to screen the weight of the spectral and spatial union
feature. The classification performance without an attention
mechanism and with an attention mechanism is evaluated. The
results are shown in Table VII.

The classification performance with attention mechanism has
a 3.43% improvement on the Indian Pines dataset, which is
the most obvious among the four datasets. The Pavia Univer-
sity, Salinas, and Trento datasets also show 96.89%, 95.61%,
and 98.59% performance with attention mechanism, against
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TABLE VIII
EFFECTS OF DIFFERENT FUSION STRATEGY

TABLE IX
EFFECTS OF DIFFERENT NUMBERS OF TRAINING SAMPLES

TABLE X
COMPARISON OF THE OVERALL CLASSIFICATION ACCURACY (%) AMONG THE

PROPOSED METHOD AND THE BASELINES USING THE INDIAN PINES DATASET

The bold entities indicates the maximum accuracy of the classification of each category
in the comparison experiment.

TABLE XI
COMPARISON OF THE OVERALL CLASSIFICATION ACCURACY (%) AMONG THE

PROPOSED METHOD AND THE BASELINES USING THE PAVIA UNIVERSITY

DATASET

The bold entities indicates the maximum accuracy of the classification of each category
in the comparison experiment.

94.51%, 93.51%, 98.29% without attention mechanism. The
attention mechanism finds the more important ones in the current
feature map and distributes them with higher weights. This
operation makes the feature more effective in classification.

G. Effect of Fusion Strategy

In this section, two fusion strategies are evaluated to verify
their effectiveness in terms of classification performance. Ta-
ble VIII illustrates the effectiveness of different fusion strate-
gies. Specifically, the comparison between the two commonly

TABLE XII
COMPARISON OF THE OVERALL CLASSIFICATION ACCURACY (%) AMONG THE

PROPOSED METHOD AND THE BASELINES USING THE SALINAS DATASET

The bold entities indicates the maximum accuracy of the classification of each category
in the comparison experiment.

TABLE XIII
COMPARISON OF THE OVERALL CLASSIFICATION ACCURACY (%) AMONG THE

PROPOSED METHOD AND THE BASELINES USING THE TRENTO DATASET

The bold entities indicates the maximum accuracy of the classification of each category
in the comparison experiment.

used fusion strategies indicates that Concatenation(C) has better
classification performance than Additive(A), especially on the
Indian Pines and Salinas datasets, with 1.07% and 0.77% im-
provement in classification performance. The result suggests that
the Concatenation(C) strategy is able to contain more effective
features. The Additive(A) strategy may lose some information
when performing the addition operation.

H. Influence of the Number of Training Samples

To further demonstrate the performance of the proposed
DGU-HSI, experiments are conducted on the three datasets with
different numbers of training samples per class. As is shown in
Table IX, the number of training samples varies from 50 to 300.
Too few samples have poor performance in HSI classification,
such as training samples number is 50 or 100. However, the
DGU-HSI gets a satisfying performance when the training sam-
ples is 200. The improvement is limited when training samples
are between 200 and 300 per class. The result indicates that the
performance is relatively stable under the influence of a small
number of samples.
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Fig. 6. False color composite, the ground truth map and classification maps of Indiana Pines. (a) False color composite. (b) Ground truth map. (c) Classification
maps of SVM. (d) Classification maps of 1-D-CNN. (e) Classification maps of 2-D-CNN. (f) Classification maps of 3-D-CNN. (g) Classification maps of DGU-HSI.

Fig. 7. False color composite, the ground truth map and classification maps of Pavia University. (a) False color composite. (b) Ground truth map. (c) Classification
maps of SVM. (d) Classification maps of 1-D-CNN. (e) Classification maps of 2-D-CNN. (f) Classification maps of 3-D-CNN. (g) Classification maps of DGU-HSI.

Fig. 8. False color composite, the ground truth map and classification maps of Salinas. (a) False color composite. (b) Ground truth map. (c) Classification maps
of SVM. (d) Classification maps of 1-D-CNN. (e) Classification maps of 2-D-CNN. (f) Classification maps of 3-D-CNN. (g) Classification maps of DGU-HSI.

Fig. 9. False color composite, the ground truth map and classification maps of Trento. (a) False color composite. (b) Ground truth map. (c) Classification maps
of SVM. (d) Classification maps of 1-D-CNN. (e) Classification maps of 2-D-CNN. (f) Classification maps of 3-D-CNN. (g) Classification maps of DGU-HSI.
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I. Classification Performance

To validate the effectiveness of the proposed DGU-HSI, the
method was compared with some related HSI classification
methods, such as SVM, 1D-CNN, 2D-CNN, 3D-CNN, GCN.
The results about per-class accuracies, overall accuracy (OA),
average accuracy (AA), and kappa statistic (K) are presented in
Tables X –XIII for evaluating the classification efficacy of each
method.

Overall, 1-D-CNN, 2-D-CNN, 3-D-CNN, GCN, DGU-HSI
outperform SVM on four datasets, indicating the superiority of
the neutral network in image classification. In addition, the clas-
sification performance of 2-D-CNN, 3-D-CNN, DGU-HSI is
also better than 1-D-CNN on Indian Pines, Pavia University, and
the Trento dataset, which suggests that the spectral and spatial
union information is superior to the only spectral information in
HSIs classification.

In general, the classification performance of the proposed
DGU-HSI is superior to the other methods in the four datasets.
As shown in Table XII, the proposed DGU-HSI yields OA
95.61%, about 1.3% higher than that of GCN (i.e., 94.34%),
2.4% higher than that of 3-D-CNN (i.e., 92.92%), 4% higher
than that of the 2-D-CNN (i.e., 91.96%), 4.2% higher than that
of the 1-D-CNN (i.e., 91.43%) and approximately 5% improve-
ment compared to the SVM (i.e., 90.86%). The similarity phe-
nomenon can also be found on the Indian Pines, Pavia University,
and the Trento dataset. The main reason is that the spectral graph
data of the proposed method DGU-HSI relieve the defect of
fixed CNN kernel receptive field and provide a bigger receptive
field to HSIs classification. Besides, compared with GCN, the
proposed DGU-HSI has a deeper network, which improves the
feature extraction ability of graph convolution block, and the
classification results verify this thesis. For example, DGU-HIS
Kappa is 0.9427, 0.9583, 0.9506, 0.9810 on four dataset, higher
than that of GCN (i.e., 0.8041, 0.7970, 0.8928, 0.8029).

Furthermore, Figs. 6–9 illustrate the full classification maps,
where the visual classification results are consistent with the
performance listed in Tables X–XIII.

All the experiments were conducted on a computer with an
NVIDIA GeForce RTX-2070 SUPER GPU (8 GB GDDR5)
and 32 GB memory. Based on the stand back-propagation al-
gorithms, the Adam algorithm is adopted to learn the network
parameters, where the batch size is set to 120, and the learning
rate is 0.0001.

V. CONCLUSION

In recent years, deep learning methods have attracted more at-
tention on HSIs classification especially the GCN-based method.
However, the traditional GCN-based methods only use spectral
similarity to design graph and neglect spatial information. In ad-
dition, due to the over-smooth phenomenon, most GCN models
are unable to extract effective feature. To tackle this issue, a dual
graph u-nets model is proposed for HSIs classification, which
resolves the over-smooth problem of deeper GCN. This model
contains three main parts: first, spectral similarity and spatial
adjacency information are used to design spectral and spatial
graph. Second, local information and high-level features were
fused by graph u-nets, and an attention mechanism was used to

get the discriminable spectral and the spatial feature. Finally, the
spectral and the spatial feature were fused for HSIs classification.
From the results in four public datasets, it can be concluded that
the proposed DGU-HSI achieved convincing results compared
with the state-of-the-art. It is worth noting that the performance
of DGU-HSI is not satisfying when using few training samples.
One of the future works is expected to improve the DGU-HSI
to adapt HSI classification with fewer training samples.
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