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Abstract—Ship detection from synthetic aperture radar (SAR)
images is inherently subject to the special imaging mechanism of
SAR. In recent years, deep-learning-based techniques for detecting
objects from optical images have rapidly advanced and promoted
the development of SAR image detection technology. However, the
strong speckle noise in SAR images degrades low-level feature
learning in shallow layers, hindering the higher level learning of
semantic features for object detection. In view of the problems en-
countered in direct end-to-end feature learning for object detection
and the close relationship between objects and auxiliary cues, a
multitask learning-based object detector (MTL-Det) is proposed
in this article to distinguish ships in SAR images. The proposed
approach models the ship detection problem, not as a single object
detection task, but as three cooperative tasks. The model involves
two auxiliary subtasks that are focused on learning object-specific
cues (e.g., texture and shape) for the ship detection task, which is
constrained by the pseudoground truth generated by the main task.
Assisted by auxiliary subtasks, the low-level features are robust to
speckle noise and reliably support high-level feature learning. Com-
pared with traditional single-task-based object detectors, more
discriminative object-specific features are learned by multitask
learning without the extra cost of manual labeling. The experi-
ments conducted in this study help demonstrate the advantages of
MTL-Det in improving the ship detection performance on two SAR
datasets: high-resolution SAR images dataset and large-scale SAR
ship detection dataset-v1.0.

Index Terms—Multitask learning, synthetic aperture radar
(SAR), SAR ship detection.

I. INTRODUCTION

YNTHETIC aperture radar (SAR) is an active microwave
S imaging sensor. For practical applications, SARs are
promising owing to their all-weather and all-day imaging ca-
pabilities. In this context, object detection from SAR images is
considerably advantageous for disaster monitoring, emergency

Manuscript received May 19, 2021; revised July 23, 2021; accepted August
3, 2021. Date of publication August 6, 2021; date of current version August
26, 2021. This work was supported in part by the National Natural Science
Foundation of China under Grants 62071466, 62076242, and 61976208 and in
part by the National Key Research and Development Program of China under
Grant 2018 AAA0100400. (Corresponding author: Chunlei Huo.)

Xin Zhang, Chunlei Huo, Nuo Xu, Hangzhi Jiang, Yong Cao, and Chunhong
Pan are with the National Laboratory of Pattern Recognition, Institute of
Automation, Chinese Academy of Sciences, Beijing 100190, China, and also
with the School of Artificial Intelligence, University of Chinese Academy
of Sciences, Beijing 100049, China (e-mail: xin.zhang2018@nlpr.ia.ac.cn;
clhuo@nlpr.ia.ac.cn;  nuo.xu@nlpr.ia.ac.cn;  jianghangzhi2018 @ia.ac.cn;
yong.cao@nlpr.ia.ac.cn; chpan@nlpr.ia.ac.cn).

Lei Ni is with the Graduate School, Space Engineering University, Beijing
100192, China (e-mail: lalagood @qq.com).

Digital Object Identifier 10.1109/JSTARS.2021.3102989

rescue, maritime surveillance, ocean monitoring, and military
intelligence acquisition [1]. The aim of object detection is to
determine the object’s position and identify its semantic label
by differentiating between the object and its background. The
underlying assumption is that objects of the same class are con-
siderably similar with respect to certain cues and distinct from
the background and other classes. However, the abovementioned
assumption is refuted by the inconsistency between materials
and spectra as well as the degradation of SAR images because of
the presence of extreme noise and the incomprehensible imaging
mechanism of SAR. For experts, as well as computers, these
problems have complicated the recognition of objects from SAR
images.

From the perspective of pattern recognition, the difficulty of
object detection primarily lies in feature representation. Earlier
studies on SAR object detection focused on handcrafted fea-
tures, such as salient region-based features, shape and texture
features, and complex domain features. However, before these
object-specific features can be extracted, they are destroyed by
the intense speckle noise and clutter background within the SAR
image. In other words, a large semantic gap exists between
low-level visual features and high-level semantic features. Fur-
thermore, the handcrafted features of traditional methods con-
siderably depend on prior knowledge, such as the type and size of
a specific object; hence, extending their application to objects
of different types and images of various spatial resolutions is
difficult.

In recent years, with the rapid development of deep learn-
ing, researchers have gradually introduced convolutional neu-
ral networks (CNNs) to object recognition. With their power-
ful feature-learning capabilities, CNNs can effectively extract
high-level semantic features driven by end-to-end learning,
considerably improving object detection from optical images.
However, the advantages of CNNSs are substantially diminished
by the complexities of SAR images. Progressive feature learn-
ing allows CNNs to recognize objects, edge features, texture
features at shallow layers, and semantic layers at deep layers.
Unfortunately, the strong speckle noise in SAR images degrades
low-level feature learning in shallow layers, hindering the higher
level learning of semantic features for object detection. For
example, both inshore ships and buildings on the shore appear as
bright white spots on SAR images; hence, the object boundary
has been destroyed by the speckle noise, rendering it difficult to
learn. Moreover, the texture difference between the foreground
and background is not sufficiently distinct to discriminate.
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In other words, if no object-specific edge and texture features can
be effectively learned by end-to-end training, accomplishing the
object detection task through deep learning, either by one-stage
you only look once (YOLO) [2] or two-stage faster R-CNN [3],
is difficult.

The progressive feature-learning nature of deep learning and
the inadequacy of traditional object detectors on SAR images
indicate that detecting objects from noisy SAR images is not a
single simple detection task. It is a compound complex task in
which low-level features must be robust to speckle noise and
reliably support high-level feature learning. Motivated by this
observation, a multitask learning approach is proposed for SAR
ship detection. The contributions of this study are as follows.

1) A novel multitask learning framework is presented to model
the exigent object detection problem in SAR images. In this case,
two auxiliary tasks focused on learning object-specific cues (e.g.,
shape and texture) are proposed to improve the classification
and regression quality of the detector. The low-level edge fea-
tures and semantic features are learned through object-related
pseudoannotation without the extra cost of manual labeling,
and the object detection network is progressively enhanced by
the auxiliary networks. Compared with traditional single-task
learning, multitask learning is more powerful in learning reliable
low-level features to be robust to speckle noise.

2) Task-guided network (TGN) is proposed for the auxiliary
task features learning. The multiscale features alignment and
multimodal features fusion modules are presented for multitask
features fusion. In addition, a novel auxiliary task supervised
learning method is formulated to train each proposed TGN
efficiently, and a differentiable weighting method (DWM) is de-
vised to further balance learning among multiple tasks. Through
the elaborate multitask network, the low-level and high-level
features interactively evolve, thus overcoming the impediment
of traditional single-network-based detectors.

3) The proposed multitask learning-based object detector
(MTL-Det) improves the SAR ship detection performance (i.e.,
the MTL-Det improves the average precision (AP) of both cas-
cade R-CNN [4] and faster R-CNN by 1.9 points) and achieves
the state-of-the-art (SOTA) performance on high-resolution
SAR images dataset (HRSID) [5] and large-scale SAR ship
detection dataset-v1.0 (LS-SSDD-v1.0) [6].

II. RELATED WORKS

To understand the limitations of traditional approaches and
clarify the novelty of multitask learning, some of the related
studies on SAR object detection approaches are briefly reviewed
in this section.

A. Traditional SAR Image Object Detection

Generally, traditional SAR object detection can be broadly
classified into the following four types.

1) Threshold-Based Methods: These methods statistically
model the background clutter and adaptively determine the
threshold; pixels with gray values exceeding the threshold are
classified as objects. Among these techniques, the constant false
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alarm rate (CFAR) is the most widely used method. The thresh-
oldis considerably degraded by the cluttered background; hence,
the CFAR method is limited by complex scenes. Accordingly,
many variants have been proposed to resolve these problems.
For uniform background clutter, Gaussian, Rayleigh, Weibull,
and K distributions are typically utilized [7]-[10]. For nonuni-
form backgrounds in complex scenes, Qin et al. [11] applied
the generalized gamma distribution to model the sea clutter of
high-resolution SAR images. Considering the inadequacy of the
CFAR method in parameter estimation, various nonparametric
statistical methods have been proposed based on the Parzen
window [12], [13]. Regarding clutter sample selection, the unit
average CFAR is employed for sampling uniform clutter [14].
It is focused on dealing with the clutter edge through maximum
selection CFAR [15]. Thereafter, to resolve the multiobject de-
tection problem via minimum selection and sequential statistics,
the use of SO-CFAR [16] and OS-CFAR [17] are suggested.

2) Salient Region-Based Methods: Inspired by the attention
mechanism of human vision, the salient region-based object
detection methods were devised to detect objects of interest by
extracting the salient region from the SAR image. Li et al. [18]
proposed a dual-domain sparse reconstruction saliency strategy
to improve the saliency detection performance and robustness to
speckle noise. Tan et al. [19] proposed a gradient-based saliency
detection algorithm for aircraft detection, where a directional lo-
cal gradient distribution detector was utilized to create a gradient
semantic saliency map. Zhao et al. [20] proposed a region-based
saliency detection algorithm from which a saliency map was
derived by combining the global and local region contrasts. To
obtain a refined contour, Tu et al. [21] proposed a coarse-to-fine
detection framework in which an active contour model was
employed to segment the proposed region and determine the
boundary of objects. Cui et al. [22] applied the similarity test on
the central pixel with its neighborhood to explore the different
scattering mechanisms between ships and sea clutter, and the
similar pixel number was proposed to generate the saliency
feature map.

3) Shape and Texture-Based Methods: These methods,
which are based on shape and texture, further improve the de-
tection performance. He et al. [23], [24] proposed a component-
based detection framework in which the component information
and probability of detection were combined to eliminate incor-
rectly detected objects according to the maximum probability
principle. Huang et al. [25] attempted to enhance the interclass
feature distance between an object and its background using a
gray-level co-occurrence matrix.

4) Complex Domain Image-Based Methods: This type of
method considers the imaging mechanism of SAR images.
These images are coherent superposition of electromagnetic
vectors that are generated by the interaction between elec-
tromagnetic waves and objects; they are complex data with
phase information. Therefore, object detection is expected to
be performed by analyzing complex data. At present, complex
domain image-based methods can be classified into subaperture
coherence methods and complex domain statistical modeling
methods. The former is based on the concept that the degree of
coherence of the object region exceeds that of the background;
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hence, objects can be detected by analyzing the degree of coher-
ence. The latter involves statistical modeling of complex images
in the complex domain and reducing the false alarm caused by
radio-frequency interference and azimuth ambiguity with the aid
of complex information.

B. CNN-Based SAR Object Detection

The CNN-based detection model is composed of the back-
bone, neck, and head networks. The backbone network extracts
features from the image through convolution and pooling op-
erations. The features are sent to the neck network for feature
fusion and enhancement. Finally, the head network classifies and
locates each candidate instance.

The success of CNN-based object detectors on optical images
has considerably motivated research on SAR object detection
methods. To resolve the problem with objects that are dense
and of different scales, complex backgrounds, false alarm inter-
ference, and training with a few samples of SAR images, the
use of certain CNN-based detectors has been proposed. Wang et
al. [26] proposed a two-stage detector in which coarse and fine
recognition stages were used to extract the foreground proposals
and distinguish objects from the virtual shadow phenomenon,
respectively. To solve the problems of dense and small-scale
object detection in SAR images, Zhao et al. [27] proposed the
implementation of an exhaustive ship proposal network and
accurate ship discrimination network modules. The former uses
three different sizes of filters to encode three feature maps
with different scales, and the latter considers the influence of
context on the classification accuracy and models the context
of proposals. Zhao et al. [28] introduced the attention receptive
block (ARB) to SAR ship detector, two efficient feature extract
modules, receptive fields block and convolutional block atten-
tion module, were combined into ARB to build a fine-grained
feature pyramid. An er al. [29] proposed a rotation-sensitive
detection method for SAR images, which alleviates the problems
(e.g., detection of small objects and the imbalance of positive
and negative samples) and generates a set of oriented bounding
boxes (bboxes).

Compared with the two-stage object detection network,
single-stage detectors have been introduced into SAR image
detection because of their advantage in terms of speed. Du et
al. [30] proposed a dual-flow neural network based on single shot
multibox detector (SSD) and used the saliency map obtained by
Itti’s method to guide the network to focus on object regions.
Deng et al. [31] proposed a SAR ship detector, which learned
from scratch and in which position-sensitive score maps were
introduced to encode the position information into each ship
proposal for classification. Yang et al. [32] proposed a one-stage
oriented bbox-based detector that focused on the three aspects,
i.e., the scale distribution alignment, feature optimization pro-
cess decoupling, and the unbalanced distribution correction.

The related studies mentioned above indicate that most
methods model the object detection problem as a single task
and ignore the close relationships among coherent tasks, such
as saliency detection, shape extraction, and object detection.
The strong speckle noise and clutter background impact
the progressive feature-learning procedure. The absence of
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cooperative evolution between low- and high-level features ren-
ders the feedback-driven end-to-end feature learning ineffective.
Consequently, the traditional single-task-based object detectors
for SAR images are constrained. Although related works [30]
have attempted to utilize the saliency features for object
detection, it considerably differs from the proposed approach.
First, in [30], saliency features are extracted by the Itti’s method
whose performance influences the final detection performance.
In contrast, the auxiliary features of the proposed approach are
generated from detection annotation; this is consistent with the
object detection task and requires no extra labeling. Second, Du
et al. [30] merge different scale features, whereas the proposed
approach injects positive-specific and label-specific features
into the detection network. In the latter, the various feature
types, which are driven by the multitask learning loss instead
of the pure object detection loss, interactively evolve.

III. METHODOLOGY
A. Problem Formulation

Considering the problems involved in traditional single-task-
based detectors for SAR images, the rationale of the proposed
approach is to learn object-specific features f,; by multitask
learning. The multiple tasks consist of one main task Fr, , for

object detection, and T auxiliary tasks { Fr, }7_; to assist Fr,

Fovj = Frpen(FB(I) A Fr, (F(I)}i=1) (1

where Fp is the backbone network. Considering the similarity
among the different tasks with respect to object cues, the auxil-
iary and main tasks share a common backbone network Fp.

Through classification and regression, the detection results
can be obtained from f ;. Auxiliary tasks learn object-specific
low-level features, such as edges and textures for the main task,
and the main task learns object-specific high-level features, such
as proposals and labels. In contrast, the auxiliary and main tasks
cooperatively evolve instead of being trained independently.

Considering the varied objectives of different tasks, each Fr,
is implemented by a TGN. To preserve label consistency among
different tasks and avoid extra annotation, the ground truths
(GTs) of auxiliary tasks { A7, }7_, are automatically generated
from detection-specific labels Ape. The abovementioned label
consistency is important for multitask cooperative learning.
More specifically, the networks of various tasks should simul-
taneously converge, and the final features f,; learned by the
auxiliary and main tasks should be unanimous. Otherwise, the
performance of multitask learning becomes worse than that of
traditional single-task learning.

For the main task, various detectors may be used, e.g., one-
stage YOLO, or two-stage faster R-CNN. For simplicity, this
study focuses on MTL-Det using faster R-CNN as an exam-
ple. As illustrated in Fig. 1, MTL-Det consists of a backbone
network, region proposal network (RPN), neck network, TGN,
and head network. For the input image Z € R**#*W mul-
tiscale FPN features fg are generated through the backbone
network (e.g., ResNet [33] and ResNeXt [34]) and neck net-
work (e.g., FPN [35]). TGNs derive auxiliary task features
{fr, 3L, € RT*CarHuxWar gnd multimodal feature f,, €
RCurxHuxWar By aligning and combining multiscale features
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{f T }iT:r Then, {f T }ZT:1 passes through the fusion module to obtain the multimodal feature f ;. The MSFA module takes f,,, f g and the proposal boxes

generated by RPN as the input to obtain the final object-specific features { 1'33} le for prediction. In the training phase, the auxiliary task supervision maps

{A7, }z;l are obtained by auxiliary task annotation generators, which are used for updating TGNs through supervised learning of auxiliary task predictions

{Ar, }ZT:I. Cooperated evolution of the main task and auxiliary tasks are conducted to update the entire network.

and multimodal features, reliable object-specific Rol features
{rt}B | € RBXCurxTxT are derived for the object detection
task. In this article, Cys, Has, War are set to 256, % and %,
respectively. The following sections elaborate on MTL-Det.

B. Auxiliary Task Learning

As shown in Fig. 2, two supplementary tasks (e.g., semantic
feature learning and edge feature learning) aim to improve the
object detection task with respect to the quality of the bbox
regression and recognition accuracy.

1) Semantic Feature Learning: From the vertical viewpoint
angle, the shape of the ship resembles a rectangle. Consequently,
if a horizontal bbox is used to label the ship, the ship appears at
the center of the bbox. For the same reason, the more distant
a position is from the center, the less probable that a ship
is present. Based on this prior knowledge and centerness in
fully convolutional one-stage object detection (FCOS) [36],
the semantic feature-learning task was designed to assist the
detection task. The label generation procedure for semantic
feature learning Ggemantic is shown in Fig. 2 (a)—(d). With the aid
of the original annotations (horizontal bboxes) of the detection
task, the position of each pixel in the horizontal bbox is converted
into an object-specific probability. Fig. 2(b) and (c) display a set
of overlapping bboxes detection annotations and corresponding
semantic feature learning supervision maps. For each GT point
(z,y) in bbox 14, the probability is defined as follows:

min(Df g, Driight)

max(Di.g, D;:ighl)

min(Di Déottom)

top?

2

p(z,y)" = op? b
maX(D I;Lop’ D tL)Ottom)

where Di.g, Dfigns Digp> and Doy, represent the distance from
(z,y) to the left, right, top, and bottom boundaries of bbox 1,
respectively.

As shown in Fig. 2(d), multiple overlapping bboxes exist
within the area of dense objects. The overlapping regions have
a greater object-related probability, and the probabilities of GT
points in all boxes are aggregated to obtain the final supervision
map Asemanic € RV>*W  For each point (z, ) in Agemantic, the
object-related probability is

K

pla,y) =Y plx,y)’

i=1

3

where K is the number of bboxes containing point (x, y).

The purpose of the centerness in [36] is to select the sample
points close to the object center, whereas the semantic feature-
learning task assists the detection task. Specifically, the features
learned by the semantic feature-learning task aided in perceiving
object semantics, thus improving the recognition performance.

2) Edge Feature Learning: The object shape and edge are
beneficial for improving the regression quality of the bbox. The
edge of the foreground is close to the background; hence, edge
feature learning can aid the detector to more accurately identify
the object position.

The label generation routine of edge feature learning Geqge is
shownin Fig. 2(e)—(h). The initial edge map I.qg is generated by
the Canny edge detection algorithm [37] [see Fig. 2(f)]. The edge
of the foreground describes the shape of the object. The noise
edge impacts the perception of the foreground edge because of
the noise and clutter background in SAR images; hence, only
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Annotation generation routine of edge feature learning and semantic feature learning, where (a)—(d) and (e)—(h) show the annotation generators of the

proposed auxiliary tasks Ggemantic and Gedge- (a) Supervision map of semantic feature learning Asemangc- (b) Detailed display of detection annotation Apet. (¢)
Detailed display of Agemantic. (d) Calculation of the probability of a GT point in overlapping bboxes. (e) Original image. (f) Edge image generation. (g) Foreground

mask generation. (h) Supervision map of edge feature learning Acqge.

the edge map of the foreground is used as annotation to learn
edge features. The horizontal bbox GT is employed to generate
the object mask I, [see Fig. 2(g)], and I, is used to filter
the foreground edges in I.qge. As shown in Fig. 2(h), the final
edge supervision map Aegee € R**#*W is obtained as follows:

»Aedge = Imask © Iedge (4)

where ® represents the Hadamard product.

3) Task-Guided Network: Each auxiliary task learning was
implemented using a TGN. In contrast to traditional detectors,
which directly apply image processing methods, the proposed
approach uses low-level features (e.g., edges) as the supervision
information to learn the feature subspace and achieve object
representation in different modal feature subspaces. The TGN
consists of three stages: multiscale feature aggregation, feature
learning, and prediction. As shown in Fig. 3, the multiscale
FPN features fg enter the 1 x 1 convolution block to align
the channel. The FPN features are resized to the given scale
(i.e., scale of /) by bilinear interpolation. Element-wise addition
was applied to all feature maps after scale normalization.

At the feature-learning stage, the aggregated feature map is
extracted through the 3 x 3 convolution block; the convolution

upsampling| %

e [AT,

/,f?/ per-Task
N Bx3

X

Fig. 3.  TGN. FPN features fg of different levels are aligned in the channel
dimension viaa 1 x 1 convolutional block. Then, the different scale levels feature
maps are resized to the given scale by upsampling and downsampling, then the
element-wise sum is conducted to aggregate scale-aligned feature maps. The
resulting feature maps are fed into the CNN to derive the auxiliary task features
{fr, }X_ | and the prediction {A7, }7_,. Each convolution block is consists of
a convolution layer, a batch normalization (BN) layer, and a rectified linear unit
(ReLU) activation layer.

kernel projects the initial features to the feature subspaces of
different modalities. Furthermore, the 1 x 1 convolution block
is used to correct auxiliary task features and obtain feature fr,
for task ¢.
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Fig. 4. Auxiliary task supervised learning: (a) and (b) commonly used in
the framework of semantic segmentation and instance segmentation, and (c)
proposed supervised learning method. The shared convolutional subnetwork
accelerates the model reasoning, and the Rol-wise supervised learning alleviates
the imbalance between positive and negative samples. (a) Shared convolutional
subnetwork + Pixel-wise supervised learnin. (b) Rol-wise subnetwork 4 Rol-
wise supervised learning. (c¢) Shared convolutional subnetwork + Rol-wise
supervised learning.

In the prediction stage, a 1 x 1 convolution is employed to
predict Ar, for task ¢. The number of output channels of the
1 x 1 convolution kernel is determined by the task. For edge
prediction, the output channel of the convolution kernel is 1,
and the output uses the sigmoid function for nonlinear mapping.
For semantic task prediction, the output channel is the number
of object categories C. When C' = 1, the output is activated by
the sigmoid function; otherwise, it is processed using a softmax
function. The number of positive samples (such as foreground
edges) in the auxiliary task supervision information is consider-
ably smaller than the number of negative samples (such as the
background); hence, A7, is up-sampled according to the size of
the input image. To extract high-level semantic information, the
convolution block contains multiple sets of convolution, batch
normalization, and rectified linear unit activation.

4) Auxiliary Task Supervised Learning: The supervised
learning methods for auxiliary tasks in MTL-Det are discussed
in this section. The three types of supervised learning strate-
gies are illustrated in Fig. 4. Among them, those shown in
Fig. 4(a) and (b) are commonly used in semantic segmentation
and instance segmentation. For the method shown in Fig. 4(a),
all learnable layers are convolutional and shared across the
entire image. Moreover, the convolutional layers encode spatial
information to derive the prediction map .A. The production of
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TABLE I
POSITIVE AND NEGATIVE SAMPLES FOR DIFFERENT TYPES OF SUPERVISED
LEARNING METHODS: AVER. IS THE AVERAGE NUMBER OF SAMPLES IN EACH
IMAGE, AND SUM. IS THE NUMBER OF SAMPLES IN THE ENTIRE DATASET

No. positives No. negatives

Supervised learning method Proportion
Sum. Aver. Sum. Aver.
Pixel-wise 4008970 715 3582551030 639284 1:894
Roi-wise 4048109 722 26630541 4752 1:7

an Rol-wise subnetwork is shown in Fig. 4(b). After obtaining
Rol features, an Rol-wise convolution operation is required to
obtain the instance-wise prediction map .A’. The former method
outperforms the latter with respect to computational complexity
and inference speed; however, it also has a severe problem
regarding the imbalance between positive and negative samples.
The imbalance causes the negative samples to be well studied,
inhibiting the learning of hard-positive samples. Considering
edge learning as an example, we define edge pixels as positive
samples and the other pixels as negative samples. Table I lists
the proportions of positive and negative samples under the two
supervision modes. The number of positive and negative samples
is balanced using Rol-wise supervised learning.

A novel supervised learning method is proposed for auxiliary
tasks, as shown in Fig. 4(c). The convolutional layers are shared
throughout the input feature set to ensure the inference speed.
To overcome the problem of unbalanced samples, Rol-wise
supervised learning is employed. Specifically, the network learns
function Fo(-), which produces the prediction A7, for task
i. Function Fg(-) is composed of convolutional layers shared
throughout the input feature set. Given these proposals, Rol
pooling is applied to A7, and the supervision information Ar,

to obtain the instance-wise prediction map A7 and supervision
ins )
map A7

“ZGTHS = RP(Fo(fin), proposals)
AF = RP(Ar, , proposals) 5)

where RP is Rol pooling.

C. Main Task Learning

As shown in (1), the main task learning employs the outputs
of the task-guided and backbone networks as input to obtain the
object-specific features for prediction. In this section, multitask
feature fusion and multiscale feature alignment (MSFA) are
performed to obtain object-specific features.

1) Multitask Features Fusion: Multitask feature fusion
merges auxiliary task features, as shown in Fig. 5. Given the
auxiliary task features f, € IR Car* HurxWar of task 4 and Jfr, €
R Curx HarxWat of task j, element-wise addition [see Fig. 5(a)] is
the simplest fusion method. However, the feature redundancy
among auxiliary task features increases the complexity and
difficulty of network training. A feature fusion module based
on the attention mechanism was presented to improve the accu-
racy and generalization ability of the model. Specifically, each
auxiliary task feature f, is fed into a 3 x 3 convolution layer
and sigmoid activation layer to generate the feature selection
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Fig.5. Multitask feature fusion module: (a) Element-wise addition fusion; (b)
Attention mechanism-based fusion. f7, and f are the auxiliary task features

of task ¢ and task 7, respectively. f M is the multimodal feature. & denotes the
element-wise addition and ® represents the Hadamard product.
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Fig. 6. MSFA. The multiscale feature fg and multimodal feature fps are

used as inputs to perform Rol pooling to obtain a series of Rol features. Adaptive
average pooling is applied to align and fuse the corresponding Rol features.

matrix S; € {0, 1}7«>War Feature selection is carried out by
calculating Hadamard product of S; and f.. S; is optimized
by the back-propagation algorithm, and the network adaptively
selects the features that can improve model performance. After
feature selection, element-wise addition is applied to obtain the

multimodal fusion feature f,, € RCur*HurxWat
T
Far =Y Sigmoid W * f1.) © fr, ©)
i=1

where W3 represents the 3 x 3 convolution kernels, * represents
the convolutional operation, ® represents the Hadamard product,
and 7" represents the total number of tasks.

2) Multiscale Features Alignment: The MSFA aligns the
multimodal fusion feature f,; and multiscale feature f 5. As an
example, consider the two-stage region-based detector shown in
Fig. 6. The Rol pooling operation is applied to f,, and f 5 to ob-
tain the corresponding Rol features {r%,}B , € RB*ChxNxN
and {ri}P | € RBXChxMxM ‘for the given proposals. Here, B
and Ch represent the batch size and number of output channels,
respectively; N and M are the number of partition bins defined
in Rol pooling.

For each feature 73, in {r4,};2,, the adaptive average pool-
ing applied to 7%, is referenced by r%. Finally, scale-aligned
features are combined to obtain the object-specific features 7%
for prediction

rp = AAP(ry) + 7
AAPRP(f 5, proposals;)) + RP(f g, proposals;)

(N
where A AP is adaptive average pooling, and RP is Rol pooling.
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D. Multitask Cooperated Evolution

To reduce the impact of the imbalance between positive
and negative samples, dice loss is introduced to supervise the
learning of auxiliary task features. Given the prediction map

AT’ and supervision map AiT“f, the dice loss is defined as

2 | A 1 A

ﬁT:l—‘ (8)

i

Zins
ATq,

+ [AR]

where |,Zl\§1“ N AS| represents the common elements between
the prediction and supervision maps. It is approximated by the
sum of the element-wise multiplication between the prediction
and target mask.

The following can be inferred from (8) [38]:
Lr,

i

B,C,HW -~
1- Abchw X Abchw +e

1
Zz b,c,h,w=1 Abchw X Abchw + Abchw X Abchw +e

€))

where Z denotes the number of elements in the prediction
map. The smooth factor € was introduced to prevent the de-
nominator from becoming 0. B, C, H, and W denote the
batch size, the number Aof channels, the height, and the width
of the prediction map .A and supervision map A, respectively.
A = [Apchw|Bxoxmxws A = [Apchw] Bxcx Hxw -

Cross-entropy and smooth L1 losses are used for classification
and regression tasks. The loss function of MTL-Det is given by
the following:

T
L= [fcls + Lreg + Z WiETL .

i=1

(10)

Multitask learning is aimed at assisting the main task; how-
ever, the excessive loss contribution of auxiliary tasks can lead to
an imbalance in task learning that can impact the learning of the
main task. Thus, the performance of the multitask learning-based
detector depends considerably on the relative weights of the
loss of each auxiliary task. To set the loss weights of different
subtasks, grid search and differentiable learning were utilized.
For the grid search, the loss weights of two auxiliary tasks
are individually chosen from {0.1,0.3,0.5,0.7, 1.0} at random.
The grid search considers various weight combinations; how-
ever, considerable training time and computing resources are
required. For this reason, two DWMs are introduced. These are
inspired by the techniques [39], [40], in which edge learning and
semantic learning are regarded as regression tasks.

Let Fo,(x) be the output of the network of auxiliary task ¢
with weights ©; on input x. The likelihood of task 7 is defined
as a Gaussian distribution

pyilFe,(x)) = N(Fe,(x), ) (11)

where o; is the observation noise, and Fg, (x) is the mean with
respect to the output.
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By (9), Ly, is approximated by the following:

L = l (1 _ 2yite, (X) )
Tz il + | Fo, (x)]2
_ 1 ( lly: — Fo,(x)|? )
Z \|yil* + |Feo,(x)[?
1
~ 573 (lyi = Fo,)|?)
1
= & (ly: = Fo.(x)I) (12)
where C' = 272,

In the penultimate transition of (12), an explicit simplifying
approximation is introduced, i.e., 0 < |y;|? + | Fo, (x)|? < 2Z.
The following multitask likelihood is, thus, obtained:

p(y1,¥2|Fe(x)) = p(y1lFe, (%))p(y2|Fo.(x))

= N(Fe,(x),01)N (Fe, (x),02) (13,

where y; and y» represent the GT of auxiliary tasks.
The joint loss to be minimized is £(©1, O3, 01, 02)

= —logp(y1,y2|Fe(x))
2

1
X Z@H% — Fo,(x)||? + log o;
i—1 27

2
! 2
OCEWHYZ'—}_@(X)H +loga;

21
~ Z FﬁTi + log 0;
i=1 77 (14)

where 2%2 is the learnable loss weight of task ¢, and log o; is the
regularizétion term.

Considering that the regularization term in (14) may be a
negative loss when o; — 0, the loss can be rewritten as follows:

2
1
L(01,02,01,02) ~ Z =L, +log(1 +07).

2
i 20 (15)

In summary, the loss function of MTL-Det is defined as
follows:

E:Ecls+£reg+£(®17@2a01a02>- (16)

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. Data Description

1) High-Resolution SAR Images Dataset: This dataset was
acquired by Sentinel-1 and TerraSAR-X with mixed HH, HV,
and VV polarizations for ship instance segmentation and ship
detection. With an overlap ratio of 25%, 136 panoramic SAR
images with the spatial resolution ranging from 5 to 1 m/pixel
were cropped to patches of 800 x 800 pixels. The patches
and ships number 5604 and 16 951, respectively. They are
divided into a training (65% SAR images) and test (35% SAR
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images) sets in the Microsoft Common Objects in Context (MS
COCO) [45] format.

2) Large-Scale SAR Ship Detection Dataset-v1.0: This
dataset is composed of Sentinel-1 images in the interferometric
wide swath mode, containing 15 large-size SAR images. The
large-size images are cut into 9000 sub-images with the size
of 800 x 800 pixels. The dataset is divided into training (6000
SAR images) and test (3000 SAR images) sets in the PASCAL
VOC [46] format.

Compared with HRSID, LS-SSDD-v1.0 is richer with respect
to the background, i.e., ocean surface, farmlands, forests, etc.,
thus increasing the detection difficulty. Consequently, the use of
LS-SSDD-v1.0 is more exacting.

B. Evaluation Metrics

The evaluation criteria adopted for HRSID and LS-SSDD-
v1.0 are MS COCO and Pascal VOC, respectively; the adoption
is dependent on the annotation format. The main evaluation
metric is the AP, which is defined based on precision and recall

.. TP
Precision = ——
TP + FP

Recall TP
ecall = ——
TP + FN

1

AP = / P(r)dr (17)
0

where TP, FP, and FN represent true positives, false positives,

and false negatives, respectively; P represents precision, and r

denotes recall.

For the multiclass performance evaluation, the mean of the
AP of all categories is defined as the mean AP (mAP). The mAP
for PASCAL VOC is based on an intersection over union (IoU)
threshold of 0.5. In contrast, the mAP in MS COCO is based
across the IoU thresholds from 0.5 to 0.95 with an interval of
0.05. APg, AP, and AP, are used for evaluation; the three
indexes represent objects with small, medium, and large scales,
respectively. The area ranges of their corresponding objects are
(0, 322), (322, 962), and (962, +00).

C. Implementation Details

The experiments were conducted by a server cluster with a 64-
bit Linux operating system. The hardware includes Tesla V100
GPU (32 GB memory) and Intel(R) Xeon(R) Gold 6230 CPU
@ 2.10 GHz.

For a fair comparison, all experiments were implemented
based on the MMDetection' [47]. The input images were resized
to 1000 x 1000 pixels. The models were trained for 12 epochs,
and the batch size was set to 4. For the single-stage models,
the initial learning rate was set to le—4, and for the two-stage
and multistage models, the initial learning rate was set to 4e—3.
After the 8th and 11th epochs, the learning rate decreased by
a ratio of 0.1. The other hyperparameters in this study follow
the default configurations of MMDetection. The model weights

'MMDetection is an open source object detection toolbox based on PyTorch.
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TABLE I
COMPARISON OF MTL-DET WITH SOTA METHODS ON HRSID
Method DA ISA SSA Backbone AP APso APrs APs APy, APy
RetinaNet [41] v X X ResNet-50 60.0 84.7 67.2 60.9 60.9 26.8
RetinaNet [41] v X X ResNet-101 59.8 84.8 67.2 60.4 62.7 26.5
Faster R-CNN(*) v X X ResNet-50 61.9 86.2 71.3 63.0 62.3 18.5
Faster R-CNN(*) v X X ResNet-101 62.5 86.9 71.6 63.3 64.4 22.0
Mask R-CNN v v X ResNet-50 65.0 88.0 75.2 66.1 66.1 17.3
Mask R-CNN v v X ResNet-101 65.4 88.1 75.7 66.3 68.0 23.3
Mask Scoring R-CNN [42] v v X ResNet-50 64.1 87.6 75.0 65.3 65.8 222
Mask Scoring R-CNN [42] v v X ResNet-101 64.9 88.6 754 66.2 67.3 19.6
Cascade R-CNN v X X ResNet-50 66.6 87.7 76.4 67.5 67.7 28.8
Cascade R-CNN v X X ResNet-101 66.8 87.9 76.6 67.5 68.8 27.7
Cascade R-CNN(*) v X X ResNeXt-101-64 x4d 66.1 88.2 75.1 66.9 69.3 26.6
HTC(*) v v v ResNet-50 66.8 88.0 76.2 67.9 67.3 17.0
HTC(*) v v v ResNet-101 66.6 88.1 76.5 67.8 68.6 14.9
HTC(*) v v v ResNeXt-101-64 x4d 66.8 88.7 76.6 68.0 68.7 6.9
Faster R-CNN:

MTL-Det v X X ResNet-50 63.8[+1.9] 88.0[+1.6] 74.0[+2.7] 65.1 61.9 21.6

Cascade R-CNN:
MTL-Det v X X ResNeXt-101-64x4d  68.0[+1.9] 89.2[+1.0] 77.7[+2.6] 68.7 69.6 25.8

The Number in [-] represents relative improvement; DA, ISA,and SSA indicate whether the model requires detection annotations, instance segmentation annotations, or semantic

segmentation annotations for training; and (*) indicates re-implementation results.

pretrained on ImageNet [48] were employed to initialize the
backbone networks.

D. Main Results on HRSID

The implementation of MTL-Det was based on faster R-CNN
and cascade R-CNN. In the comparative experiment, the de-
tectors that use different annotations (e.g., detection, semantic
segmentation, and instance segmentation annotations) including
SOTA single-stage, two-stage, and multistage detectors, were
selected as the baseline. For each detector, various backbone
networks were used for comparison.

The list in Table II indicates that for general detectors, the
richer the annotations, the more the network learns complemen-
tary multimodal features, resulting in a higher gain in the detec-
tion performance. For example, when ResNeXt-101-64 x 4d-
FPN is used as the backbone network, HTC improves over
cascade R-CNN by 0.7% in AP; however, MTL-Det improves
cascade R-CNN by 1.2% in AP over HTC. A SOTA performance
is achieved by MTL-Det using only detection annotations, i.e., it
achieves 89.2% AP5, and 68.0% AP, which exceed all baselines.
This shows that the proposed multitask learning substantially
improves the representation ability of the network without re-
quiring additional manual annotations.

The proposed MTL-Det improves the performance of detec-
tors with different backbone networks and stages. When MTL-
Detis employed to improve faster R-CNN with ResNet-50-FPN,
AP reaches 63.8%, which is 1.9 points higher than that of the
original faster R-CNN-FPN. This verifies the robustness and
generalization performance of MTL-Det.

In addition to the detection accuracy, multitask learning can
improve the quality of the detection bbox. In AP75, the proposed
method is 2.7 points higher than the baseline method, indicating
that multitask learning improves the position accuracy of the
bboxes obtained by MTL-Det.

Fig. 7 shows the visualization results on the HRSID dataset.
Owing to the influence of sea background clutter and buildings
near the shore, missed alarms can potentially occur, as shown by

TABLE III

PERFORMANCE COMPARISON ON LS-SSDD-V1.0
Method Backbone Off-Shore In-Shore All
YOLOV3 [43]  darknet-53 78.5 35.6 63.0
RetinaNet ResNet-50 74.6 17.0 54.1
RetinaNet ResNet-101 83.7 21.1 61.9
FCOS ResNet-50 84.0 25.6 64.0
FCOS ResNet-101 86.5 30.9 67.4
ATSS [44] ResNet-50 87.9 333 70.0
ATSS [44] ResNet-101 87.7 37.4 70.6
Faster R-CNN  ResNet-50 86.7 343 68.5
Faster R-CNN  ResNet-101 87.2 35.2 68.5
Cascade R-CNN  ResNet-50 87.5 37.4 69.8
Cascade R-CNN ResNet-101 87.0 34.5 68.5

Cascade R-CNN:
MTL-Det
MTL-Det

ResNet-50 88.7[+1.2] 38.7[+1.3] 71.7[+1.9]
ResNet-101 87.5[+0.5] 37.4[+2.9] 70.3[+1.8]

the red rectangle in Fig. 7. In addition, some ships similar to the
background are easily overlooked, such as the white rectangle
in Fig. 7. Compared with the baseline, the proposed MTL-Det
significantly reduces the missed and false alarms.

E. Main Results on LS-SSDD-v1.0

The SOTA single-stage, two-stage, and multistage networks
were utilized as baselines. The single-stage networks included
the SOTA anchor-base and anchor-free methods. As listed in
Table III, MTL-Det achieves the best performance; for example,
the proposed method achieves 71.7% on AP5y and improves
cascade R-CNN by approximately two points. This illustrates
that the proposed method improved the performance of general
detectors for SAR image detection on different datasets.

The summary in Table ITI compares the detection performance
for inshore and offshore scenes. The inshore scenes contain
many backgrounds that are extremely close to the objects.
Compared with the backgrounds of offshore scenes, those of
false alarms are more severe. With ResNet-50 and ResNet-101
as backbones, MTL-Det increased the baseline by 1.3% and
2.9% in APj, respectively, on inshore scenes; these are higher
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Fig. 7.

Detection results on HRSID. The red, white, green rectangles represent false alarms, missed alarms, and correct detection results, respectively. A score

threshold of 0.05 is used for displaying. (a) Detection results on off-shore scenes. Top: MTL-Det; Bottom: Baseline. (b) Detection results on in-shore scenes. Top:

MTL-Det; Bottom: Baseline. Best viewed in zoom in.

than the performance gains on offshore scenes. This validates
that multitask learning enhances the representation ability of
the network, enabling the detection task to effectively overcome
false alarms in complex scenarios.

The detection results for the LS-SSDD-v1.0 dataset are shown
in Fig. 8. The image size is 24 000 x 16 000, and 600 patches
with a size of 800 x 800 are sent to the detector; the stitched
large-size result is shown in Fig. 8. The images include inshore
and offshore scenes. Faster R-CNN with ResNet-50 was used as
the baseline, and MTL-Det obtained 85.8% and 82.6% on recall
and APs, respectively. Compared with the baseline, the recall
and APs5 increased by 1.2%. and 1.5%, respectively.

F. Ablation Study

This section presents the ablation experiments that have been
performed to analyze the contribution of various modules to the
detection performance improvement.

1) Ablation Study on Auxiliary Task Learning: To analyze
the performance of each auxiliary task in MTL-Det, seman-
tic feature learning and edge feature learning were gradually
applied to the baseline. The improvements resulting from the
combination of the two tasks are also presented to verify the

TABLE IV
ABLATION STUDY ON AUXILIARY TASK LEARNING

Semantic Edge AP APs AP APs APy AP
66.1 83.2 75.1 669 693 26.6

v 67.2[+1.1] 883[+0.1] 769 68.1 69.4 260

v 67.5[+1.4] 884[+0.2] 77.8 683 702 289

v v 68.0[+1.9] 89.2[+1.0] 77.7 68.7 69.6 2538

complementary nature between the two. The baseline method is
cascade R-CNN with ResNeXt-101-64 x 4d; the performance
levels are listed in Table IV.

As indicated by the list in Table IV, semantic learning im-
proves the AP of baseline by 1.1 points. This resultis attributed to
the new type of supervision information for feature learning that
the subtask provides. With the aid of auxiliary information, the
detection task alleviated the false alarm caused by the complex
background and improved the object probability.

The sole introduction of edge learning improved the AP of
the baseline by 1.4%. Guided by the learned shape and edge
of the object, the position of the bboxes can be predicted more
accurately by the detection network. As summarized in Table IV,
edge learning is higher by 0.9% than semantic learning on AP.
This indicates that the former outperforms the latter with respect
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Fig. 8.

TABLE V
ABLATION STUDY ON FUSION MODULE

Fusion method AP AP5 AP;; APs APy APp
baseline 61.9 86.2 713 63.0 623 185
Attention-base 63.3[+1.4] 87.6[+1.4] 729 644 o64.1 184
Element-wise addition 62.8[+0.9] 86.6[+0.4] 72.1 63.8 645 18.7

TABLE VI
ABLATION STUDY ON AUXILIARY TASK SUPERVISED LEARNING

Supervised learning method AP AP5 AP APs APy AP

baseline 61.9 86.2 713 63.0 623 185

Pixel-wise 62.6[+0.7] 87.1[+0.9] 72.0 638 627 I1l.1

Rol-wise 63.3[+1.4] 87.6[+1.4] 729 644 o641 184
TABLE VII

ABLATION STUDY ON LABEL QUALITY

Edge GT AP APsy  APr5  APg APy AP
ours 633 87.6 72.9 644 64.1 184
Edge GT _ 63.1 86.7 73.2 64.3 64.2 19.1

to bbox regression and aids the detection network to identify
higher quality bboxes.

When the fusion module is employed to learn multimodal
features, the AP improves to 68.0%, which is 1.9 points higher
than the baseline. This improvement demonstrates that these
tasks are complementary, and this complementarity improves the
classification and regression performance in SAR ship detection.

2) Ablation Study on Fusion Module: Table V summarizes
the ablation performance of the multitask feature fusion module;
the baseline is faster R-CNN with ResNet-50. First, auxiliary

Detection visualization results on LS-SSDD-v1.0. A score threshold of 0.05 is used for displaying. Best viewed in zoom in.

TABLE VIII
ANALYSIS OF LOSS WEIGHT SETTING

Loss weight

AP APso APrs  APs APy AP
Oedge  Tsementic

0 0 61.9 86.2 713 63.0 623 18.5
1.0 1.0 633[+1.4] 87.6[+1.4] 72.9 64.4 64.1 18.4
0.7 0.1 63.8[+1.9] 87.6[+1.4] 732 64.6 65.5 15.4
0.5 0.3 63.6[+1.7]  87.7[+1.5] 73.3 64.5 64.5 18.6
0.1 0.7 63.5[+1.6]  87.5[+1.3] 73.1 64.4 64.1 19.8
0.1 0.5 63.5[+1.6]  87.3[+1.1] 73.1 64.5 64.6 13.4
1.0 0.1 63.5[+1.6] 87.4[+1.2] 73.4 64.7 63.9 16.5
DWM Egq. (14) 63.5[+1.6]  87.5[+1.3] 72.9 64.7 63.7 17.5
DWM Egq. (15) 63.8[+1.9]  88.0[+1.8] 74.0 65.1 61.9 21.6

task features are fused by element-wise addition. The list in Ta-
ble V indicates that the fusion strategy is superior to the baseline,
demonstrating that the fusion method improves the detection
performance. To better comprehend the function of the fusion
module, it is replaced by the proposed fusion method based
on the attention mechanism. Therefore, the modified network is
observed to be more capable in adaptively selecting features and
increasing the complementarity between multimodal features
and reducing feature redundancy. Table V summarizes that
this method outperforms the element-wise addition methods by
0.5 points in AP (and 1.0 points in AP5g). Accordingly, the
attention-based fusion method is used as the default setting of
MTL-Det.

3) Ablation Study on Auxiliary Task Supervised Learning:
Table Vllists the performance levels of auxiliary task supervised
learning in the ablation study. The baseline is faster R-CNN with
ResNet-50. For each subtask, the feature map was obtained from
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Fig. 9.

Visualization analysis of robustness to speckle noise. The red, white, and green rectangles represent false alarms, missed alarms, correct detection results,

respectively. Best viewed in zoom in. (a) Missed alarms. Odd rows: MTL-Det; Even rows: Baseline. A score threshold of 0.8 is used for displaying. b) False alarms.
Top: MTL-Det; Bottom: Baseline. A score threshold of 0.05 is used for displaying.

the shared convolution subnetwork before the prediction map.
The Rol-wise supervision and pixel-wise management were
performed in multitask learning. Both methods aided MTL-Det
to exceed the baseline to various levels. In contrast, the auxiliary
task features were learned by the Rol-wise supervised learning
better, and the model significantly improved the AP (e.g., 0.7
points higher than the pixel-wise supervised learning). This
improvement is achieved because the method balances the num-
ber of positive and negative samples, and the model considers
the simultaneous learning of positive and negative samples.

Accordingly, the Rol-wise supervised learning is selected as the
default model learning method.

4) Analysis of Label Quality Robustness: In edge learning,
pseudolabels are generated by the Canny operator. The experi-
ment shows the influence of the pseudolabel quality on model
learning; Table VII lists the performance levels. The semantic
segmentation annotation was used to generate the edge GT of
each object in training the edge learning branch. By comparing
the results, the advantage of the model based on the edge GT can
be deduced as enhanced by the better quality of the bbox. For
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False alarm

(@) (®) ©

Missed alarm

(CY) © ®

Fig. 10.  Visualization analysis of multitask learning: (a) GT; (b) semantic prediction map ;\;emamic; (c) edge prediction map .;l\edge; (d) detection results of
MTL-Det; (e) detection results of baseline; and (f) multitask learning results. In the pseudocolour image, the warmer the colour, the greater the response.

example, APz5 is slightly higher than the proposed method by
0.3%, indicating that higher quality bboxes are obtained by the
accurate edge GT. However, the model with the proposed fore-
ground edge pseudolabel generation method has an advantage
over the model based on the edge GT by 0.2 points in AP (0.9
points in AP5(). This confirms that the pseudolabel generation
avoids many manual annotations without affecting the detection
performance.

5) Analysis of Loss Weight Setting: The baseline sets the loss
weight of subtasks as 1.0, i.e., the balance among the tasks is not
considered. Table VIII lists the top-5 grid search performance
levels. When the balance between subtasks is considered, the
grid search can be inferred as improved by a maximum of 0.5 in
AP over the baseline.

The performance levels of the DWM are listed in Table VIII.
The loss weights are adjusted adaptively to balance the subtask
and main task. Compared with the optimal performance obtained
by grid search, the DWM performs best in the detection task.
For example, using (14) to calculate the loss function, the
performance levels of the detector are 63.8% in AP and 88.0%
in AP5q, which are the highest among all weight settings. The
optimal performance of the grid search obtained after 25 runs is
noteworthy. However, note that the DWM is only trained once.

6) Analysis of Robustness to Speckle Noise: Multiple low
signal-noise ratio SAR images were selected from the LS-
SSDD-v1.0 dataset to demonstrate the robustness to speckle
noise. Fig. 9(a) shows that MTL-Det overcomes the missed
alarms caused by speckle noise. In order to increase the difficulty
of the missed alarm test, the score thresh is set to 0.8. With the
help of the proposed edge and semantic feature learning tasks,

MTL-Det can learn more discriminative object-specific features,
and can recognize the objects from the speckle noise images with
higher confidence.

Fig. 9(b) shows that MTL-Det overcomes the false alarms.
Similarly, in order to increase the difficulty of the false alarm
test, the score threshold is set to 0.05. Compared with the
speckle noise on the sea surface, the speckle noise on the land is
more likely to affect the false alarm results. The baseline model
mistakenly recognizes the bright speckle on the port and land as
ships. In the same case, MTL-Det is even better, which shows
that MTL-Det is more robust to speckle noise than baseline.
For quantitative analysis, please refer to Section IV-E, detection
results comparison on LS-SSDD-v1.0 dataset.

7) Visualization Analysis of Multitask Learning: For the
agalysis of multitask learning, the prediction maps Agemantc and
Acdge corresponding to the two proposed subtasks are shown in
Fig. 10(f). The two tasks were effectively trained by the multitask
learning module and supervised learning method proposed in
this article. Semantic learning aids in predicting the existence
probability of an object, whereas edge learning is beneficial for
perceiving the shape and edge information of the object.

The proposed multitask learning effectively deals with false
alarms (yellow region) and missed alarms (blue region), as
shown in Fig. 10. Semantic learning increases the confidence
of the foreground object and improves the recall rate; however,
it may also produce false alarms. In edge learning, the influence
of false alarms on detection is weakened by perceiving the shape
and edge information. Moreover, the detector is more powerful
in improving the quality of the bbox by identifying the object
scale. Thus, the two tasks are complementary, and the proposed
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multitask learning has considerable potential for ship detection
from SAR images.

V. CONCLUSION

A novel multitask learning framework, MTL-Det, is proposed
in this article for ship detection from SAR images. The frame-
work consists of an auxiliary task learning module, a main task
learning module, and a multitask evolution module. Specifically,
edge learning and semantic feature learning are advantageous for
improving the classification and regression quality of the detec-
tor. The feature fusion module based on the attention mechanism
and MSFA are beneficial for obtaining object-specific features
for prediction. An auxiliary task supervised learning method is
formulated to train each proposed TGN efficiently, and a DWM
is devised to further balance learning among multiple tasks.
Without introducing additional features, MTL-Det achieves a
1.9% improvement over the multistage detector baseline (cas-
cade R-CNN). Similarly, it improves by 1.9% over the two-stage
detector baseline (faster R-CNN) on the HRSID dataset. Finally,
the SOTA performance is achieved by MTL-Det on HRSID and
LS-SSDD-v1.0.
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