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Using 3-D Convolution and Multimodal Architecture
for Earthquake Damage Detection Based on Satellite

Imagery and Digital Urban Data
Takashi Miyamoto and Yudai Yamamoto

Abstract—When a large earthquake occurs, it is quite important
to quickly figure out the damage distribution of housing structures
for disaster prevention measures. Currently, the information is
confirmed manually by local public organizations, which takes a
lot of time. Therefore, a method is required for gathering the infor-
mation more swiftly and objectively. In this work, a novel method
for detecting damage to single buildings from a set of multitemporal
satellite images is developed by applying a recent machine learning
approach. The damage detection system is designed as a deep
learning model that uses multimodal data, consisting of optical
satellite images and structural attributes. The proposed method
achieved over 90% detection accuracy on damaged housing in the
affected area of 2016 Kumamoto earthquake, Japan from satellite
images taken by Pleiades as well as digital urban data.

Index Terms—3-D convolution, earthquake damage detection,
multimodal learning, satellite imagery, spatiotemporal data.

I. INTRODUCTION

PREPAREDNESS for and mitigation of natural disasters that
frequently occur throughout the world is one of society’s

most pressing problems. Owing to the difficulty of earthquake
predictions and the scope of damage incurred, earthquake miti-
gation continues to be the focus of disaster planning in Japan and
many other countries, despite the infrequency of earthquakes.
Earthquake disaster planning is broadly composed of four
chronological phases: prevention, preparation, response, and
reconstruction. Among these, the response phase refers to activi-
ties conducted immediately after the disaster, such as search and
rescue operations and the provisioning of necessary supplies.
These activities are particularly important for earthquakes where
the complete prevention of damage is difficult. In the response
phase, promptly identifying the state of damage—the earthquake
location and damage degree—is crucial as it enables the ap-
propriate allocation of resources and sound decision-making by
individuals and disaster support organizations. Moreover, such
a prompt assessment can optimize subsequent activities.
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Information related to earthquake damage is generally gath-
ered through human efforts, such as on-site verification by
public organizations. However, research is ongoing for a faster
method, which specifically involves the use of remote sensing
data, whereby information is gathered by sensors mounted on
airplanes, as a means of gathering such information. An effec-
tive means of obtaining information on the overall postdisaster
situation of a wide area involves the analysis of data collected
from satellites equipped with optical sensors capable of high-
definition imagery or synthetic aperture radar (SAR) capable of
photographing the Earth’s surface regardless of weather or time
of day [1], [2]. Recent research and development in satellite
technology include the development of next-generation optical
satellites and the establishment of on-demand launching systems
for compact SAR satellites during disasters. These develop-
ments have been implemented practically in various disaster-
preparedness initiatives. Implementation examples include the
Ministry of Land, Infrastructure, Transport and Tourism’s satel-
lite data usage guidelines for flooding and sediment disasters,
and the construction of specific operational systems.

As with other natural disasters, research attempting to analyze
the state of earthquake damage from the satellite sensor data has
proceeded both in Japan and abroad. As reviewed in detail by
Dong et al. [3], data obtained from photo-optical, SAR, as well
as light detection and ranging sensors have been used to detect
structural damage from earthquakes via remote sensing. Gong
et al. [4] proposed to use a combination of SAR imagery and
footprint map for building damage detection. Tong et al. [5]
proposed a method using the difference in elevation in each
structure before and after an earthquake as determined via
DEMs, while Matsuoka et al. [6] proposed a method for deter-
mining structural damage via threshold values after calculating
individual differences in the SAR backscattering coefficient. Ad-
ditionally, a considerable amount of research has been conducted
on methods that employ machine learning models to determine
damage. Mansouri et al. [7] used machine learning models, such
as support vector machine (SVM), based on feature values in
differential images identified from optical images before and
after a disaster. Bai et al. [8] distinguished damaged structures
from undamaged structures by using the K-nearest neighbor
method on feature values from differential images obtained
before and after an earthquake using SAR. However, owing
to the limited spatial resolution of satellite observation data,
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Fig. 1. Example of satellite imagery of earthquake-suffered area: taken by
Pleiades (0.5 m/pixel resolution) at the time of the 2016 Kumamoto earthquake,
Japan.

these approaches are currently not sufficiently accurate to detect
damage in micro-phenomena, such as the collapse of residential
buildings and highway blockages, which is the major type of
damage in earthquakes. Hence, increasing the accuracy of these
approaches is a major challenge.

Given the above background, in this study, we investigated
technology that can assess the state of damage in a single
residential building using wide-area disaster photography on a
scale that captures an entire city block. As illustrated in Fig. 1,
while satellite images can capture the entire city, they do not
have sufficient resolution to show the appearance of individual
buildings clearly. Our proposed approach leverages satellite
sensing through recent developments in machine learning, and
it consists of two processes. First, by using the location and
external information on structures stored in a GIS database,
the range of photographs for each residence is identified from
wide-area photography, and image fragments on the scale of a
single residence are extracted. Second, the extent of damage in
groups of residential structures in disaster areas is ascertained
through classifiers that determine whether the structures in the
extracted image fragments have been destroyed.

In this study, we examine the effectiveness of reflecting the
following two ideas in the classifier in order to improve the per-
formance of determining collapsed and noncollapsed buildings

from satellite images. The first concept is to improve classifica-
tion performance by inputting to the classifier the photographic
images of the disaster area immediately before and immediately
after an earthquake. This study examined the effectiveness of
further generalizing the application of image difference values
(an approach that has been implemented widely in the past) to the
use of spatiotemporal convolutional layers. The second concept
is to use two types of information other than satellite imagery,
the age and materials of the structures, that could be employed in
damage detection. They are inputted to multimodal frameworks
and the results are assessed.

II. RELATED WORKS

The detection of earthquake damage from satellite images
can be regarded as a problem of image recognition by machine
learning from the viewpoint of information science. Machine
learning technology has significantly advanced in recent years
through the development of deep learning [9]. Convolutional
neural networks (CNNs) were proposed by Lecun et al. [10]
and demonstrated for their effectiveness recently by Krizhevsky
et al. [11]. Notably for image recognition, CNNs use back-
propagation to create automatic filters to identify feature values
from images for improving their effectiveness in sorting tasks.
In recent years, numerous examples of CNN filters have been
expanded to the third dimension to identify feature values in
spatiotemporal data. Tran et al. [12] expounded on the dif-
ferences between this approach and the stacking of groups of
images in the feature dimension direction. They investigated
the application of a two-dimensional (2-D) filter as well as the
advantages and disadvantages of each method. Ji et al. [13]
demonstrated the effectiveness of using 3-D CNNs in behavior
recognition based on time-series images. Given this context, in
the present study, a method was designed to improve earthquake
damage-identification task-processing performance by applying
these recent advances in machine learning to satellite sensing
images.

Further, one of the recent developments in deep learning
models is to utilize multimodal data [14], which improves the
performance of the models for feature learning and task process-
ing. In the detection of earthquake damage, it is expected that
the detection performance can be improved by using not only
satellite images but also various other data that can be obtained in
advance. Therefore, in this study, we designed a neural network
that can handle such multimodal data.

III. PROPOSED SCHEME

A. Overview of the Earthquake Damage Detection System

The system developed in this study distinguishes damaged
structures from undamaged structures in two stages, as discussed
below. First, a geospatial information database providing struc-
ture locations and their footprints is used to identify the image
fragments of each structure from wide-area satellite imagery.
Next, to discern the state of damage on individual residences
appearing in images obtained by satellites, a deep learning model
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Fig. 2. Flowchart of the proposed scheme.

is used to categorize each fragment as being in one of two classes:
damaged or undamaged.

In this damage detection process shown in Fig. 2, the first
phase of identifying the location of buildings and extracting
image fragments from satellite images can be performed with
ease because geospatial information is sufficiently available in
Japan, and satellite images are assigned spatial coordinates in
pixel units. Therefore, the main challenge in the development of
our system is to design a deep learning model that can accurately
discriminate the presence or absence of damage in images of
single houses, and we will discuss this in detail in the following
sections.

B. Deep Learning Model

1) Feature Identification From Pairs of Photographic Images
Obtained Before and After an Earthquake: Artificial satellites
periodically photograph the Earth’s surface; therefore, when
detecting disaster damage, it is possible to compare data pho-
tographed before the disaster with that obtained immediately
after it. Previous studies have reported improved detection ac-
curacy by comparing information before and after a disaster
through computing difference images. Computation of differ-
ence images is equivalent to applying a difference filter to a
pair of images. However, the difference filter is only one of
the various filters that can be used to extract features from
image pairs. By applying more filters, more detailed features of
image pairs can be extracted, and the performance of earthquake
damage discrimination can be further improved. Therefore, in
this study, we used a 3-D CNN for classification tasks involving
time-series images.

The 3-D CNNs expand the 2-D filters of standard CNNs to
the third dimension. Filters with a one-dimensional degree of
freedom in the temporal direction and a 2-D degree of freedom in
the spatial direction were used. In 3-D CNNs, backpropagation
is used to create the shapes of the filters automatically, thereby
automatically extracting the feature values of the chronological
and spatial data that are useful for the given task. Unlike a 2-D

CNN, which extracts features from a single image, a 3-D CNN
extracts features from a time series of two or more images. A 3-D
CNN extracts spatial features, such as edges and their temporal
changes. Therefore, the application of 3-D CNNs is considered
to be effective for detecting earthquake damage that appears as
changes in the shape of structures before and after an earthquake.
Target areas were classified as damaged or undamaged based
on chronological image data, using a deep learning model that
combines 3-D CNN feature extraction layers with the fully
connected layers of a classifier.

2) Multimodal Framework Integrating Structural Informa-
tion: Satellite remote sensing provides a wealth of information
that can be used to estimate and understand damage after an
earthquake, including both photographic imagery and ground
structure and seismic intensity distribution. Structural infor-
mation, such as construction age, has been hypothesized and
statistically confirmed to be deeply connected to the presence of
damage in individual buildings. Therefore, we used as inputs the
aforementioned pairs of photographic images before and after
the earthquake and the two types of structural information: con-
struction age and structure type. A multimodal learning structure
capable of identifying the presence of damage in an integrated
manner was obtained from such heterogeneous information.

The structure of the proposed damage-identification deep
learning model is shown in Fig. 3.

IV. ASSESSING THE DEVELOPED SYSTEM

A. Dataset

To assess the damage-detection performance of the designed
deep learning model, a dataset consisting of satellite images of
residences damaged by the 2016 Kumamoto earthquake was
created. The images were obtained from Mashiki Town in Ku-
mamoto prefecture. This dataset was assembled from images
of 310 destroyed residences and 2030 undestroyed residences.
Each residence was confirmed and labeled as “damaged” or
“undamaged” based on the results of a comprehensive survey by
the Architectural Institute of Japan (AIJ) [15]. For the satellite
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Fig. 3. Architecture of damage-identification neural network with 3-D convolutional layers and multimodal learning structure.

TABLE I
DAMAGE GRADE CHART OF THE BUILDINGS GIVEN BY THE FIELD SURVEY

images, the pairs of images used were captured before and
after the earthquake, on January 16, 2016 and April 20, 2016,
respectively, at optical satellite Pleiades. The resolution of the
images was 0.5 m/pixel. Using the process described above,
small images of each residence were extracted. Each fragment
was then resized to 20–20 pixels to unify the image sizes. In
addition, the labeling of the damaged structures was based on
the damage grade scale (0–6), which was used by the AIJ’s
comprehensive survey (Table I). Structures assessed from 0 to 4
were labeled as “non-damaged,” whereas structures assessed as
5 or above were labeled as “damaged.”

Data on the construction age and structure type are typically
managed by the local authorities. In this study, we used data
collected and organized through a comprehensive survey. Con-
struction age was classified into three categories based on the
years of revision of Japan’s Building Standards Act, as shown in
Fig. 3. For the structure type, each structure was classified into
one of four categories: “wood,” “steel,” “reinforced concrete,”
or “other.”

To verify the accuracy of the deep learning model, the dataset
was divided into training data and assessment data, as shown
in Table II. It was then cross-validated. The training data were
magnified 8× via mirror reflection and rotation.

B. Performance Assessment of 3-D Convolution

To verify the effectiveness of using 3-D CNNs as a feature
extraction method from predisaster and postdisaster image pairs,

TABLE II
NUMBER OF BUILDING DATA FOR THE CROSS-VALIDATION TEST: DATA

AUGMENTATION IS APPLIED TO THE TRAINING DATA

we constructed a deep learning model with multiple input data
formats and corresponding feature extraction layers as shown in
Table III, and we evaluated the classification performance of the
model.

No. 1-1 was a CNN learning and inference case for which
an input tensor was created using only postearthquake images.
Here, one input tensor had three dimensions—image width w,
height h, and RGB 3-ch. The CNN model was equivalent to
those used for standard image recognition.

No. 1-2 was a case in which an input tensor was con-
structed by calculating difference images from pre-earthquake
and postearthquake images. Here, the number of tensor dimen-
sions and the CNN model format were the same as those in
No. 1-1; however, they differed from those in No. 1-1 in that
pre-earthquake image information was used.

No. 1-3 was a case where a w × h × 6 ch input tensor was
created by stacking pre-earthquake images to use as 4–6-ch data
for postearthquake image RGB-dimension 3-ch data. Here, the
calculation process was similar to that of a standard CNN, except
that the number of feature values in the input layer was 6 ch.
Compared with the No. 1-2 case, however, data were input as-is,
without calculating the differences from before and after images;
therefore, a richer quantity of information was expected to be
obtained.

No. 1-4 was a case in which an input tensor was created as w×
h × 3-ch spatiotemporal data through stacking before and after
images in the temporal dimension. Here, the CNN calculation
process was applied to three-dimensional data, and the created
filters were expected to be able to capture through learning data
features, such as spatial and temporal features, in more detail
than in No. 1-3.

Comparing the performance of the models in the above four
cases enabled the assessment of the suitability of various deep
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TABLE III
OVERVIEW OF TEST CASES USED FOR PERFORMANCE ASSESSMENT OF 3-D CNN

TABLE IV
OVERVIEW OF TEST CASES USED FOR PERFORMANCE ASSESSMENT OF MULTIMODAL FRAMEWORK

Fig. 4. 3-D CNN model structure (Case No.1-4).

learning models and data formats for identifying earthquake
damage. Furthermore, the number of layers in the deep learning
model in each case was uniform, and the number of internal
parameters was mostly uniform for the purpose of comparison.

This comparative assessment also used random undersam-
pling of image data in the undamaged class from the original
dataset to use the same number of data items from each class.
As an example of the model structure, the deep learning model
used in Case No. 1-4 is shown in Fig. 4. For the other cases, the
3-D convolutional layers (3-D CNNs) in the figure were replaced
with 2-D CNNs.

C. Performance Assessment of Multimodal Framework

Next, to confirm the effectiveness of the multimodal frame-
work, a comparison of the damage-detection performances of
the three machine learning models was carried out, as shown in
Table IV. Model 2-1 used a 3-D CNN, similar to the proposed
model; however, it did not introduce a multimodal framework
and did not use structural information to distinguish between
damaged and undamaged structures. Model 2-2 attempted to
use only structural information via SVM to identify damage.
Finally, Model 2-3 is the proposed model illustrated in Fig. 3.

TABLE V
COMPARISON OF DAMAGE DETECTION ACCURACY OF DIFFERENT METHODS

FOR IDENTIFYING FEATURES FROM CHRONOLOGICAL IMAGES

Bold values indicate the highest metric values among the compara-
tive cases.

The model uses a combination of a 3-D CNN and a multimodal
framework.

For each model, learning and an assessment of damage-
detection performance were conducted using the dataset pre-
sented in Table II. As the amount of data in each class in the
training data used in model learning was skewed, a weighting
coefficient proportional to the number of data items was intro-
duced to the error function.

V. RESULTS AND DISCUSSION

A. Effectiveness of 3-D Convolution

The results of a comparative assessment of the accuracy of
various methods of feature identification from pairs of images
obtained before and after an earthquake in detecting earthquake
damage are shown in Table V. First, Cases No. 1-2 to 1-4,
which used pairs of before and after images, demonstrated
overall superior performance compared with that of Case 1-1,
which used only images captured after the earthquake. It is
clear that the use of time-series satellite images is effective for
detecting disaster damage. In particular, the 3-D CNN model in
Case 1-4 demonstrated the best detection performance among
the compared models. The 3-D convolution layer filter could
extract more general features from the spatiotemporal data than
image difference values. Therefore, the deep learning model
is considered to have acquired the features that contribute to
earthquake damage detection through the learning process.

B. Effectiveness of Multimodal Framework

The assessment results for the performance of each model in
Table IV for categorizing the assessment data are presented in
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Fig. 5. Result of earthquake damage detection by the proposed scheme: The two boxes in the figures represent two 10-km square areas whose nature of damage
distribution is discussed in the text. (a) Ground truth. (b) Inference.

Fig. 6. Damage distributions in southwest district. (a) Ground truth. (b) Inference.

TABLE VI
COMPARISON OF DAMAGE DETECTION ACCURACY FOR PRESENCE/ABSENCE

OF MULTIMODAL FRAMEWORK

Bold values indicate the highest metric values among the compara-
tive cases.

Table VI. The performance of each model was evaluated using
four metrics: accuracy, precision, recall, and ROC-AUC.

A comparison of the performance of each model reveals that
the proposed model, Model 2-3, generally demonstrated the best
performance in terms of the four metrics. This finding suggests
that combining satellite imagery and structural information is
more effective than using them independently. In particular, a
high ROC-AUC metric is particularly desirable for detecting
damage [16]. Fig. 5 illustrates a comparison of the inference
result and actual residence damage conditions in Mashiki Town
after the Kumamoto earthquake. A comparison with the on-site

survey results reveals that the proposed method is capable of
detecting damage trends for each district.

For a more detailed discussion, we review the distribution
of damage and its prediction results in two 10-km square
districts (southwest district and northward district) indicated
by the boxed lines in Fig. 5. The southwest district, shown
in Fig. 6, is characterized by an east-west band of damage
through the district’s center. The damage detection result of
the proposed method captures this band-shaped damage and
detects the damage trend of the district appropriately. In the
northern part of the district shown in Fig. 7, the proposed method
slightly underestimates the damage but reproduces the trend that
almost no damage occurs in the northern part of the district
compared with the southern part. Thus, it can be concluded that
the proposed method has sufficient accuracy in understanding
the trend of damage distribution in each area.

C. Characteristics of Misclassified Data

As shown in Table VI, the proposed method demon-
strates an overall high percentage of correct hits; however, its
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Fig. 7. Damage distributions in northward district.

Fig. 8. Percentage correct for each damage grade: The values in () indicate
the number of data per grade.

recall—i.e., its likelihood of correctly recognizing structures
labeled as “damaged”—is fairly low. To identify the reason,
Fig. 8 depicts the percentage of correct judgments per original
damage grade prior to the two-value labeling shown in Table I.
The figure clearly shows that the percentage correct for damage
grade 5 (D5) is far lower than that for the other grades. Structures
classified as D5 are labeled as “damaged” under the study’s
two-value labeling; therefore, misidentification of structures
belonging to this grade is believed to have led to the low recall
value.

Compared with damage grade 6 (D6), which signifies com-
pletely collapsed structures, D5 contains a large number of struc-
tures that are difficult to classify using overhead photography
because this grade contains damage patterns such as the collapse
of only the first floor or the tilting of the structure. Therefore,
based on structural information detailing the types and formats
of damage from the results of a comprehensive survey that
identified trends and points of commonality in misclassified
data, D5 was reclassified into seven categories of damage types:
“first-floor damage,” “second-floor damage,” “total collapse,”
“partial collapse,” “partial damage,” “deformity/tilting,” and
“other.” Based on the results of this reclassification, three of
the categories—second-floor damage, total collapse, and partial

Fig. 9. Breakdown of correct/incorrect classifications by damage type cate-
gory in D5: The values in () indicate the number of data.

collapse—were posited as categories where the type of damage
was discernible via overhead photography; the other four cat-
egories were posited as categories where the type of damage
was difficult to discern from overhead. The proposed method’s
percentage of correct classifications was then rechecked for each
category group.

Fig. 9 details the percentages of correct and incorrect clas-
sifications regarding damage detection for each category group
for the proposed method. For the category group considered
discernible, the proposed method’s classifications were 71%
correct, whereas for the category group considered difficult to
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discern, its classifications were only approximately 37% correct.
From this result, it is clear that the correctness of the model is
greatly influenced by whether the damage patterns can be judged
from the overhead photography.

These results suggest that it is necessary to note that dam-
age that can be discerned via satellite imagery differs from
the damage grades assessed via field surveys. The results also
suggest that approaching damaged/nondamaged dataset labeling
from the same perspective would be effective in enhancing the
performance of machine learning models.

VI. CONCLUSION

This study outlined an earthquake damage detection system
based on satellite photographic imagery using deep learning
to understand regional residential earthquake damage in an
objective manner. This approach informed the design of the
proposed model. As demonstrated by the research examples
presented in this study, the use of multiple photographic satellite
images, including images obtained during normal times, as well
as the incorporation of multiple pieces of information deeply
connected to disaster damage, are expected to form an effective
approach for detecting general disaster damage, including and
outside of the cases shown. In Japan, where disasters are becom-
ing more intense and frequent, the development of a method for
understanding and predicting the state of disaster damage that
fully leverages deep learning and other current technologies will
constitute in the future a vital field of research and development.

ACKNOWLEDGMENT

The information about structural damage distribution and
structural attributes in the affected area in 2016 Kumamoto
Earthquake in Japan was provided by Ministry of Land, In-
frastructure, Transport and Tourism (MLIT), National Institute
for Land Infrastructure Management (NILIM) and Building
Research Institute. The authors would like to thank Prof. Seiichi
Uchida in Kyushu University for his suggestive advice. The
authors would like to express their sincere condolences to the
victims of the earthquake and wish for a quick recovery and
reconstruction of the affected area.

REFERENCES

[1] S. Stramondo, C. Bignami, M. Chini, N. Pierdicca, and A. Tertulliani,
“Satellite radar and optical remote sensing for earthquake damage detec-
tion: Results from different case studies,” Int. J. Remote Sens., vol. 27,
no. 20, pp. 4433–4447, 2006.

[2] T. Balz and M. Liao, “Building-damage detection using post-seismic
high-resolution SAR satellite data,” Int. J. Remote Sens., vol. 31, no. 13,
pp. 3369–3391, 2010.

[3] L. Dong and J. Shan, “A comprehensive review of earthquake-induced
building damage detection with remote sensing techniques,” ISPRS J.
Photogrammetry Remote Sens., vol. 84, pp. 85–89, 2013.

[4] L. Gong, C. Wang, F. Wu, J. Zhang, H. Zhang, and Q. Li, “Earthquake-
induced building damage detection with post-event sub-meter VHR
TerraSAR-X staring spotlight imagery,” Remote Sens., vol. 8, 2016,
Art. no. 887.

[5] X. Tong et al., “Building-damage detection using pre- and post-seismic
high-resolution satellite stereo imagery: A case study of theMay 2008
Wenchuan earthquake,” ISPRS J. Photogrammetry Remote Sens., vol. 68,
pp. 13–27, 2012.

[6] M. Matsuoka and F. Yamazaki, “Use of satellite SAR intensity imagery
for detecting building areas damaged due to earthquake,” Earthq. Spectra,
vol. 20, no. 3, pp. 975–994, 2004.

[7] B. Mansouri and Y. Hamednia, “A soft computing method for damage
mapping using VHR optical satellite imagery,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 8 no. 10, pp. 4935–4941, Oct. 2015.

[8] Y. Bai, B. Adriano, E. Mas, and S. Koshimura, “Machine learning based
building damage mapping from the ALOS-2/PALSAR-2 SAR imagery:
Case study of 2016 Kumamoto earthquake,” J. Disaster Res., vol. 12,
pp. 646–655, 2017.

[9] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436–444, 2015.

[10] Y. LeCun et al., “Backpropagation applied to handwritten zip code recog-
nition,” Neural Comput., vol. 1, no. 4, pp. 541–551, 1984.

[11] A. Krizhevsky, I. Sutskever, and G. H. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf. Pro-
cess. Syst., 2012, pp. 1106–1114.

[12] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3D convolutional networks,” in Proc. IEEE
Int. Conf. Comput. Vis., 2015, pp. 4489–4497.

[13] S. Ji, W. Xu, M. Yang, and K. Yu, “3D convolutional neural networks
for human action recognition,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 1, pp. 221–231, Jan. 2013.

[14] J. Ngiam, A. Khosla, M. Kim, J., Nam, H. Lee, and A. Y. Ng, “Multimodal
deep learning,” in Proc. 28th Int. Conf. Mach. Learn., 2011, pp. 689–696.

[15] Architectural Institute of Japan, “Report on the damage investigation of
the 2016 Kumamoto earthquakes,” (in Japanese), 2018.

[16] J. Huang and X. C. X. Ling, “Using AUC and accuracy in evaluating
learning algorithms,” IEEE Trans. Knowl. Data Eng., vol. 17, no. 3,
pp. 299–310. Mar. 2005.

Takashi Miyamoto (Member, IEEE) received the
B.S., M.S., and Ph.D. degrees in civil engineering
from The University of Tokyo, Tokyo, Japan, in 2007,
2009, and 2012, respectively.

He is currently an Associate Professor with the
University of Yamanashi, Yamanashi, Japan. He cur-
rently holds the post of Visiting Scholar with German
Research Center for Artificial Intelligence, Kaiser-
slautern, Germany. His research interests include
data-driven science, disaster mitigation engineering,
and applied mechanics.

Yudai Yamamoto received the B.S. degree in civil
and environmental engineering in 2020 from the Uni-
versity of Yamanashi, Yamanashi, Japan, where he
is currently working toward the master’s degree in
earthquake damage detection using satellite imagery
with the Department of Civil and Environmental En-
gineering, Faculty of Engineering.

He studies machine learning application to earth
observation data to detect natural disaster damage.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


