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Abstract—Synthetic aperture radar (SAR) is widely used for
ground surface classification since it utilizes information on vegeta-
tion and soil unavailable in optical observation. Image classification
often employs convolutional neural networks. However, they have
serious problems such as long learning time and resolution degra-
dation in their convolution and pooling processes. In this article, we
propose complex-valued reservoir computing (CVRC) to deal with
complex-valued images in interferometric SAR (InSAR). We clas-
sify InSAR image data by using CVRC successfully with a higher
resolution and a lower computational cost, i.e., one-hundredth
learning time and one-fifth classification time, than convolutional
neural networks. We also conduct experiments on slope angle
estimation. CVRC is found applicable to quantitative tasks dealing
with continuous values as well as discrete classification tasks with
a higher accuracy.

Index Terms—Aspect classification, complex-valued neural
network (CVNN), convolutional neural network (CNN),
interferometric synthetic aperture radar (InSAR), reservoir
computing, slope estimation.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) is an active sensor, which
is able to enhance the spatial resolution, by synthesizing

a large aperture by moving a platform such as an airplane or
satellite. On the other hand, many studies have reported that
hyperspectral optical sensors are utilized in estimation of vegeta-
tions and soils [1]–[3]. However, optical sensors have a problem
of its unavailability under some climate and time conditions.
SAR data includes information on phase and polarization that
optical sensors cannot obtain. Hence, an appropriate processing
of such information will lead to better classification of land
surfaces [4].

The topographical information includes slope, aspect, and
elevation. Among others, aspect and slope are widely utilized
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for land use planning, hazard mapping and natural gas-pipeline
routing because such features provide the most important data
for assesment of landslide susceptibility [5], [6].

Deep neural networks adaptively classify land surfaces with
high accuracy in many recent studies [7]–[11]. Since an SAR
image is composed of complex values, it is desirable to be pro-
cessed by using complex-valued neural networks (CVNNs) [12].
Suksmono and Hirose demonstrated that CVNNs have an ad-
vantage over real valued neural networks (RVNNs) in land form
segmentation in interferometric SAR (InSAR) data [13]. This
is because CVNNs deal with both amplitude and phase infor-
mation with high generalization ability [14] whereas RVNNs
only deal with amplitude information or real and imaginary part
separately. In addition, they utilized CVNNs as a method to
remove phase singular points [15], [16].

Zhang proposed complex-valued convolutional neural net-
works (CVCNNs) by combining convolutional neural networks
(CNNs) with CVNNs to classify land use such as vegetation and
soil in polarimetric SAR data [17]. As the results, they demon-
strated that CVCNNs have a higher accuracy than RVNNs. On
the other hand, Sunaga proposed another CVCNNs in order to
classify and discover land forms [18]. Thereby, they demon-
strated that CVCNNs can extract land forms well which have
similar shapes.

CNN is generally consisting of alternating convolution and
pooling layers. The pooling process takes the averages or max-
imum value in a local window to absorb dislocations which
are harmful in recognition tasks. This is one of the strengths
in image recognition, while it causes resolution degradation in
image segmentation.

In addition, these methods using neural networks require
high computational cost because they search for an approximate
solution by iterative updating of network weights by using a
gradient algorithm. However, SAR observes the ground with
various polarization, frequency, and/or spatial resolution. Then,
the total computational cost becomes very high in the learning
for various platforms and diverse analyses.

Reservoir computing (RC) [19], [20], a neural network-based
framework, has big potential for a high speed learning with-
out resolution degradation [21]. A reservoir has multiple neu-
rons recurrently connected and maps input signals to a high-
dimensional space. The recurrent connection weights are fixed,
while only connection weights between the reservoir and an
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Fig. 1. Structure of complex-valued reservoir computing.

output layer are trained. This configuration contributes to an
expeditious learning. Besides temporal information processing,
RC is used for image recognition with conversion of spatial data
into serial data.

Recently, several studies have reported that RC has a high
performance compared with CNNs on classification tasks of
handwritten character images. Besides, Jalalvand et al. demon-
strated that RC has robustness against images including various
noises [22]–[24]. Additionally, Tong and Tanaka demonstrated
that RC has a high classification performance in general without
heuristic preprocessing [25].

Since SAR image is handled in the complex domain, the
method is required to have a generalization ability in the complex
domain, which has required a high computational cost. There-
fore, in this article, we propose complex-valued RC (CVRC) to
deal with complex-valued data of InSAR in low computational
cost.

We classify land forms and estimate slope angles by using
CVRC to process InSAR complex-amplitude data obtained by
advanced land observing satellite (ALOS) of Japan Aerospace
Exploration Agency (JAXA). Experiments of aspect classifica-
tion demonstrate that CVRC classifies local land forms more
accurately, showing a high generalization ability in the complex
domain, with about one-hundredth learning time and one-fifth
classification processing time compared with CVCNN.

The rest of the article is organized as follows. Section II
describes the dynamics of proposed CVRC. In Section III, we
explain our experimental setup for aspect classification and
present the results. We also discuss the features specific to
CVRC in comparison with other methods. In Section IV, we
demonstrate that CVRC achieves higher performance in slope
angle estimation. Finally, Section V concludes this article.

II. PROPOSAL OF COMPLEX-VALUED RESERVOIR COMPUTING

A. Dynamics of Complex-Valued Reservoir Computing

In this section, we propose CVRC to deal with complex
values. Fig. 1 shows the structure of the CVRC network. The
network has Nin input terminals in the input layer, Nres neurons

in the reservoir, andNout neurons in the output layer. The vectors
ut, xt, and yt represent input signals, output signals of neurons
in the reservoir, and output signals of those in the output layer,
respectively. The Nres ×Nin matrix Win is the weights con-
necting the input layer to the reservoir, the Nres ×Nres matrix
Wres is the recurrent connection weights and the Nout ×Nres

matrixWout is the weights connecting the reservoir to the output
layer. The vector bout is the bias of the output layer. All of the
signals, weights and bias have complex values.

The continuous-time dynamics is expressed as

z = Winu+Wresx (1)

dx

dt
= C (−ax+ tanh(|z|) ◦ exp(j arg(z))) (2)

y = Woutx+ bout (3)

where tanh(·) is a hyperbolic tangent function, | · | is an am-
plitude, and arg(·) is a phase. These operations are applied
element-wise. C > 0 is a global dynamics speed, a is a leaking
decay rate, ◦ is the Hadamard product, and z denotes the internal
states of neurons.

These equations (1)–(3) are discretized by the following as:

zt = Winut +Wresxt−1 (4)

xt = (1− δCa)xt−1 + δC tanh(|zt|) ◦ exp(j arg(zt)) (5)

yt = Woutxt + bout (6)

where δ > 0 is a discretization stepsize.
In general, neural networks process input signals by using

multiple neurons in parallel, in a distributed manner, as the inner-
product operation of neural weights and signals. This fact often
works favorably for noise reduction. When a time-serial signal
includes white noise, having low correlation in the time domain,
the inner-product process in (4) and (6) with various time delays
includes equivalently temporal averaging effect iteratively in the
recurrent treatment in the reservoir part, resulting in effective
suppression of the noise.

The dynamics (5) is inconvenient for application use because
we need to adjust many hyperparameters. Therefore, we applied
the following simplified dynamics, by the assumption of a leak-
ing decay rate a = 1 and the replacement of c = δC, expressed
as

xt = (1− c)xt−1 + c tanh(|zt|) ◦ exp(j arg(zt)) (7)

where c > 0 represents a hyperparameter introduced in order
to determine the dynamics speed. We named c discrete global
dynamic speed. When c is small, the network retains past in-
formation for a long time in the reservoir. Contrarily, when c is
large, the reservoir forgets past information in a short time.

The CVRC differs from conventional RVRC in its activation
function of the reservoir neurons. In order to deal with waves,
we define the activation function with saturated amplitude and
retained phase so that the nonlinearity of the amplitude repre-
sents energy saturation and the phase corresponds to the rotation.
Therefore, the signal transformation becomes independent of
phase reference in the SAR measurement, namely, the real
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and imaginary axes that determines in-phase and quadrature
components.

A spectral radiusσ(Wres), the absolute maximum eigenvalue
of Wres, is also one of the important indications deciding the
remaining time. Generally, σ(Wres) below unity is employed
for maintaining stability of the system [26]. The following
normalization treatment enables the network to adjust Wres

and decides a desirable spectral radius σd by hyperparameter
optimization in the range of zero to unity.

Wres ← σd

σ(Wres)
Wres. (8)

We calculate the optimal Wout and bout by using Tikhonov
regularization based on the linear regression in (6) as

[
Wout bout

]
= ((X∗X+ λI)−1X∗D)T (9)

where λ is a regularization parameter and X (∈ CN×Nres+1)
is the matrix of aligned xti(i = 0, . . . , N) corresponding to all
teacher signals as follows. We append one to X at each row to
calculate bout as

X ≡

⎡
⎢⎢⎣
xT
t0

1
...

...

xT
tN

1

⎤
⎥⎥⎦ (10)

where D (∈ CN×Nout ) is the matrix of teacher signals corre-
sponding to X, and X∗ is Hermitian conjugate of X.

CVRC has high generalization ability in the complex domain,
that is, the ability to deal with data obtained under different
conditions as well as real observation data including noise.
The proposed method is capable of processing interferograms
including much noise and/or obtained by other observations.

III. EXPERIMENT ON ASPECT CLASSIFICATION

A. Data Used in the Experiment

We dealt with an interferogram obtained from two JAXA
ALOS data around Mt. Fuji observed on November 25, 2010
and April 12, 2011. We conducted preprocessing of removing
orbital fringes, 16× 8 multilooking and normalizing logarith-
mic amplitude in such a manner that the maximum equals to
unity and that the noise-equivalent backscattering coefficient is
zero. The resolution after this preprocessing becomes 30 m/pixel
(range)× 50 m/pixel (azimuth). Fig. 2 shows the interferogram
in the normalized amplitude and phase. We generated the phase
difference data of east–west (range) and north–south (azimuth)
directions as shown in Fig. 3, in order to handle phase changes in
space directly without unwrapping to avoid unwrapping errors.
The amplitude data remains without changes. In this experiment,
we dealt with the observation data having only small ionospheric
effects. When we handle the observation data influenced by
ionosphere, we compensate the ionospheric error by using a
method such as [27].

Fig. 2. Original complex interferogram data. (a) Amplitude and (b) phase
images around Mt. Fuji.

Fig. 3. Spatial differences of phase data. (a) East–west and (b) north–south
directions around Mt. Fuji.

B. Learning and Estimation Procedure

Fig. 4 presents the total learning process. First, we delimited
teacher signal areas from the two phase difference images and
assigned labels of 5 classes: North, east, south, and west slopes
and flat plane. Next, we cut out small teacher frames randomly in
these areas and arranged them to make sequential data. The sizes
of the frames areNW ×NT andNT ×NW pixels for east–west
and north–south difference images, respectively. Then, we made
long sequential data by aligning 1000 frames, where NW = 5
and NT = 5 in each area. Finally, we fed them to the reservoirs
in turn.

We decided the number of neurons in the reservoirs Nres = 5
and the number of neurons in the output layers Nout = 5 corre-
sponding to the number of the labels for the classification. We
set the spectral radius of the initial recurrent weight matrices
σ(Wres), the desired radius σd and the discrete global dynamic
speed c at 0.16, 0.10 and 0.45, respectively, such that the magni-
tude of data once fed to the reservoir decreases to 1/NT in NT

time steps. The teacher matrix D is constructed corresponding
to the input teacher-frame sequence as

D =

N︷ ︸︸ ︷⎡
⎢⎢⎢⎢⎣

1 −1 −1 · · · −1
−1 −1 1 · · · −1
−1 1 −1 · · · −1
−1 −1 −1 · · · 1
−1 −1 −1 · · · −1

⎤
⎥⎥⎥⎥⎦

← North
← East
← South
←West
← Flat.

(11)

We calculated Wout by (9) with a regularization parameter λ of
10−12 by hyperparameter optimization shown in [25].
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Fig. 4. Serialization of the two-dimensional data in the learning process.

Fig. 5 presents the total classification process. We first pre-
pared east–west and north–south difference images for estima-
tion. Second, we generated two sequential data by using these
images as follows. We scanned the east–west difference image
from upper left rightward with a window of NW × 1 pixels.
Having scanned the image to the right end, then we shifted the
window down by a single pixel and scanned the image to the right
end again. We scanned the north–south difference image from
upper left downward with a window of 1×NW pixels. After
scanning the image to the lower end, we shifted the window
rightward by a single pixel and scanned to the lower end. We
repeated these processes to the lower right to make sequential
data.

Then, we input each sequential data made from east–west and
north–south difference images to the trained networks with each
image and obtained sequential outputs. Finally, we averaged
these two outputs. The area corresponding to the neuron closest
to unity is the classification result for the input.

Table I lists hyperparameters in the experiment. We decided
NW andNT by the reasons described later. We also used NumPy
of python library in the experiment.

C. Ground Truth and Neighbor Difference Method

To evaluate the experimental results, we generated a ground-
truth phase data by using a digital elevation data provided by
Geospatial Information Authority of Japan (GSI). The phase

TABLE I
HYPERPARAMETERS FOR THE SERIALIZATION PROCESS AND THE CVRC

NETWORK IN THE EXPERIMENT ON ASPECT CLASSIFICATION

data and the interferogram used in the experiment have the
identical resolution. After calculating the difference values of
two adjacent pixels in east–west and north–south directions, we
classified the difference data to the four cardinal directions. The
threshold between flat and slope is set at the intermediate value
between mean values in four slope areas and flat area used as
the teacher areas. We also masked out pixels corresponding to
water areas obtained from the GSI data to exclude the sea and
lake areas in the evaluation.

Additionally, we calculated the spatial difference of neigh-
boring pixels in the interferogram phase map. Hereinafter, we
call the method neighbor difference method.
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Fig. 5. Serialization of the 2-D data in the classification process.

D. Experimental Results

1) Classification Results for East–West Data, North–South
Data, and Their Integration: Fig. 6 presents CVRC classifica-
tion results for (a) the east–west difference data, (b) the north–
south difference data, (c) the integration of these two outputs,
and (d) the ground truth. The result by using east–west difference
data emphasizes east and west slopes clearly. In other words,
north and south slopes are regarded as east or west in error.
This originates from the anisotropy in the differentiation and
scanning. Similarly, the result by using north–south difference
data enhances north and south slopes. In contrast, the integration
result in Fig. 6(c) presents a good aspect decision similar to the
ground truth shown in Fig. 6(d).

2) Comparison With Conventional Methods: We conducted
the classification by using CVRC, RVRC, CVCNN [18], and
neighbor difference method to compare their estimation perfor-
mance and computational cost. We show classification results
and its accuracy of the whole area, flat plane, periphery of Lake
Ashi, Mt. Ashitaka, and west ridge of Mt. Ashitaka in order to
elucidate classification features in the respective methods.

TABLE II
COMPARISON OF ACCURACY OF THE WHOLE AREA AND CALCULATION TIME

BETWEEN CVRC, RVRC, CVCNN, AND NEIGHBOR DIFFERENCE METHOD

The bold entities in Table II emphasize the highest accuracy or the lowest computational
cost in all methods. We have considered that the bold entities are important.

Fig. 7 presents classification results of the whole area by using
(a) CVRC, (b) RVRC, (c) CVCNN, (d) neighbor difference
method, as well as (e) the ground truth. Table II shows the
accuracy for the whole area, learning time, and classification
time. We define the accuracy as the concordance rate between
classification results and the ground truth.

Fig. 8 shows classification results for seven areas: (a-�)
a part of flat plane in area (i) (i = 690–730, j = 460–500),
(b-�) periphery of Lake Ashi in area (ii) (i = 300–500, j =
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Fig. 6. CVRC classification results for (a) east–west difference data, (b) north–south difference data, (c) integration of these two outputs, and (d) the ground
truth.

Fig. 7. Classification results in the whole area by using (a) CVRC, (b) RVRC, (c) CVCNN, (d) neighbor difference method, as well as (e) the ground truth.
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Fig. 8. Classification results in (a-�) flat plane, (b-�) periphery of Lake Ashi, (c-�) Mt. Ashitaka, (d-�) a west ridge of Mt. Ashitaka, (e-�) Odawara city, (f-�)
the area between Fuji and Numazu cities, and Izu Peninsula by using (�-1) CVRC, (�-2) RVRC, (�-3) CVCNN, (�-4) neighbor difference method as well as (�-5)
ground truth. (�-6) optical images are obtained by the Google Earth.
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TABLE III
COMPARISON OF ACCURACY FOR THE LOCAL AREAS BETWEEN CVRC, RVRC, CVCNN, AND NEIGHBOR DIFFERENCE METHOD

The bold entities in Table III emphasize the highest accuracy or the lowest computational cost in all methods. We have considered that the bold entities are important.

600–800), (c-�) Mt. Ashitaka in area (iii) (i = 400–670, j =
260–530), (d-�) a west ridge of Mt. Ashitaka in area (iv)
(i = 460–510, j = 310–360), (e-�) a part of Odawara city in
area (v) (i = 200–300, j = 800–900), (f-�) an area between Fuji
and Numazu cities in area (vi) (i = 650–700, j = 300–350), and
(g-�) a part of Izu Peninsula in area (vii) (i = 930–1000, j =
400–470), obtained by using (�-1) CVRC, (�-2) RVRC, (�-3)
CVCNN, (�-4) neighbor difference method and (�-5) the ground
truth. (�-6) the optical images are obtained by the Google Earth.
Table III represents the accuracy for the local areas.

The flat plane is easily classifiable because of its almost
constant amplitude and phase values and the resulting low
spatial frequency. RVRC, having low generalization ability in
the complex domain, shows a low accuracy of 17.8%, as shown
in Table III(i). In contrast, CVCNN and CVRC, which deal with
complex values consistently, present high accuracies of 99.4%
and 93.1%, respectively. The rice paddy field spreads out across
the area (vi) between Fuji and Numazu cities in Fig. 8(f-6).
Though the area (vi) is also flat plane, all methods have the low
accuracy, as shown in Table III(vi). This is due to the coherence
degradation by the specular reflection on the water surface. The
area (v) in Odawara city in Fig. 8(e-6) is also consisting of
the flat plane with Sakawa River. The classification accuracy
decreases for the same reason as that for the area (vi), as shown
in Table III(v).

In contrast, periphery of Lake Ashi, Mt. Ashitaka, and Izu
Peninsula contain complex shapes with high spatial frequencies,
which leads to difficulty in classification, as shown in Fig. 8(�-6).
Then, basically all the methods present low accuracies of 64.3%,
57.0%, 56.6%, and 51.9% in Table II.

Next, we compare the classification performances of CVRC
and CVCNN. CVRC is inferior to CVCNN for the flat plane.
But, in Fig. 8 (�-1), (�-3), and (�-5), it can classify small
ridges of the periphery of Lake Ashi, Mt. Ashitaka, and Izu
Peninsula well compared with CVCNN. Table II presents that
CVRC achieved a higher accuracy than CVCNN in the whole
area. In terms of the computational cost, CVRC requires only
about one-hundredth learning time and one-fifth classification
processing time compared with CVCNN.

We also compare CVRC and RVRC. Fig. 8(�-2), (�-3), and
(�-5) shows that both CVRC and RVRC classify small ridges in
the periphery of Lake Ashi, Mt. Ashitaka, and Izu Peninsula very
well. In the flat plane, CVRC presents a better result containing
less salt-and-pepper noise totally than RVRC. Table III reveals

Fig. 9. Original complex interferogram data. Amplitude and phase images and
spatial differences of phase data. (a) East–west and (b) north–south directions
around Shinmoedake.

that CVRC achieves a higher accuracy than RVRC for the whole
area. CVRC and RVRC consume the same calculation time.

3) Application of Learning to Another Region in Another
Data: To validate generalization characteristics of the CVRC,
we conduct an experiment using the observation data that is
different from the data used for learning. The interferogram
used in this experiment is obtained from two JAXA ALOS data
around Shinmoedake observed on April 14, 2009 and May 30,
2009. Fig. 9(a) and (b) shows the interferogram in normalized
log-amplitude and phase. We generated the difference phase
data of east–west (range) and north–south (azimuth) directions,
as shown in Fig. 9(c) and (d). We also equalized the height
ambiguity of this interferogram to the interferogram around
Mt. Fuji in Section III-A as preprocessing. The resolution and
estimation method are the same as those in the previous section.

Fig. 10 shows classification results obtained by using (a)
CVRC, (b) RVRC, (c) neighbor difference method, and (d) the
ground truth. The classification accuracies are 37.1%, 33.6%,
and 32.1% by using CVRC, RVRC, and neighbor difference
method, respectively. Despite the fact that this region containing
many small mountains is difficult for classification, CVRC is
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Fig. 10. Classification results in Shinmoedake by using (a) CVRC, (b) RVRC,
(c) neighbor difference method, as well as (d) ground truth.

better than other methods in spite of the difference in region
and data. Then we found that CVRC has a high generalization
ability.

E. Discussion

1) Comparison With Conventional Methods: First, we dis-
cuss the classification result of neighbor difference method.
Fig. 11 presents histograms of the phase difference data of (a)
the interferogram and (b) the ground truth in the flat area. These
variances σ2 are 2.47× 10−1 and 5.59× 10−4. Given these
histograms, the interferogram contains much more noise. Simple
difference method that just differenciates two adjacent pixels
shows a totally low accuracy due to the low noise robustness.
In contrast, CVRC is able to reduce noise effect because the
short-term memory in the RC works to mitigate fluctuation in
the input signals.

Next, we discuss the classification performance of CVCNN.
In general, CVCNN is suitable for learning area shapes in its
convolutional process to extract shape features and in the pooling
process to weaken the influence of translation, rotation, and
scaling. However, the slope orientation is independent of area
shapes. Though CVCNN can classify targets like flat plane and
slopes having only low spatial frequency, it has difficulty in
classifying targets with high spatial frequency such as slopes
containing small ridges. This is because CVCNN captures win-
dow features. In contrast, CVRC catches small changes by
dealing with the two-dimensional data as sequential pixel data
to generate classification results with high resolution.

Next, we discuss the classification performance of RVRC.
RVRC sometimes fails in classification of data represented as
amplitude and phase information. Generally, flat planes feature
large amplitude and constant phase. Slopes also present phase

Fig. 11. Histograms of the phase difference data obtained from (a) the inter-
ferogram and (b) the ground truth in the flat area.

changes meaningfully. Then, RVRC shows a lower performance
with more salt-and-pepper noise totally.

In addition, we discuss neuron signals in the reservoir and
output error (root mean square error : RMSE) in the estimation
to elucidate the classification process in RVRC and CVRC. We
define RMSE as

RMSE =

√
1

K

∑K

k=1
|yk − dk|2 (12)

where yk is the signal of an output neuron, dk is the desirable
output signal, and K is the number of classes. The RMSE is
mostly over 1 for an erroneous decision.

Fig. 12 shows (a) amplitude and (b) phase of the signals
in the reservoir of CVRC, (c) the signals in the reservoir of
RVRC, and (d) RMSE of CVRC and RVRC in the scanning
of the area (ew) (i = 210, j = 70–471) from the west slope
(position j = 70–210) passing the summit to the east slope
(position j = 360–470) of Mt. Fuji. The periphery of j = 280 is
the summit of Mt. Fuji. According to the diagrams, CVRC has
almost the same amplitude and difference constant phase values
in east and west slope areas, respectively. Therefore, CVRC
classifies east and west slopes based on the phase in the reservoir
neurons. On the other hand, RVRC has similar neuron values in
the west and east areas. Hence, the classification in the RVRC is
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Fig. 12. (a) Amplitude and (b) phase of the signals in the reservoir of CVRC,
(c) the signals in the reservoir of RVRC, and (d) RMSE of CVRC and RVRC in
scanning of the area (ew) (i = 210, j = 70–471) from the west slope (position
j = 70–210) passing the summit to the east slope (position j = 360–470) of
Mt. Fuji.

Fig. 13. (a) Amplitude and (b) phase of the signals in the reservoir of CVRC,
(c) the signals in the reservoir of RVRC, and (d) RMSE of CVRC and RVRC in
scanning of the area (ns) (i = 10–411, j = 270) from the north slope (position
i = 10–150) passing the summit to the south slope (position i = 270–410) of
Mt. Fuji.

difficult. Though both RMSE are similar to each other in the east
slope, RVRC has a larger RMSE in the west slope than CVRC.

Around the summit of Mt. Fuji, the amplitude is small and
the phase is almost random because of the scree caused multiple
scattering. Hence, the reservoir signals of the CVRC are very
small in the amplitude and at random in the phase, and RVRC
has random reservoir signals as well.

Fig. 13 shows (a) amplitude and (b) phase of the signals
in the reservoir of CVRC, (c) the signals in the reservoir of
RVRC, and (d) RMSE of CVRC and RVRC in scanning of the
area (ns) (i = 10–411, j = 270) from the north slope (position
i = 10–150) to the south slope (position i = 270–410) of Mt.
Fuji. At around i = 210 is the summit of Mt. Fuji. The data for
north and south slopes indicate almost the same as those for
east and west slopes. Then, although CVRC classifies north and

Fig. 14. (a) Accuracy and (b) learning and classification time versus the
number of neurons in the reservoir Nres.

south slopes from phase information successfully, classification
in RVRC fails because the signals of north and south slopes have
similar values and the north slope signals fluctuate at random.

The phase of CVRC represents a feature more clearly than that
of RVRC. In Fig. 13(d), the output error of CVRC is smaller than
that of the RVRC, showing good utilization of the input signals
outside the noisy summit.

2) Performance Dependency on the Reservoir Neuron Num-
ber: We discuss the influence of the number of neurons in
the reservoir on the classification results. Fig. 14 shows (a)
accuracy for areas (i)–(iv) and for whole area, and (b) required
learning and classification time when the number of neurons
in the reservoir Nres is chosen as 1, 5, 15, 30, 40, and 50. We
find in Fig. 14(a) that the more the number of neurons is, the
higher the accuracy becomes. The accuracy is almost 100%
when Nres ≥ 30 in the flat plane. Periphery of Lake Ashi, Mt.
Ashitaka, and whole area shows the highest accuracies when
Nres is 5. That is, a higher Nres does not always results in a
high accuracy. According to Fig. 14(b), learning and classifi-
cation time increase linearly as the neuron number grows. By
considering this tradeoff, we decided Nres = 5.

3) Performance Dependency on the Frame Size: We discuss
the influence of the frame size on the classification results.
Fig. 15 shows CVRC results for the size in width direction
NW = 1, 5, or 50 and the size in traveling direction NT = 1,
5, or 50. When we compare these results with the ground truth
[Fig. 6(e)], we find the condition that NW = 5 and NT = 5
presents the best performance.

The classification result for NW = 1 and NT = 1 contains
high salt-and-pepper noise compared to the ground truth in
Fig. 6(e). We also find that the result forNW = 50 andNT = 50
shows degraded resolution and contains horizontal and vertical
artifact lines.

Next, we examine the influence of NW and NT . When NW

is large, the linear combination (averaging) of the input signals
Winut loses high frequency local information. The results for
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Fig. 15. Comparison of classification results for various frame sizes.

NW = 50 and NT = 5 shows erroneous north slope for a flat
area (white rectangle) because of the averaging effect similar to
the above one, resulting in smaller amplitude inconsistent with
typical flat area having intense scattering.

The classification result for NW = 1 and NT = 50 shows a
degraded resolution but presents a good result similar to that for
NW = 5 and NT = 5. This is because the current input signals
have the most influence and the past input signals vanish expo-
nentially by the dynamics of the reservoir and construct the out-
put appropriately after the learning. Thereby, the larger the size
of traveling direction is, the less salt-and-pepper noise becomes.

IV. EXPERIMENT ON SLOPE ANGLE ESTIMATION

The experiment of aspect classification in the previous section
is a discrete task. In this section, we conduct an experiment on
east–west slope angle estimation, which is more difficult.

A. Experimental Setup

The interferogram used here is identical with that in
Section III-A. The ground truth and the neighbor-difference
estimation are generated by the procedure explained in
Section III-C.

Fig. 16 shows the procedure of learning and estimation in the
slope angle estimation task. The input data fed to the CVRC
network is one of the east–west difference data. We train the
network by feeding input data at i = 100200, 300400, 600700
and j = 50–550with a d-pixel past teacher signals to the output.
We also estimate the network using the data used for learning at
i = 300 and j = 50–550, as well as a new data running through
the center of Mt. Ashitaka at i = 500 and j = 50–550. Table IV
lists hyperparameters in the experiment. The number of neurons
in the reservoir is larger than those in the aspect classification
because we estimate continuous values quantitatively in this
experiment.
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Fig. 16. Procedure of the experiment on slope angle estimation for learning and estimation.

TABLE IV
HYPERPARAMETERS FOR THE CVRC NETWORK IN THE EXPERIMENT

ON SLOPE ANGLE ESTIMATION

Fig. 17. (�-1) Estimation results of CVRC, neighbor difference method, and
the ground truth and (�-2) root square errors of these methods in the data (a-�)
used for learning and (b-�) unused for learning.

B. Results

Fig. 17 shows (�-1) the estimation results of CVRC, neighbor
difference method, and the ground truth and (�-2) root square
errors of these methods with (a-�) the data used for learning
(i = 300) and (b-�) the data unused for learning (i = 500). In
the area used for learning, the CVRC estimation error is about
4.8 degrees while the error in the neighbor difference result is
12.4 degrees in average. The CVRC result is robust against noise

showing a higher accuracy than the neighbor difference method
in the area unused for learning.

V. CONCLUSION

We have proposed CVRC to deal with complex-valued data of
interferogram obtained in InSAR. We fed the two-dimensional
spatial data to the CVRC to classify local land forms. As a result,
we found that CVRC achieves higher accuracy and more strength
against noise than RVRC. CVRC performs classification suc-
cessfully without resolution degradation and high computational
cost unlike CVCNN.

In addition, we presented that CVRC has a high adaptability
to process complex-amplitude data through our experiments of
the aspect classification and the slope angle estimation. In the
near future, CVRC will play an important role to deal with large
amount of InSAR data by utilizing its high speed processing and
generalization ability.
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