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Abstract—The recognition and mapping of landslide (RML) is
an important task in hazard and risk research and can provide a
scientific basis for the prevention and control of landslide disasters.
However, traditional RML methods are inefficient, costly, and not
intuitive. With the rapid development of computer vision, methods
based on convolutional neural networks have attracted great atten-
tion due to their numerous advantages. However, problems such
as insufficient feature extraction, excessive parameters, and slow
model testing have restricted the development of this technology.
This research proposes a new RML framework based on a new
semantic segmentation network termed the fully convolutional
DenseNet (FC-DenseNet). In this network, the features extracted
from each layer are repeatedly used in a dense connection, and the
parameters are controlled by a bottle-neck structure. Meanwhile,
the structure of the encoder-decoder solves the problem of the slow-
ness of model testing. Finally, the landslide influencing factors are
added, which enriches the training data. To verify the effectiveness
of the proposed method, we focused on several deep networks for
comparison and analysis. The results show that FC-DenseNet can
better recognize the boundary and interior of landslides, and there
are fewer missing and excessive recognition results. The kappa
value of the new method is 94.72% in Site 1, which is 6% and
4% higher than that of U-Net and ResU-Net, respectively, and
94.56% in Site 2, which is 6% and 3% higher than that of U-Net
and ResU-Net, respectively, indicating that FC-DenseNet has great
potential in RML applications.

Index Terms—Fully convolutional DenseNet (FC-DenseNet),
influencing factors, landslide recognition and mapping, remote
sensing.

I. INTRODUCTION

LANDSLIDE inventory maps are designed to record the
location, distribution, and number and extent of landslides
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occurring in a given area [1], [2]. The recognition and mapping
of landslide (RML) is an important task in hazard and risk studies
and has attracted much attention from researchers in related
fields in recent years. Landslide census information needs to be
updated following large rainfall and seismic events. Information
on past landslides is important for understanding the associated
cause-effect relationships and predicting future hazards [3],
[4]. The traditional RML method is mainly implemented by
professionals in the field for detailed investigation and mapping,
which makes it difficult to identify old landslides. Furthermore,
field surveys are limited in their ability to accurately capture
the extent of landslide boundaries due to sight lines being
limited by slope, making them difficult and inefficient to im-
plement on many mountain landslides. With the rapid devel-
opment of remote sensing technology, it has been widely used
for landslide recognition, mapping and susceptibility analysis
due to its rapid, wide-coverage and all-weather data collection
characteristics [5].

RML based on remote sensing is divided into three stages.
Visual interpretation is the first step in extracting landslide in-
formation using remote sensing. Landslide recognition is based
on features such as hue, texture, shape, location, and interrela-
tionship of the image and relies on the experience and knowledge
of the interpreter, with a large workload and long work cycles,
making it difficult to meet emergency needs, and the results
are sometimes unreliable [6], [7]. To improve efficiency and
accuracy, many machine learning-based computer interpretation
methods have been proposed for remote sensing image clas-
sification tasks, such as support vector machines (SVMs) [8],
random forests (RFs) [9], and artificial neural networks (ANNs)
[10]. These methods also make the landslide research further
developed [11], [12]. The two main computer interpretation
methods are pixel-based methods and object-oriented methods.
The pixel-based method determines whether a landslide is a
landslide according to the characteristics of the pixel value of
a remote sensing image, which considers only the characteris-
tics of a single pixel and does not consider the other attribute
features of the landslide (shape, texture, spatial structure, in-
terrelation, etc.) [13], [14]. However, the object-oriented recog-
nition method is based on image segmentation, and the result
depends on the selection of the segmentation scale, which is
often determined by the texture characteristics of the image [15].
Some existing image segmentation algorithms cannot process
complicated, large-scale remote sensing data, resulting in a
low RML efficiency and a poor RML performance [16]. In
recent years, deep learning has developed rapidly, and many
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deep learning methods based on pixels and objects are used for
RML development [17]–[20]. In contrast to traditional methods,
the multilayer feedforward perceptron of convolutional neural
networks (CNN) can automatically acquire effective feature rep-
resentations of images, which allows these networks to identify
the semantic features of landslide without having to manually
compute complex landslide features [21].

In 1989, LeCun first trained a CNN model to classify hand-
written digital images using a backpropagation approach [22],
[23]. Subsequently, many scholars have successfully developed
different CNN models, such as LeNet [24], AlexNet [25],
GoogleNet [26], VGGNet [27], ResNet [28], and DenseNet
[29], and all these traditional CNN models have achieved great
success in image classification tasks. Since the first application
of a CNN to landslide susceptibility analysis by Wang et al., a
wide variety of CNNs have been used for landslide recognition,
mapping, and susceptibility analysis [30]–[34]. However, in
these classification models, to classify a pixel, a block of images
around a pixel is used as input into the CNN for training and
prediction. This approach has several disadvantages. One is the
great storage cost associated with this use. For example, the
size of the image block used for each pixel is 15 × 15, and
the window slides continuously. The window sliding pixel by
pixel is sent to the network for classification, so the required
storage space increases sharply according to the number and
size of sliding windows. Second, the computational efficiency
is low. The adjacent pixel blocks are basically repeated, and
convolution is iteratively calculated for each pixel block, which
is also repeated to a great extent. Third, the size of the pixel
block limits the size of the sensing area. Generally, the selected
pixel block is much smaller than the whole image and can only
be used to extract some local features, which limits the classifi-
cation performance. The application of semantic segmentation
underwent a major breakthrough in 2014, when Long et al. at
UC Berkeley proposed fully convolutional networks (FCNs)
[35], which replaced the fully connected layer at the tail of
traditional CNNs with a convolutional operation that traverses
the entire network, and can be considered the beginning of
the application of CNNs in the semantic segmentation field,
enabling end-to-end, pixel-level classification of images. Since
then, there have been numerous improvements to FCN storage
to meet the needs of accuracy and efficiency, each with its own
characteristics. Among them, more classical and outstanding
performance are U-Net [36] and ResU-Net [37]. However, in
general, most semantic segmentation models are still used with
good results in tasks such as medical image segmentation and
autonomous driving, and only a few models are used in landslide
hazard research in last two years [38]–[40]. However, due to the
limitations of the network structure, problems such as insuffi-
cient feature extraction capability, too many network parameters
and easy overfitting of the model still exist, and the accuracy of
semantic segmentation networks in RML applications needs to
be further improved.

To address the above issues, this article proposes a new
RML framework based on fully convolutional DenseNet (FC-
DenseNet) that can accurately and reliably recognize and map
landslides caused by heavy rainfall and earthquakes from

TABLE I
OVERVIEW OF STUDY AREA, DISASTER EVENTS, AND LANDSAT-8 OLI IMAGES

monotemporal Landsat-8 OLI images. The FC-DenseNet sup-
ports feature reuse, enhanced feature transfer and reduced net-
work parameters. In RML, the deeper FC-DenseNet not only
exploits the potential of CNN, but also reduces computational
cost due to its unique structure. In addition, FC-DenseNet is
less prone to overfitting and is suitable for RML with unbal-
anced samples. The two main contributions of this article are
as follows: 1) exploring the performance of FC-DenseNet in
RML; and 2) adding landslide influencing factors to improve
the performance of FC-DenseNet in RML.

The rest of this article is organized as follows. Section II
provides a basic overview of the study area and the dataset used
in the experiments. Section III presents the experimental steps of
the new framework. Section IV analyses the experimental results
in both qualitative and quantitative terms. Section V discusses
the complexity of the model, the importance of the influencing
factors and the limitations of this article, as well as future work.
Section VI concludes the article.

II. STUDY SITES AND DATA

To verify the performance of the proposed method, two typ-
ical areas with severe landslide hazards, i.e., Zigui County in
Hubei Province and Jiuzhaigou County in Sichuan Province,
China, were selected for the experiments (see Table I). The
environmental background of these two regions is diverse, and
their geological structure is complex and active. The causes and
development mechanisms of landslide also differ and are typical,
representative, and sufficient to demonstrate the generalization
capacity of the proposed method.

A. Study Area

Site 1: Zigui—Heavy rainfall from May to September
Site 1 is located in Zigui County of the Three Gorges Reservoir

Area in the middle and lower reaches of the Yangtze River in
southwestern Hubei Province, China, and belongs to the subtrop-
ical monsoon climate zone. Due to the influence of the monsoon,
the rainy season in Site 1 lasts from May to September each
year, and most of the yearly rainfall in the area is concentrated
in these five months, exceeding 70% of the total annual rainfall.
Site 1 is susceptible to land-sliding due to its hot and humid
climate and frequent rainfall [38]. In addition, the topographic
and geomorphological structure of Site 1 is complex, and all the
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Fig. 1. Geo-location and topography of Site1.

study areas basically belong to mountainous areas. There are
many kinds of stratum lithologies, and the geological structure
is extremely unstable. These unstable geological structures often
more easily breed many types of geological disasters, especially
landslide disasters [41], [42]. In addition, the economic devel-
opment of Site 1 has been relatively rapid in recent years, which
has been followed by an enhancement in the scale and intensity
of major human engineering activities. The action of human
engineering activities, such as immigration and relocation, Three
Gorges Reservoir construction, deforestation and mining, very
readily induces slope instability and triggers landslide disasters
[43], [44]. In short, due to its unique geographical environment,
the study area is threatened by various inevitable geological
disasters (especially landslide disasters). The size of Site 1 in
this experiment is 616 × 976 pixels, the spatial resolution is
15 m, and the total area is about 135 km2. It contains a total
of 74 landslide points, with a landslide area of 6.82 km2. The
geo-location and topography of Site 1 are shown in Fig. 1.

Site 2: Jiuzhaigou—Ms 7.0 Earthquake on August 8, 2017
A magnitude 7.0 earthquake struck Jiuzhaigou County,

Sichuan Province, on August 8, 2017. Jiuzhaigou is located
in Jiuzhaigou County, Aba Tibetan and Qiang Autonomous
Prefecture, Sichuan Province, in the transition zone between
the eastern edge of the Qinghai-Tibet Plateau and the Sichuan
Basin. It is a valley with a depth of more than 50 km. In this
area, the terrain is high in the south and low in the north, with
deep valleys and large differences in elevation. The northern
edge of the region is only 2000 m above sea level in Jiuzhaigou,
while the central peaks are above 4000 m and the southern edge
is above 4500 m. The geological background of Jiuzhaigou
is complex, with an extensive distribution of carbonate rocks,
well-developed folds and faults, strong neotectonic movement
and large crustal uplift, resulting in a variety of landforms [45],
[46]. The epicenter of this earthquake is located in the town of
Zhangzha in Jiuzhaigou County at 33.20°N, 103.82°E, with a
depth of 20 km. The earthquake caused 25 deaths, 525 injuries,
and six lost contacts; 176 492 people (including tourists) were
affected, and 73 671 houses were damaged. The earthquake

Fig. 2. Geo-location and topography of Site2.

triggered more than 4800 landslides, causing substantial damage
to scenic spots, roads and other facilities in Jiuzhaigou [47]–[49].
The Site 2’s size is 733 × 585 pixels with the same spatial
resolution with Site 1, and the area of Site 2 is about 96 km2,
which contains a total of 124 landslides and its area is 6.08 km2.
The geo-location and topography of Site 2 are shown in Fig. 2.

B. Optical Images and Landslide Influencing Factors

The optical remote sensing data used in this study mainly
include Landsat-8 OLI images (2013/09/15, 2018/04/09) and
the Global Digital Elevation Model.1 A series of preprocessing
steps (such as correction, fusion, etc.) should be performed on
the multispectral remote sensing images to better interpret it.
To obtain more detailed information on the surface vegetation
and water body coverage in the study area, bands 4 and 5 of
the Landsat-8 OLI image were used to calculate the normalized
difference vegetation index (NDVI), and bands 3 and 6 were
used to calculate the modified normalized difference water index
(MNDWI) [50].

There is a close relationship between the occurrence of a
landslide event and its influencing factors [51], [52]. In this study,
taking into account the causes and distributions of landslide
hazards across different study areas and their local topograph-
ical features, different landslide impact factors are selected for
addition to the deep learning network as input data to improve
the learning of landslide features and RML. According to pre-
vious research experience [53], the landslide influencing factors
selected in this article are the elevation, aspect, slope, curvature,
NDVI, MNDWI, distance to river, distance to fault, and lithology
of the areas. Landslide influencing factors were extracted from
geological maps, topographic maps, and multisource remote
sensing images of the study area, while the landslide samples
were annotated from remote sensing images combined with field
surveys, which can be used as actual labels for later verification

1[Online]. Available: http://www.gscloud.cn/

http://www.gscloud.cn/
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Fig. 3. Framework of landslide recognition and mapping method based on FC-DenseNet.

TABLE II
OVERVIEW OF LANDSLIDE INFLUENCE FACTORS IN THE TWO STUDY AREAS

of landslide recognition results. Table II shows detailed informa-
tion on the landslide influencing factors of the two study areas
and all landslide influencing factor maps were prepared using
ArcGIS 10.3.

III. METHODOLOGY

As shown in Fig. 3, the whole experimental process consists
of three parts. First, a data preprocessing workflow for image
processing and landslide training dataset preparation is designed
to generate training sample blocks. Data preprocessing mainly
includes optical image processing, sample annotation and land-
slide influencing factors extraction. Training samples are gen-
erated through resampling, standardization, layer overlay, and
cutting operations in this stage. The semantic segmentation
network selected in this article is FC-DenseNet, which is applied
to RML for the first time by adjusting the number of layers

in DenseLayer. The number of DenseBlocks and the size of
growth rate can make the network performance reach the optimal
to the landslide characteristics better. The main points of this
network are as follows: first, each layer of the network is directly
connected with its all-front layer to improve the utilization of
features; second, each layer in the network is designed to be
very narrow, i.e., the number of convolution output channels is
usually very small, which maximizes the utilization of resources
and reduces the amount of computation needed without reducing
the accuracy. Finally, in the inference process, the trained model
is used to test the entire study area, and the landslide distribution
map is drawn. In addition, to assess the performance of the
method, we used six evaluation indicators for comparison with
the remaining four common semantic segmentation networks:
FCN-8s [35], SegNet [54], U-Net [36], and ResU-Net [37].

A. Data Preprocessing

The data preprocessing in this study mainly includes resam-
pling, image standardization, pixel patch generation, and data
augment (part i in Fig. 3). First, the optical remote sensing
image data and factors data of the study area are cropped
according to the selected vector range. As the resolution of
the various types of geographical data varies, the input data
need to be resampled to make the number of rows and columns
consistent. The resampling method chosen in this article is
a bilinear interpolation method that uses the image element
values of four nearby points, which are given different weights
according to their distance from the interpolation point, for linear
interpolation [55]. Second, to facilitate the training of the deep
learning network, the input data should be normalized. In this
study, to make the input data of different dimensions have the
same data distribution and further accelerate the convergence
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Fig. 4. Architecture of FC-DenseNet.

speed of the model, the Z-score method is used to normalize
each channel of the input data and unify the data distribution so
that the mean is 0 and the variance is 1 [56]. Finally, the layers are
stacked as blocks of m × n × c and fed into the deep learning
network for training, where m and n represent the number of
rows and columns, and c represents the number of channels.

Although deep learning has great advantages in landslide
research [57], [58], it usually requires a large number of train-
ing samples. However, the representative high-quality training
samples still have defects, and in the natural state, the ratio
of landslide and nonlandslide is seriously unbalanced, so this
problem is especially serious in remote sensing image landslide
detection applications [59], [60]. Inspired by pioneering research
in the field, this article employs a data augmentation strategy
to generate more training samples [61], [62]. To boost the
proportion of positive samples (e.g., landslide), this experiment
randomly selected landslide points as seed pixels in the training
area and scanned blocks of m × n × c using a sliding window
size of 64 × 64 and a step size of 32 to generate a sufficient
number of sample blocks. These sample blocks were divided
into training and validation data sets with a 3:7 ratio; 30% were
used to train the deep learning model by learning the landslide
features and 70% were used to validate the performance of the
model.

B. Fully Convolutional DenseNet Architecture

FC-DenseNet uses DenseNet for semantic segmentation ac-
cording to the FCN framework (part ii in Fig. 3). DenseNet
breaks away from the stereotyped thinking of deepening the
network layer (ResNet) and widening the network structure
(inception) to improve the network’s performance [28], [63].
From the point of view of features, through feature reuse and
bypass setting, the number of network parameters is greatly
reduced, and the vanishing gradient problem is alleviated to a
certain extent. In deep learning networks, as the depth of the
network deepens, the gradient disappearance problem becomes
increasingly obvious, and many papers have proposed solutions

to this problem, such as ResNet [28], highway networking
[64], stochastic depth [65], and FractalNets [66]. Although the
network structures of these algorithms are different, the core lies
in the creation of short paths from early layers to later layers.

As shown in Fig. 4, the semantic segmentation network FC-
DenseNet is used for the first time in this article to recognize
landslide from postdisaster monotemporal Landsat-8 OLI im-
agery and landslide influencing factors. The network consists of
three building blocks: dense block (DB), transition down (TD),
and transition up (TU).

DB is the main component module of DenseNet and connects
all layers directly while ensuring maximum information transfer
between layers in the network. In traditional CNNs, if you have
L layers, there will be L connections, but in DB, there will be L
(L + 1)/2 connections (as shown in Fig. 5). In short, the input
of each layer comes from the output of all previous layers. The
formula is as follows:

xl = Fl ([x0, x1, . . . , xl − 1]) (1)

where [x0, x1…, xl − 1] refers to the dense connectivity of the
feature maps in layers 0 to l − 1. Fl (·) denotes a nonlinear
transformation function consisting of a combination of three
operations, namely, batch normalization, rectified linear unit
(ReLU) classification and 3 × 3 Convolution (Conv) [67], [68].

Each layer in the DB outputs k feature mappings after Fl
(·), where k refers to the growth-rate in DenseNet and is a
hyperparameter. Generally, a better performance can be obtained
by using a smaller k. Assuming that the number of channels in
the input layer feature map is k0, the number of channels in
layer l is k0 + k(l − 1). As the number of layers increases,
although k is set to be very small, the output of DB will be very
large, which results from feature reuse. To solve the problem
of excessive input in the deep layer, the bottleneck layer can be
used inside DB to reduce the amount of calculation, and that is
1 × 1 Conv is added to the original structure, which is called
DenseNet-B (as shown in Fig. 6). A 1× 1 Conv gets 4 ∗ k feature
maps. Its function is to compress the feature layers to improve
the computational efficiency.
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Fig. 5. Architecture of Dense block.

Fig. 6. Architecture of DenseNet-B.

TABLE III
THREE BUILDING BLOCKS OF FC-DENSENET

TD consists of a convolution layer with a core size of
1 × 1 and a maximum pool layer with a stride of 2, which can
be used as a compression model. If the output feature layer of
DB is m, the transition layer can be compressed by compression
parameter θ. Usually, the value of θ is less than 1, which can
compress the channel number of the feature map and reduce the
network parameter. Here, another 1∗1 convolution operation and
a compression parameter θ are added between each two DBs,
which is called DenseNet-C. The network containing both bot-
tleneck layers and compression layers is called DenseNet-BC,
which not only has fewer parameters but also saves memory and
avoids overfitting compared to a DenseNet of the same depth.

TU consists of a convolution layer with a core size of 3× 3 and
an up-sampling layer with a stride of 2. In Table III, we define
the architecture details of DenseLayer, TD, and TU. In this table,
dropout refers to randomly hiding part of the units with a certain
probability (e.g., 0.2) each time during the training process, i.e.,

TABLE IV
ARCHITECTURE DETAILS OF FC-DENSENET MODEL

setting the activation function of that part of the neuron to 0, so
as to avoid overfitting the model. In Table IV , we define the
architecture and parameters of the FC-DenseNet network used
in this study. The last layer is the convolution layer with a kernel
size of 1× 1, followed by sigmoid nonlinear mapping to provide
each class distribution of each pixel.

C. Inference

In the inference stage (Part III in Fig. 3), the image is first cut
into a series of overlapping patches, and then the class of each
patch is predicted independently. Theoretically, this inference
is not limited by the size of the area. Specifically, we use the
sliding window algorithm to cut the test image into a series of
64 × 64 patches. It is worth noting that the sliding window al-
gorithm here is different from the process of generating training
samples. Here, the sliding window slides from the top left to the
bottom right of the whole study area until it spreads throughout
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TABLE V
WORKSTATION CONFIGURATION

the whole study area. Then, the patches are classified into binary
labels (1 for landslide and 0 for nonlandslide) using the trained
model. Finally, an image mosaic is carried out to completely
cover the study area and obtain the landslide distribution map.
In addition, to better compare the performance of different mod-
els, six different evaluation indexes are selected to quantitatively
evaluate the results.

IV. RESULTS AND ACCURACY ASSESSMENT

A. Experiment Setting

The experiment environment for this manuscript is as shown
in Table V. All the experimental codes are written in Python
language under the framework of TensorFlow deep learning.

First, as landslide recognition is a binary classification prob-
lem, the binary cross-entropy loss function is chosen as the
learning object during the training process. Second, the model
uses the positive unit ball initialization method to initialize the
weights of the network such that the sum of the weights of
the inputs of each neuron is 1. In this way, it can effectively
prevent the initialization of the weights from being too large to
prevent the sigmoid activation function of the output layer from
saturating too fast and the gradient from disappearing. Finally,
the model uses the Adam optimizer to optimize the weights
of the network to speed up the convergence of the model, and
the initial learning rate is set to 0.0001. In addition, to prevent
overfitting, the model adds a dropout layer to DB, with drop_rate
set to 0.2. Due to computational limitations, the batch size is set
to 2 after considering the tradeoff between time cost and model
accuracy. After 100 iterations, the model was roughly stable. In
all our experiments, we trained the network from scratch without
involving any pretrained models.

B. Evaluation Metrics and Comparison Models

To quantitatively evaluate the performance of FC-DenseNet,
this article selects six commonly used evaluation metrics based
on the binary confusion matrix, namely, overall accuracy, preci-
sion, recall, F1-score, Kappa coefficient, and mean intersection
over union (MIoU) index [69], [70]. Overall accuracy is com-
monly used evaluation index and is generally defined as the
proportion of the number of samples with correct classification
to the total number of samples. However, the index is not
applicable in the dataset with unbalanced samples. In binary
classification problems such as landslide recognition, precision,
and recall are usually the most commonly used performance
evaluation indicators. Precision refers to the proportion of pos-
itive samples correctly predicted to the total number of positive
samples predicted. Recall refers to the proportion of positive

TABLE VI
LANDSLIDE RECOGNITION CONFUSION MATRIX

samples correctly predicted to all positive samples. The formulas
are as follows:

Overall accuracy =
TP + TN

TP + FP + FN+ TN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

where TP, FP, FN, and TN come from the confusion matrix (Ta-
ble VI). TP is the number of correctly predicted positive samples,
TN is the number of correctly predicted negative samples, FN
is the number of positive samples predicted to be negative, and
FP is the number of negative samples predicted to be positive.

Since precision and recall are a pair of contradictory quan-
tities, to better evaluate the performance of the classifier,
the F1-score is generally used as the evaluation standard to
measure the comprehensive performance of the classifier. The
F1-score is the harmonic average of precision and recall. The
higher the F1-score is, the better the performance of the classifier.
The formula is as follows:

F1− Score = 2× Precision× Recall

Precision + Recall
. (5)

The Kappa coefficient is an index used to measure classifica-
tion accuracy, which can quantitatively evaluate the consistency
between classification results and real labels. Its value usually
falls between 0 and 1, and can be divided into 5 groups to indicate
different levels of consistency (0.0–0.2: slight, 0.2–0.4: fair,
0.4–0.6: moderate, 0.6–0.8: substantial, 0.8–1.0: almost per-
fect). Therefore, when its value is greater than 0.8, the con-
sistency can be considered to be good [71], [72]. The formula is
as follows:

Kappa =
p0 − pe
1− pe

(6)

pe =
(TP + FN) (TP + FP) + (FP + TN) (FN + TN)

n2

(7)
where p0 refers to the overall accuracy and n represents the total
number of samples.

MIoU is the standard measure of semantic segmentation. It
starts by finding the intersection ratio of each category on the two
sets and then averaging the sets. In semantic segmentation, these
two sets are the ground truth data and the predicted segmentation
data. Ideally, the true value and the predicted value are exactly
the same, i.e., the MIoU value is 1. In this study, the formula is
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as follows:

MIoU =
1

2

(
TP

TP + FN+ FP
+

TN

TN+ FN+ FP

)
. (8)

To verify the effectiveness of FC-DenseNet, the two selected
datasets are trained on five semantic segmentation networks, and
the results are compared and analyzed. Among them, FCN is
the pioneer of semantic segmentation, mainly for natural image
semantic segmentation, multimodal medical image analysis, and
multispectral satellite image segmentation. The encoder part of
FCN is based on the AlexNet model. It transforms the fully
connected layers in a traditional CNN into convolutional layers
and upsamples the feature map of the last convolutional layer
so that it recovers to the same size as the input image, thus
producing a prediction for each pixel. The spatial information
in the original input image is retained while the final pixel-by-
pixel classification is performed on the upsampled feature map.
However, the results obtained in this way are not sufficiently
precise, and some details cannot be recovered. SegNet is a
deep network for semantic segmentation of images proposed
by researchers at Cambridge to address autonomous driving or
intelligent robotics [54]. SegNet and FCN have similar ideas,
but the technologies used by the encoder and decoder are dif-
ferent. Their encoder parts use the first 13 layers of the VGG16
convolutional network, with each encoder layer corresponding
to a decoder layer that performs nonlinear upsampling using
the pooling index calculated in the maximum pooling step of
the corresponding encoder. The U-Net model was proposed in
2015 and originally used for medical image segmentation [36].
It is a symmetrical U-shaped structure, which is innovative in
that there is usually a shortcut connection between the encoder
and the decoder, fusing features at the same scale and therefore
helping the decoder to better repair the details of the target.
ResU-Net is based on an improvement of U-Net, which adds
residual units to the upsampling and downsampling process,
solving the problem that traditional U-Net cannot adequately
extract shallow structural features [38]. U-Net and ResU-Net
have achieved good results in remote sensing-related tasks of
landslide disasters. Note that all of the above networks are
trained from scratch using the same training dataset.

C. Accuracy Assessment and Comparison

To demonstrate the performance of FC-DenseNet in regional
RML, we compared five semantic segmentation models in two
separate study areas. Among them, FCN-8s is the simplest
semantic segmentation model, which can simply extract the
shallow semantic features of landslide for RML, but the de-
coding process will lose a large number of features, making
the segmentation results not fine enough. SegNet deepens the
network to extract deeper landslide features and the decoding
part by adding pooling indexes to reduce the loss of features,
but there seems to be no notable improvement in the results.
The depth of the U-Net network is further deepened, and feature
fusion is added to the encoder and decoder sections through
a fully symmetrical structure, which allows the same scale of

spatial features extracted by the encoder to be fused in the de-
coder section. ResU-Net takes into account the model overfitting
problem caused by the deepening of the U-Net encoder part of
the network, thus adding a kip connection that allows the fusion
of shallow features while the network deepens further to extract
deeper features. However, FC-DenseNet extracts features at each
layer while fusing them with features extracted from all previous
layers, compressing the parameters and reducing the compu-
tation through the bottleneck and TD settings while ensuring
maximum information transfer between layers. Note that all the
training data of the five models, as well as the super-parameters
and variable settings of the network, are consistent.

Site 1: Zigui—Heavy rainfall from May to September
Fig. 7(a) and (b) shows the results for the FCN-8s and Seg-

Net models, respectively. From these two figures, we can see
that many small and medium landslides are not identified, and
the identified landslide boundaries is not consistent with the
actual range of landslides. From the recognition of the landslide
boundary, the boundary of FCN-8s is too regular, showing a
grid shape. This is due to the simple structure of the FCN-8s
network and its incomplete landslide feature extraction. At the
same time, this also highlights the shortcomings of pixel-based
semantic segmentation methods of poor boundary segmentation
and serious salt and pepper noise. In contrast, the boundary
of SegNet is too smooth, which may be due to the function
of adding a pool index to SegNet, but there are too many
unrecognized landslides. In addition, both models have fewer
overecognized landslides, but this is not a desired result in the
practical application of landslide hazard recognition. Fig. 7(c)
and (d) shows the results for the U-Net and ResU-Net models.
It is clear from the plots that the recognition results of these
two models are considerably better than those of Fig. 7(a) and
(b). Overall, almost all of the large and medium-sized landslides
are well identified, with only a few small landslides not being
fully identified. In terms of boundaries, the boundaries of most
landslides are identified, although they do not fit perfectly with
the real landslide boundaries. Comparing the recognition results
of several large landslides, it can be seen that ResU-Net produces
better results for the interior of the landslide. However, both
models still have some pretzel noise present.

Fig. 7(e) shows a plot of the results for the FC-DenseNet
model. The FC-DenseNet recognition results give a closer com-
parison of small and medium-sized landslides, which shows that
many small landslides that are not recognized by the ResU-Net
model are recognized, and the FC-DenseNet model also outper-
forms ResU-Net in the recognition results within many small-
to medium-sized landslides, which is a major indication of the
improved accuracy of the model. In addition, it is evident that
the FC-DenseNet model exhibits some over-recognition errors,
which may be a result of misrecognition features such as bare
rock and bare soil, which are similar to the shallow features of
landslide in the form of landslide.

It is worth noting that the RML work described above was
based on seven multispectral bands of postdisaster monotempo-
ral Landsat-8 OLI imagery. To a large extent, RML was carried
out by the spectral features of landslide as well as by their spatial
features. However, landslide are gravity features on slopes, the
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Fig. 7. RML results by using different methods in Site 1. (a) FCN. (b) SegNet. (c) U-Net. (d) ResU-Net. (e) FC-DenseNet. (f) FC-DenseNet + Influencing
factors.

TABLE VII
SITE 1: QUALITATIVE EVALUATION OF SEGMENTATION RESULTS BY DIFFERENT METHODS

Note: Bold and underlined values mean the highest number of the corresponding indicator.

formation of which is closely related to topography, with certain
slope and lithological conditions required [51]–[53]. Therefore,
the inclusion of landslide influencing factors in the construction
of landslide samples can not only distinguish between bare rock
areas, roads, houses, and other features, thus improving the accu-
racy of RML, but it also be used to identify potential landslides.
Fig. 7(e) and (f) both show the results of FC-DenseNet using dif-
ferent training samples. Fig. 7(e) shows the results of landslide
recognition using remote sensing imagery alone, while Fig. 7(f)
shows the results of landslide recognition using a combination of
remote sensing imagery and landslide influencing factors. Over-
all, both of them have better identification results, but in terms
of the more difficult identification of small- to medium-sized
landslides, Fig. 7(f) has considerably few missed recognition
and over-recognition instances than Fig. 7(e), resulting in better
recognition results.

To quantitatively analyze the performance of the models, we
calculated six evaluation factors based on the confusion matrix.
As seen in Table VII, the kappa coefficients of both FCN-8s and
SegNet are below 0.8, which means they do not meet the con-
sistency requirement [71]. In practical applications, they can be

used at most for landslide location but not for landslide boundary
outlining [72]. In contrast, U-Net, ResU-Net and FC-DenseNet
all obtained a better recognition accuracy. The overall accuracy
of FC-DenseNet is 0.9908, the precision is 0.9272, the recall
is 0.9182, the F1-score is 0.9227, the Kappa value is 0.9178,
and the MIoU is 0.9234. The remaining evaluation metrics of
FC-DenseNet are highest, excluding its precision. Compared to
U-Net, F1-score, Kappa, and MIoU showed improvements of
2.97%, 2.91%, and 2.47%, respectively.

In addition, we can see that the inclusion of the landslide in-
fluencing factors in FC-DenseNet model-based landslide recog-
nition led to an improvement in all six of these indicators, with
an overall accuracy increase of 0.034%, a precision increase of
3.62%, a recall increase of 1.95%, a F1-score increase of 2.77%,
a Kappa value increase of 2.94%, and a MIoU increase of 2.62%.
Of these, precision improved the most due to the inclusion
of the landslide influencing factors, which better differentiates
landslide from bare rock, roads, houses, and other features.

Site 2: Jiuzhaigou—Ms 7.0 Earthquake on August 8, 2017
Although the landslide features in the Jiuzhaigou area

are different from those in Zigui, most of the landslides
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Fig .8. RML results by using different methods in Site 2. (a) FCN. (b) SegNet. (c) U-Net. (d) ResU-Net. (e) FC-DenseNet. (f) FC-DenseNet + Influencing
factors.

TABLE VIII
SITE 2: QUALITATIVE EVALUATION OF SEGMENTATION RESULTS BY DIFFERENT METHODS

Note: Bold and underlined values mean the highest number of the corresponding indicator.

in Jiuzhaigou are large seismic landslides. However, Fig. 8
shows that the RML results of the five models are similar
to those of Fig. 7. Although the overall characteristics of Fig. 8(a)
and (b) are similar to those of Fig. 7(a) and (b), the overall identi-
fication is better than that of the Zigui area. Most of the landslides
are irregular, and the boundaries of the identification results are
intricate, which is particularly the case in Fig. 8(b). As seen
in Fig. 8(c), (d), and (e), the landslide boundaries are roughly
outlined, but the recognition of small landslides in Fig. 8(c) is
still low, while the over-recognition in Fig. 8(d) is severe and is
still weaker than FC-DenseNet for small landslides. As shown
in Fig. 8(e), FC-DenseNet is better for all landslide models. As
shown in Fig. 8(e), FC-DenseNet is better at recognizing all
types of landslides. However, there are more over-recognition
errors.

To further improve the RML results of FC-DenseNet, we
added landslide influencing factors to the training samples.
Fig. 8(e) shows the landslide recognition results using remote
sensing imagery only, while Fig. 8(f) shows the results of
landslide recognition using a combination of remote sensing
imagery and landslide influencing factors. Overall, both have
better recognition results, but in terms of the more difficult
recognition of small- to medium-sized landslides, Fig. 8(f) has
notably misrecognized and over-recognized more events than
Fig. 8(e), resulting in better recognition results.

From Table VIII, it can be seen that the kappa coefficients of
FCN-8s and SegNet in the Jiuzhaigou area were both below 0.8,
e.g., they did not meet the consistency requirement [71]. In con-
trast, U-Net, ResU-Net, and FC-DenseNet all obtained a better
recognition accuracy. The overall accuracy of FC-DenseNet is
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TABLE IX
COMPARISONS OF MODEL COMPLEXITY

0.9811, the precision is 0.9369, the recall is 0.9251, the F1-score
is 0.9309, the Kappa is 0.9200, and the MIoU is 0.9246. With the
exception of precision, the rest of the metrics for FC-DenseNet
are highest. Compared to U-Net, F1-score, Kappa and MIoU
have improvements of 3.02%, 3.38%, and 2.93%.

In addition, we can see that the inclusion of the landslide
influencing factors in the FC-DenseNet model-based RML led
to an improvement in all six of these indicators, with the over-
all accuracy improving by 0.06%, the precision improving by
1.22%, the recall improving by 3.21%, the F1-score improving
by 2.22%, the Kappa value improving by 2.56% and the MIoU
score improving by 2.32%. This is also due to the inclusion
of the landslide influencing factors, which better differentiates
landslide from bare rock areas, roads, houses, and other similar
features.

V. DISCUSSION

Using optical remote sensing images for RML is an important
but arduous and challenging task. In this study, a new deep learn-
ing framework is used to recognize and map landslide caused by
earthquakes or precipitation from optical remote sensing images.
Experiments are carried out in two landslide disaster areas, and
the results show that the method has a good performance in
practical applications. However, some key issues still should be
discussed.

A. Comparisons of Model Complexity

Accurate and rapid RML is key to disaster monitoring and
emergency response. For deep learning models, the complex-
ity of their networks has a considerable impact on the time
taken for RML. Here, we briefly compare the complexity of
five deep models, i.e., FCN-8s, SegNet, U-Net, ResU-Net, and
FC-DenseNet, using three metrics: the number of parameters,
the RAM usage of the model and the full-area test time (take
Site 1 as an example).

As shown in Table IX, SegNet has the largest number of
parameters and greatest RAM usage, far exceeding that of
the remaining four models, which means that SegNet requires
more computational resources. FCN-8s has the shortest full-area
test time and a relatively smaller number of parameters and
a lesser RAM usage, but this is in exchange for sacrificing
most of the image feature information, so it will also produce
the worst recognition results. The number of parameters and
RAM usage of U-Net is slightly smaller than that of ResU-Net
because ResU-Net adds skip connections to the U-Net structure,
increasing the number of parameters and reducing the loss of
features. In addition, the test times of the two models are similar.

Fig. 9. IGR of the landslide influencing factors.

However, the FC-DenseNet model has a much smaller number
of parameters and RAM usage than the other four models due
to its unique network connectivity, and although the testing time
for this model is slightly higher than that of the other models,
this short time cost is acceptable from a practical application
perspective.

In summary, U-Net, ResU-Net, and FC-DenseNet all meet the
minimum accuracy requirements for RML (Kappa coefficients
greater than 0.8), on the basis of which lightweight deep neural
network models such as FC-DenseNet may be more popular.

B. Importance of Landslide Influencing Factors

To verify the effects of various factors on the performance of
the model, we analyzed the importance of 9 landslide influencing
factors in the study area for RML before modeling. In this
study, landslide influencing factors was ranked in importance
by calculating the Gini index [73]. An array of size 9 was
eventually generated, with each element having a positive value
and summing to 1. The higher the value of an element, the greater
the contribution of the corresponding feature to the model.

The distribution of the ranked importance of each factor in the
two study areas is shown in Fig. 9. First, the importance of the
distance to fault factor is high in both sites because distance to
fault is a causal factor, while the lithology and curvature factors
are both ranked low in importance, probably because the sites
selected for this experiment are relatively small and therefore the
variation in lithology type and curvature within the study area is
not significant. Second, for Site 1, which is reservoir landslide,
hydrological categories such as distance to river and MNDWI
are important, whereas in contrast, this category is less important
in Site 2, which is mostly seismic landslide. Furthermore, the
NDVI factor does not play a very important role in modelling
as the landslides in Site 1 are mostly historical and the landslide
restoration has been completed, whereas the landslides in Site 2
are mostly new and the destruction of vegetation is easily visible
in the images, making the NDVI factor particularly important in
the modelling. Finally, the occurrence of all landslides causes
deformation of the ground surface and therefore topographic
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Fig. 10. Landslide frequency in factors intervals.

factors such as elevation, slope and slope direction all play a
very important role in RML modelling as well.

C. Limitations and Future Work

First, a good deep learning model requires a large amount
of real data for training, so the labeling of samples becomes the
biggest problem. In this article, the experimental results qualita-
tively and quantitatively demonstrate the excellent performance
of the inclusion of the new method in existing methods, but
this experiment was carried out in a relatively small area. It
is difficult to evaluate the performance of the training samples
for the new method and determine whether the new model is
suitable for RML in a larger area. Furthermore, the training data
and verification data in this article are randomly selected from
the same large area; the topographic features and land use types
of the training data and the verification data have small spatial
differences, and the optical image features are also similar.
However, in practical applications, the features of landslide
caused by different natural events differ, so the transferability of
the model is also an urgent problem that needs to be addressed.
In-depth analysis of this problem is beyond the scope of this
article and is a direction of future research.

Second, our article treats the problem of RML as a pixel
segmentation problem in the field of computer vision, where
one category is the landslide and the other is the background.
Although landslides vary in their characteristics on remotely
sensed imagery, the distinction from the background is relatively
clear. Of course, there are features such as bare soil, rocks, and

mountain roads that have similar spectral features to landslides,
which can affect the recognition result of landslide, and the
inclusion of landslide influencing factors can better distinguish
these features. As shown in Fig. 10, we randomly classified three
landslide influencing factors into five categories in ArcGIS 10.3
according to the natural breakpoint method. We can see that the
distribution of landslides in different intervals of slope, NDVI
and the distance to fault is distinguishable in two sites. As long as
the distribution is different, CNN can use this difference to learn
the features of the landslide in different area, so as to distinguish
it from the background and help improve the performance of the
model. Thus, from the validation results for the two sites in this
article, we can see that the generalization ability of the model
is better verified within the same area where the landslides are
similarly distributed.

Finally, from the perspective of the data source, this article
uses a single-temporal Landsat-8 OLI image, which produces
low-to-medium resolution imagery. With the development of
multimodal remote sensing data, an increasing number of remote
sensing images can be used in RML, but this also introduces
many problems in remote sensing image processing, such as
fusion, mosaicking, and the removal of cloud images. Different
resolution images have varying effects on different scales and
different types of landslides, which are problems we need to
further explore.

VI. CONCLUSION

In this article, a new semantic segmentation network has been
developed to recognize landslide caused by precipitation and
earthquakes from single temporal Landsat-8 OLI images for the
first time in the literature. In addition, a new landslide sample
database is established by adding landslide influencing factors.
First, the training samples are generated by processing the image
and factors data, and they are then sent to the FC-DenseNet
network to learn the various feature of landslide and test the
whole area to obtain the regional landslide distribution map.
To demonstrate the effectiveness and generalization ability of
the proposed model, we conducted experiments in the Three
Gorges Reservoir area and Jiuzhaigou area in China, where
landslide occur frequently, and compared them with four other
semantic segmentation models. The experimental results show
that FC-DenseNet can better recognize the boundary and in-
terior of landslide, and there are fewer missing and excessive
recognition results. The quantitative results show that in Site 1,
the optimal kappa value of the model reaches 94.72%, which
is approximately 6% and 4% higher than that of U-Net and
ResU-Net, respectively. In Site 2, the optimal kappa value of
the model reaches 94.56%, which is approximately 6% and 3%
higher than U-Net and ResU-Net, respectively. In summary, this
method has good practicability in the application of RML.
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