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Abstract—In synthetic aperture radar (SAR) image classification
applications, there are three categories of data, including training
and benchmark data with fixed classes, as well as actual data
in practical applications. A real problem comes that there exist
unknown classes not included in training and benchmark data,
which is defined as the open set condition. However, little work
on recognizing unknown classes and analyzing the separability of
SAR datasets has been developed. Motivated by this observation,
this article demonstrates the difficulty of practical classification and
analyzes SAR dataset separability in open set conditions. In this ar-
ticle, the SAR separability analyzer (SAR-SA) is proposed to model
each known class as a multivariate Gaussian distribution. SAR-SA
can classify the known classes and recognize the samples locating
in each known distribution with low probabilities as unknown.
Besides, SAR datasetwise separability index (DSI) and classwise
separability index (CSI) are defined to quantify the separability
in open set conditions at the dataset level and class level. DSI and
CSI are effective indicators of the difficulty of SAR classification
datasets. Extensive experimental results demonstrate that the DSI
in open set conditions is nearly half of that in supervised conditions.
Dataset with low DSI is hard to realize accurate classification in
open set conditions. At the class level, even though the SAR image
classes are semantically different from each other, there exists
more or less overlap between the distributions of supervised known
classes and unknown classes. Classes with low CSI are harder to
be correctly classified and recognized.

Index Terms—Classwise separability index (CSI), datasetwise
separability index (DSI), multivariate Gaussian distribution, open
set condition, synthetic aperture radar (SAR) image classification,
SAR separability analyzer (SAR-SA).

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) is an active sensor, which
works well in all-weather and all-day conditions and pro-

vides low to high-resolution remote sensing images. SAR image
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classification is one of the fundamental techniques with a wide
range of applications in many fields over the past decades [1],
including land cover classification, urban interpretation, and
target recognition.

In order to support SAR image classification research, a large
number of SAR image classification datasets have been pub-
lished and widely used. For land cover classification and urban
interpretation, Dumitru et al. [2] generated a high-resolution
TerraSAR-X dataset and a Sentinel-1 SAR classification band
dataset. Their TerraSAR-X dataset covers the urban, industrial
areas, and infrastructure from all over the world. The number of
classes ranges from 5 to 20 depending on the local architecture
of the countries. In the Sentinel-1 dataset, the number of classes
varies from 5 to 10 specific to the image location and local
urban structures. Zhao et al. [3] presented the OpenSARUrban
dataset for urban interpretation which covers areas of 21 major
cities in China. There are 5 functional classes and a total of
10 classes in OpenSARUrban. For automatic target recogni-
tion, moving and stationary target acquisition and recognition
(MSTAR) dataset [4] is a benchmark dataset which consists of
10 different classes of targets from X-band images with 0.3 m
resolution. The OpenSARShip [5] contains ship chips covering
17 different classes from Sentinel-1 SAR images. In addition
to the above datasets, other SAR classification datasets [6]–[9]
have also been proposed for the SAR image classification task.

Based on the published SAR datasets, various methods [10]–
[13] have been proposed for classification. Cui et al. [14] pre-
sented a simple yet efficient feature extraction method using bag-
of-words framework. It yields a classification performance with
accuracy beyond 90% on the TerraSAR-X dataset containing 15
different urban classes. Geng [15] designed a deep convolutional
autoencoder, which achieved overall accuracy with nearly 90%
on TerraSAR-X images consisting of 5 classes. Huang et al. [16]
developed a convolutional neural network (CNN) combining
classification, reconstruction, and feedback bypass together,
which realized accuracy with 99.05% on MSTAR dataset. He
et al. [17] integrated densely connected triplet CNNs with
Fisher discrimination regularized metric learning, achieving the
average recognition accuracy of 88.97% on medium resolution
Sentinel-1 SAR images obtained from OpenSARShip [5].

However, the existing training and benchmark datasets only
contain a limited number of classes. In practical conditions,
there exist many other data of the classes that are not included
in the training and benchmark data. This practical condition is
called the open set condition. When these methods are applied
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in open set conditions, the classification performance will be
greatly reduced. To handle this challenge, open set recognition
(OSR) [18] methods have been developed. OSR means not only
to classify the known classes seen in the training phase but
also to recognize unknown classes not participated in train-
ing as unknown. Many previous works have been proposed
such as reconstruction-based methods [19], [20] and prototype
network-based methods [21]. Besides, statistic modeling [22],
[23] is utilized for new class discovery via out-of-distribution
detection. The authors in [24] and [25] proposed a study to
recognize whether a sample is unknown by distance compar-
ing. In remote sensing, a representative-discriminative learning
framework [26] is designed for OSR for hyperspectral images.
The framework learned representative features at first and then
learn discriminative features for classification.

However, in the SAR community, there is little work aiming
at SAR OSR [27]. It seems that there is no work to analyze the
reasons why the classification task in SAR in open set conditions
is difficult. Fundamentally, worthy insights into data can be
obtained by measuring the separability. Few works focused at
assessing the dataset itself by analyzing the separability of data
has been developed, which indicates the difficulty of classifi-
cation. The class scatter matrix [28] is widely used to measure
the separability of a whole dataset combining the between-class
scatter and within-class scatter together. Based on the class
scatter matrix, a regularization strategy is developed to improve
the separability evaluation [29]. Separability index (SI) [30] is
proposed to measure the class overlap directly. Similarly, a lot of
extended evaluation indicators have also been put forward and
analyzed [31], [32]. The classification will be easier to achieve
high performance if the data separability is large. However, these
indicators only focus on the supervised classification problems.

Hence, analyzing the reasons for the difficulty of SAR clas-
sification in open set conditions is very necessary and will be of
great help to carry out SAR OSR. In this article, we concentrate
on evaluating the separability of SAR datasets in open set
conditions, which is more helpful to the practical applications.

SAR images in different data types follow different statistical
distribution models. In this article, we focus on the features
extracted from the raw data. Considering the complexity of
the spatial distribution of the original images and the low-
dimensional nature of the semantic information of classes, we
model each known class in SAR datasets as a multivariate
Gaussian distribution in the learned feature space in [33]. This
article splits the dataset into known classes and unknown classes
to simulate the practical condition that there exist unknown
classes. If a testing sample locates in the low probability space
of each known distribution, it will be recognized as unknown.
Successively, two separability indices are defined to measure the
separability in open set conditions at the dataset level and class
level. The major contributions of this article are as follows.

1) By modeling each known class as a multivariate Gaus-
sian distribution, SAR separability analyzer (SAR-SA) is
proposed for the known class classification and unknown
class recognition.

2) Taking the idea of class scatter matrix, datasetwise sepa-
rability index (DSI) is defined to quantify the separability

of a dataset in open set conditions at the dataset level. The
classification difficulty of different datasets in open set
conditions can be obtained by comparing their DSI.

3) Combining the precision and recall results, classwise sep-
arability index (CSI) is defined by using the F2 score to
quantify the separability of each class at the class level
in open set conditions. CSI can measure the potential of
a class to be accurately classified and recognized in open
set conditions.

4) We proposed an evaluation pipeline for two SAR image
datasets. The experimental results demonstrate that the
DSI in open set conditions is nearly half of that in the
supervised condition. Classes with low CSI are harder to
be correctly classified and recognized.

The rest of this article is organized as follows. In Section II,
we introduce the architecture, training, and testing strategies
of SAR-SA. In Section III, SAR DSI and CSI are defined.
Section IV gives an introduction to the datasets prepared for
experiments. Experimental design and detailed result analysis
are shown in Section V. Finally, Section VI concludes this
article.

II. SAR SEPARABILITY ANALYZER

In this section, first, the preliminaries of variational autoen-
coder (VAE) is briefly introduced. Then we describe the archi-
tecture of SAR-SA. The strategies of SAR-SA in the training
and testing phase are introduced in the end.

A. Preliminaries of VAE

The vanilla VAE [34] is a powerful Bayesian method for
learning the latent distribution of data. VAE is composed of an
encoder and a decoder. The encoder network encodes the input
data x to latent code z. Standard Gaussian prior p(z) is placed
on the latent code. The decoder network maps the latent code z
to the reconstructed data x̃. The process of VAE is formulated
as

En(x) = z ∼ qφ(z | x)
De(z) = x̃ ∼ pθ(x̃ | z). (1)

In (1), En(x) denotes the encoder process, De(z) denotes the
decoder process. qφ(z | x) is the approximated posterior distri-
bution specific to the input data x, pθ(x̃ | z) is the likelihood.
The parameters of encoder and decoder are denoted by φ and
θ, respectively. VAE is optimized by maximizing the evidence
lower bound (ELBO) [35] defined as

ELBO(φ,θ,x, x̃) = Eqφ(z|x) [log pθ(x̃ | z)]
−DKL (qφ(z | x)‖p(z)) (2)

in which E is expectation calculation.
The first term on the right side of (2) is the likelihood between

the raw input data and reconstructed data, it is represented by the
reconstruction loss. Maximizing the likelihood equals minimiz-
ing the reconstruction loss. The second term is the Kullback–
Leibler (KL) divergence between the approximated posterior
and prior distribution. It can be viewed as a regularization in
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Fig. 1. Architecture of SAR separability analyzer (SAR-SA). SAR-SA is composed of an encoder, classifier, decoder, and PFC. It models the feature in each
encoder and decoder layer as a multivariate Gaussian distribution. The encoder takes the raw image as input and outputs the parameters of Gaussian distribution
in each encoder layer. Classifier takes the latent representation in the top encoder layer as input for classification. The decoder takes the representation as input
and outputs the parameters of Gaussian distribution in each decoder layer. The raw image is reconstructed in the final decoder layer. PFC takes the one-hot label
as input and outputs the mean vector of the class-specific Gaussian distribution.

the training phase. In DKL, qφ(z | x) is denoted as N(μ,σ2I)
with the learned mean and variance denoted as μ and σ2. p(z)
is assumed to be a standard Gaussian distribution N(0, I), in
which I is an identity matrix. Assuming the dimension of the
Gaussian distribution is d, the KL divergence is expressed as

−DKL (qφ(z | x)‖p(z))

=
1

2

d∑
i=1

(
1 + log

(
σ2
i

)− μ2
i − σ2

i

)
. (3)

Hence, one goal of VAE is to minimize the discrepancy
between the input and reconstructed data. It also prompts the
posterior distribution to match the prior distribution.

B. SAR-SA Architecture

Referring to the conditional Gaussian distribution learning
in [33], SAR-SA is proposed to learn the latent multivariate
Gaussian distribution of each known class by introducing the
class information into the model. To learn a more refined latent
distribution of each SAR class, KL divergence in each paired
encoder and decoder layer are all calculated and minimized.
The architecture of SAR-SA is shown in Fig. 1. It is composed
of an encoder, classifier, decoder, and a prior fully connected
layer (PFC).

1) Encoder: The forward path of the encoder is designed
as a series of convolution, batch normalization, and activation.
Orthogonal to the forward path, each encoder layer adopts the
probabilistic ladder [36] to obtain the mean and variance vector
of the multivariate Gaussian specific to the encoder layer. The

kth encoder layer is denoted as

xk = Conv (xk−1)

μk = Linear(Flatten (xk))

σ2
k = F ( Linear ( Flatten (xk))) . (4)

Conv takes the featurexk−1 in previous layer for convolution.
Flatten is adopted to flatten the 3D convolution output xk to a
1D data. F is a nonlinear function denoted as log(1 + exp(·)),
ensuring the variance no less than 0. Mean and variance in the
kth layer, expressed as μk and σ2

k, are learned by feeding the
flattened 1D data into two linear layers.

Using the reparameterization trick, the latent representation z
is obtained as z = μ+ ε · σ, ε ∼ N(0, I)withμ andσ learned
in the top encoder layer, in which I is an identity matrix.

2) Classifier: The classifier is a linear layer followed by a
softmax layer. It takes the latent representation z as input and
the softmax layer outputs the probability distribution over each
known class.

3) Decoder: The decoder is composed of a series of activa-
tion, transposed convolution, and batch normalization. The kth
decoder layer is denoted as

dk+1 = Unflatten (Linear(z̃k+1))

x̃k+1 = TConv (dk+1)

μ̃k = Linear ( Flatten (x̃k+1))

σ̃2
k = F ( Linear ( Flatten (x̃k+1)))

z̃k = μ̃k + ε · σ̃2
k, ε ∼ N(0, I). (5)
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The 1D data z̃k+1 is first, fed into a linear layer and then be
unflattened to a 3D data dk+1. TConv is a transposed convo-
lution, it takes the 3D data as input and the size of the feature
x̃k+1 is increased. The mean and variance in the kth decoder
layer expressed as μ̃k and σ̃2

k are learned through two linear
layers, forming the multivariate Gaussian distribution specific
to the kth decoder layer. In the final decoder layer, the input
image is reconstructed.

4) PFC: In vanilla VAE, the prior distribution of latent code
is set as standard Gaussian distribution. Differently, in order
to introduce the class semantic information into the framework,
PFC takes the one-hot encoding of the labels as input. The output
μ through a linear layer is the mean of the prior distribution of
each sample conditioned on its class. The convariance matrix of
the prior distribution is an identity matrix.

C. Strategies in Training and Testing Phase

1) Training: In the training phase, SAR-SA is optimized by
minimizing the reconstruction error, classification error, and KL
divergence jointly. Thus, the loss function is composed of the
following three parts.

(a) The reconstruction loss Lr is the L1 distance between the
input image x and the final reconstructed image x̃

Lr =
∑

|x− x̃|. (6)

(b) The classification loss Lc is the softmax cross-entropy
between the prediction and the ground-truth labels

Lc = −
∑

yclog(pc), (7)

in which yc is the label for a sample. pc is the predicted
probability distribution on known classes.

(c) The KL-divergence LKL in the latent space and each
paired encoder–decoder layer. With the parameters μ and σ2

learned in the top encoder layer, the approximated posterior
Gaussian distribution is denoted as qφ = N(z;μ,σ2). For each
sample, the prior multivariate Gaussian distribution for the lth
class is denoted as p

(l)
θ (z | x) = N(z;μl, I) with μl learned

from PFC. Compared with (3), assuming the dimension of the
multivariate Gaussian is d, the KL divergence is formulated as

−DKL

(
qφ(z | x)‖p(l)θ (z | x)

)

=
1

2

d∑
i=1

(
1 + log

(
σ2
i

)− (μi − μ
(l)
i )2 − σ2

i

)
. (8)

The combination of (6) and (8) forms the ELBO of vanilla
VAE as described in (2). The only difference is that the com-
bination of (6) and (8) forms the ELBO with leading the class
information into the framework.

In each paired encoder–decoder layer of SAR-SA, the dis-
tributions are multivariate Gaussian distributions with different
dimensions. Assuming the number of encoder or decoder layers
is K, the sum of KL divergence between the posterior and
class-specific prior in the top layer, and KL divergence in each
paired encoder–decoder layer form the third part of the loss

function as

LKL =
1

K

[
DKL

(
qφ(z | x)‖p(l)θ (z | x)

)

+
∑
k �=K

DKL (qφ (xk | x) ‖pθ (x̃k | x̃k+1))

⎤
⎦ . (9)

Thus, the training loss function is summarized as

L = Lr + Lc + LKL. (10)

2) Testing in Supervised Settings: SAR-SA is trained for
multiple epochs for optimization in training phase, the learned
parameters of SAR-SA with the lowest loss are preserved for
testing, the model with these parameters is selected as the best
model. After the training phase, the best model is utilized for
classification directly.

3) Testing in Open Set Settings: After the training phase,
the mean and variance of the latent representations of all the
correctly classified training samples are obtained. The param-
eters of the class-specific multivariate Gaussian distribution
are denoted as ml and σ2

l for the lth class. The multivariate
Gaussian distribution of the lth known class is modeled as
fl(z) = N(z;ml,σ

2
l ). Besides, the mean and standard devi-

ation of the reconstruction loss of all the correctly classified
training samples are acquired.

In the testing phase, the results are, first, predicted as in
supervised settings. Regardless of whether there exist unknown
classes in the testing data, the model will only choose one
of the known classes that it thinks best matches as the pre-
diction. If there exist unknown classes in the testing data, the
unknown data will all be falsely classified. In order to make a
tradeoff between known class classification and unknown class
recognition, results are calibrated following two steps. The first
calibration step is based on the reconstruction error. The second
calibration step is to judge whether the probability of the latent
representation locating in each known class distribution is lower
than the threshold.

In the first calibration step, we set the upper bound of the
reconstruction error as

recupb = mean(rectrain) + λ · std(rectrain) (11)

where mean and std represent calculating mean and standard
deviation of the reconstruction errors rectrain. λ is the weight
parameter of the standard deviation.

If the reconstruction error of a testing sample is larger than
the threshold in (11), which means that this sample is not well
reconstructed under the feature extraction and reconstruction
framework of known classes. Thus, the testing sample will be
recognized as unknown for the first.

Second, in terms of the remaining testing samples whose
reconstruction errors are less than the upper bound. The proba-
bility of the extracted latent representation z locating in the lth
known distribution fl(z) = N(z;ml,σ

2
l ) with dimension as d

is calculated as

Pl(z) = 1−
∫ m1+|z1−m1|

m1−|z1−m1|
· · ·

∫ md+|zd−md|

md−|zd−md|
fl(t)dt (12)
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in which the subscripts of m and z denote the dimension index.
If the probability calculated in (12) for each known class

is lower than the threshold we set, which means the latent
representation of the testing sample locates in the low probability
space of each known distribution, the testing sample will be
recognized as unknown.

III. SAR SEPARABILITY INDEX

In this section, SAR separability index in datasetwise and
classwise are introduced. SAR DSI takes the idea in [28] by
using the scatter-matrix-based measure. SAR CSI adopts the F2

score [37] which puts more significance on the recall rate than
the precision. The two indices are introduced as follows.

A. SAR Datasetwise Separability Index

Taking the idea of scatter-matrix [28], the within-class scatter
matrix SW , between-class scatter matrix SB and total scatter
matrix ST are obtained as

SW =

C∑
i=1

⎡
⎣ ni∑
j=1

(
v
(i)
j −mi

)(
v
(i)
j −mi

)�
⎤
⎦

SB =
C∑
i=1

ni (mi −m) (mi −m)�

ST =
C∑
i=1

⎡
⎣ ni∑
j=1

(
v
(i)
j −m

)(
v
(i)
j −m

)�
⎤
⎦

= SW + SB . (13)

In (13),C is the number of classes in a dataset.ni is the sample
number of the ith class. v(i)

j denotes the feature vector of the jth
sample in the ith class. The mean of the feature vectors of the
ith class is expressed with mi. The mean of the feature vectors
of all classes is expressed with m. In supervised conditions, the
separability of a dataset is measured by the ratio of the traces
of between-class scatter matrix and within-class scatter matrix.
The scatter matrix measure is depicted as tr(SB)/tr(SW ). A
large scatter matrix measure value means a large between-class
scatter and small within-class scatter.

Matching the idea of analyzing the separability of the dataset
in open set conditions, each class is set unknown alternatively.
v
(i)
j represents the extracted latent representation. A set of

separability matrices can be obtained in each open set setting.
DSI in open set conditions is defined as

DSI =
1

C

C−1∑
i=0

tr(S
(i)
B )

tr(S
(i)
W )

(14)

where the between-class scatter matrix S
(i)
B and the within-class

scatter matrixS(i)
W are acquired when the ith class is set unknown,

combining the latent representations of theC − 1 known classes
and one unknown class.

B. SAR Classwise Separability Index

In classification tasks, four indices are defined. They are true
positives (TP), false positives (FP), false negatives (FN), and true
negatives (TN) [38]. The precision, recall rate, and Fβ-score are
calculated as

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Fβ = (1 + β2)
Precision · Recall

(β2 · Precision + Recall)
. (15)

Precision represents the proportion of the number of samples
that are truly predicted to be positive to the number of samples
that are predicted to be positive. Recall rate indicates the ratio
of the number of truly predicted positive samples to the number
of actual positive samples. The precision can be regarded as a
reflection of the impact other classes cause. The recall can be
viewed as the uniqueness of a class.

Precision and recall rate are mutually restrictive. When pre-
cision is high, recall rate tends to be low. Precision tends to be
lower when recall rate is high. Combining the two indices and
emphasizing the uniqueness, recall rate is considered to be of
more significance than precision. CSI for the jth class in open
set conditions is defined using F2 score with β = 2

CSIj = 0.7 · F (i)
2j(i=j) + 0.3 · 1

C − 1

∑
i�=j

F
(i)
2j

(j = 0, 1, . . . , C − 1) (16)

in which F
(i)
2j is the F2 score of the jth class in the condition

when the ith class is set unknown.
The first term on the right side of (16) indicates theF2 score of

recognizing the ith class as unknown when it is set as unknown.
The second term indicates the F2 score of classifying the jth
class when it is known. With the purpose of emphasizing the
performance of correctly recognizing each class as unknown
when it is set unknown, the weight proportion of these two terms
is set as 7:3.

IV. DATASETS

Two SAR image datasets were prepared for analyzing the
separability in experiments. The first dataset is the OpenSARUr-
ban [3] acquired from Sentinel-1 satellite [39] for urban interpre-
tation. The second dataset is a ship dataset with images acquired
from TerraSAR-X satellite [40]. Besides, as a completely differ-
ent dataset from the two SAR datasets, the MNIST dataset [41]
is utilized for comparative experiments helping validating un-
known discovery and demonstrating the separability. Details of
these datasets are introduced in the following sections.

A. OpenSARUrban Dataset

The OpenSARUrban [3] dataset was collected from 19
Sentinel-1 [39] images with a relatively low resolution of about
20 m. The patch size is 100× 100. In the dataset, there are 5
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Fig. 2. Structure of the OpenSARUrban dataset [3], including 5 functional
classes and totally 10 urban classes.

Fig. 3. Patches in the OpenSARUrban dataset [3]. (a) Denselow. (b) General
Residential. (c) Highbuildings. (d) SingleBuilding. (e) Skyscraper. (f) Stor-
ageArea. (g) Vegetation. (h) Airport. (i) Railway. (j) Highway.

functional classes and a total of 10 different urban classes which
cover the areas of 21 major cities in China. The structure of the
OpenSARUrban dataset is shown in Fig. 2. The 5 functional
classes include business areas, industrial areas, transportation
hub, urban vegetation, and residential areas. The total 10 classes
are skyscraper, storage area, airport, highway, railway, vegeta-
tion (Veg), general residential (Gen.Res), highbuildings (High-
buil), denselow, and single building (SingleBuil).

In our experiments, images of VV polarization are analyzed.
Patches of each class are shown in Fig. 3. The difference between
various classes of images is not obvious. In addition, the imbal-
anced distribution of data volume of each class is expressed in
Fig. 4.

The data volumes in classes of highbuildings, storage area,
and general residential take the upper hand. Followed by
denselow, single building, skyscraper, and vegetation. By com-
parison, the airport, railway, and highway classes show their
weakness in data volume.

B. TerraSAR-X Ship Dataset

The ship dataset was acquired from TerraSAR-X satellite [40],
it covers 8 ports with patch size ranging from 5× 16 pixels to
237× 225 pixels. There are four classes of ships in the dataset,
including cargo, container, hooker, and tanker. Patches of each
class are shown in Fig. 5. The patches of each class are all
composed of extremely strong scatter points and low backscatter.

Fig. 4. OpenSARUrban dataset [3] distribution among classes. The amount
of data in highbuildings, storage area, and general residential are the most.
Denselow, single building, skyscraper, and vegetation have a medium data
volume. The data volume of airport, railway, and highway are the least.

Fig. 5. Images of each class in the TerraSAR-X ship dataset. (a) Cargo. (b)
Container. (c) Hooker. (d) Tanker.

TABLE I
NUMBER OF EACH CLASS IN THE TERRASAR-X SHIP DATASET

Besides, the ship dataset is much more imbalanced than the
OpenSARUrban dataset, numbers of each class are shown in
Table I.

In terms of the data volume, cargo is the largest class. Fol-
lowed by tanker and container. Hooker is the least class.

C. MNIST Dataset

The MNIST dataset [41] is a large dataset of handwritten
digits. The images are normalized to fit into a 28× 28 pixel
bounding box. MNIST is absolutely different from the other
two SAR image datasets. Images of each digit class in MNIST
are shown in Fig. 6.

Images in MNIST dataset are much simpler and more recog-
nizable than images in the other SAR datasets.
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TABLE II
F2 SCORES (%) AND MEAN RESULTS (%) OF THE OPENSARURBAN DATASET IN THE SUPERVISED SETTINGS

Fig. 6. Images of each digit class in MNIST dataset [41]. (a) Number 0. (b)
Number 1. (c) Number 2. (d) Number 3. (e) Number 4. (f) Number 5. (g) Number
6. (h) Number 7. (i) Number 8. (j) Number 9.

V. EXPERIMENTS AND RESULT ANALYSIS

In this section, we conducted experiments in three different
settings, including supervised settings, open set settings with
in-dataset class unknown, and open set settings with MNIST
dataset unknown. In the two open set settings, one of the classes
in the dataset was selected in turn not to participate in the training
process of the model. In supervised settings, except for the
same design as in the two open set settings, another supervised
experiment was carried out on the whole dataset with all classes
seen in the training process.

A. Supervised Settings on the OpenSARUrban Dataset

In each supervised setting, the images of known classes are
split into a training set and testing set with the proportion of
7:3. SAR-SA is utilized for supervised classification following
the strategy of testing in supervised settings. The performance
is measured by F2 score. Besides, mean results including mean
precision (m-Precision), mean recall (m-Recall), and mean F2

score (m-F2score) are presented in addition in Table II.
In each row of Table II, the highest scores of a class in all

cases are indicated in bold. As can be seen from the results,
most of the F2 scores for each class are greater than 97.00%.
The mean F2 score in each case is no less than 95.82%. For
convenience, the ground truth and the classification results of the
latent representations in the setting of “all known” are visualized
by using t-SNE [42] shown in Fig. 7. Little difference between
the ground truth and the classification results can be found

from the visualization. The latent representations extracted from
each known class can cluster together. The latent representation
clusters of different classes are clearly separated.

The experimental results show that under supervised condi-
tions, the degree of intraclass aggregation of the OpenSARUrban
is very high, and the difference between the classes is obvious.
Therefore, by modeling each SAR class in the OpenSARUrban
dataset as a multivariate Gaussian distribution in latent space,
the confusion of the data is very low. SAR-SA owns excellent
classification capability under supervised conditions.

B. Open Set Settings With In-Dataset Class Unknown on the
OpenSARUrban Dataset

In this setting, the OpenSARUrban dataset is split into known
classes and unknown classes. Each class in the OpenSARUrban
dataset is set unknown in turn. The remaining 9 known classes
are split into a training set and testing set with a proportion of 7:3.
SAR-SA is utilized for known class classification and unknown
new class discovery for the first.

In order to balance the performance of known class classifi-
cation and unknown class recognition, an ablation study on the
value setting of λ in (11) and the probability threshold of (12) was
carried out. The results in open set settings with in-dataset class
unknown of “Denselow unknown,” “Skyscraper unknown,” and
“Vegetation unknown” are shown in Fig. 8. According to the
results, in the case of ensuring that the classification performance
of the known classes is not too low, we choose the setting with
a higher recognition performance for the unknown class. Thus
we set λ = 2 in (11) and the probability threshold of (12) as 0.5
for tradeoff.

Second, the proposed SAR DSI and CSI are calculated for
quantifying the separability of the OpenSARUrban in open set
conditions. Table III shows the results, including F2 scores, m-
Precision, m-Recall, m-F2score, and the values of scatter matrix
measure tr(SB)/tr(Sw).

In Table III, bold values on the diagonal line are the F2 scores
of recognizing the unknown class correctly as unknown. The
remaining values in each column are theF2 scores of classifying
known classes. In order to make it easier to compare with the
results in the supervised setting of “all known” in Table II, the
supervised results are listed in the rightmost column of Table III.

1) Known Class Classification: As shown in Table III, com-
paring the results of known classes in each open set setting with
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Fig. 7. Ground truth and the classification results of the latent representations of the OpenSARUrban dataset in “all known” supervised setting. Little difference
between (a) and (b) exists, latent representations of each class cluster together, clusters of different classes separate from each other clearly. (a) “All Known” Ground
Truth. (b) “All Known” Classification Result.

TABLE III
F2 SCORES (%), MEAN RESULTS (%) AND SCATTER MEASURE RESULTS OF THE OPENSARURBAN DATASET IN OPEN SET SETTINGS WITH IN-DATASET CLASS

UNKNOWN AND “ALL KNOWN” SETTING

the results in the “all known” setting, the F2 scores of known
classes all decreased. For example, when the single building
is set unknown, the F2 score of classifying denselow slightly
decreased from 98.51 to 96.08%. However, when general res-
idential is set unknown, the F2 score of classifying railway
significantly dropped from 100.0 to 12.93%. The confusion
matrices in the “all known” setting and “general residential
unknown” setting are visualized in Fig. 9.

It can be seen from the confusion matrices that when general
residential is set unknown, compared with the results in the
“all known” setting, several samples of each known class are
wrongly recognized as unknown. In terms of the airport, though
the amount of falsely classified samples is less than others, the
number of samples of airport is much less than other classes,
resulting in the low F2 score.

Observing from the reduction of the F2 scores of the known
classes in each setting, the impact of introducing testing samples

belonging to an unknown class is revealed. When there exist
testing samples of unknown classes, SAR-SA will calibrate the
results according to the probabilities locating in each known
class. If the known class has a large within-class scatter in the
setting, the distribution formed by using training samples is of
low generalization. The latent representations of testing samples
belonging to the class tend to locate in its whole probability
space nearly uniformly. Many samples locate in its distribution
with probabilities lower than the threshold, thus will be wrongly
recognized as unknown. As a result, if the amount of data in a
certain class is small, the distribution obtained from this class
will be more difficult to have good generalization performance
than that of a large class. Thus in open set conditions, classes with
low data volume are easily to be confused with other classes.

2) Unknown Class Recognition: Considering the bold values
on the diagonal line, which indicate theF2 scores of recognizing
the unknown class correctly as unknown. In comparison with the
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Fig. 8. Ablation study in open set settings with in-dataset class unknown of
“Denselow unknown,” “Skyscraper unknown,” and “Vegetation unknown.” On
the x-axis, “lam2-thresh05” means setting λ as 2 and the threshold as 0.5, the
others are similar.

F2 scores in the “all known” condition, all results greatly de-
creased from almost 100.0% to less than 50.00%. The dramatic
reduction in F2 scores shows the great difficulty of recognizing
a class as unknown correctly when it is out of supervision. By
way of illustration, the ground truth and predicted distribution of
the latent representations in cases of setting highbuildings and
vegetation as unknown are displayed in Fig. 10.

First of all, by observing the pictures in Fig. 10 as a whole,
we can find the phenomenon that when a class is set unknown,
the latent representations of unknown samples cannot cluster
together and are scattered across the distributions of known
classes. In the case that vegetation is set unknown, the F2 score
of recognizing it dropped from 99.01% in the “all known”
setting to 44.35%. As shown in Fig. 10(c) and (d), the latent
representations locating deeply in the clusters of known classes
are all wrongly classified as belonging to known classes. The
reason is that the probabilities of the samples locating deeply in
known distributions are higher than the threshold. These samples
have a high degree of similarity and overlap with known classes,
leading to the false classification. In contrast, the remaining
latent representations locating on the edges of known classes
can be correctly recognized as unknown.

In the other case that when highbuildings is set unknown, the
F2 score reduced the most, from 99.75 to 2.64%. According to
Fig. 4 and Fig. 10(a) and (b), highbuildings is of the greatest
amount in the OpenSARUrban dataset. When it is set unknown,
almost all samples have a high degree of similarity with known
classes. The latent representations of highbuildings distribute in
the known clusters nearly uniformly with probabilities higher
than the threshold. Thus almost all the unknown samples are
wrongly classified as belonging to known classes.

Hence, the conclusion comes that due to the lack of strong
supervision signals on unknown classes, the latent represen-
tations of unknown samples are scattered across distributions
of known classes with high probabilities. Consequently, the
overlap between the distributions of the known classes and
unknown classes results in the false classification and decrease
of F2 scores. The more samples of unknown class are wrongly

Fig. 9. Confusion matrices in “all known” setting and “General Residential
Unknown” setting. (a) All Known. (b) General Residential Unknown.

classified as known classes, the greater similarity between the
unknown classes and other known classes exists.

3) Analyzing the Datasetwise Separability Using DSI: To
analyze the separability at the dataset level in open set settings,
two aspects should be taken into consideration. The first is
the within-class scatter, the second is the between-class scatter.
Combining the two aspects together, results are shown in the last
row of Table III, ranging from 2.68 to 37.81.

For example, compared with the “all known” setting, the
decrease of F2 scores of each class and scatter matrix measure
values when setting general residential and airport unknown
are shown in Table IV. The total decrease of F2 scores when
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Fig. 10. Ground truth and results of the latent representations of the OpenSARUrban dataset in open set settings. (a) (b) correspond with highbuildings unknown,
the unknown recognition F2 score is 2.64%; (c) (d) correspond with vegetation unknown, the unknown recognition F2 score is 44.35%. (a) Highbuildings
Unknown-Ground Truth. (b) Highbuildings Unknown-Result. (c) Vegetation Unknown-Ground Truth. (d) Vegetation Unknown-Result.

general residential unknown is 262.01%, larger than that when
airport unknown with 174.70%. When general residential is set
unknown, its impact on the overall classification and recognition
performance is much greater than when airport unknown. The
scatter matrix measure when general residential unknown is
4.08, less than that when airport unknown with 37.81. It indicates
that the higher between-class scatter and lower within-class
scatter happens when airport is unknown, in comparison with
the case when general residential is unknown.

From the results we can see that the values of scatter matrix
measure in different open set settings are different from each
other, though on the same dataset. It shows that the degree of

aggregation of data within a class and the degree of dispersion
of data between different classes vary with the setting of the
unknown class.

To quantify the separability at the dataset level in open set
settings with in-dataset class unknown, the DSI of the Open-
SARUrban dataset is calculated combining all cases using (14)

DSI =
1

10

9∑
i=0

tr(S
(i)
B )

tr(S
(i)
W )

= 13.83. (17)

The DSI in the open set condition is 13.83, which is nearly
half of the separability in the “All Known” setting with 25.70.
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TABLE IV
F2 SCORE DECREASE (%) AND SCATTER MATRIX MEASURE COMPARISON OF

EACH CLASS ON THE OPENSARURBAN DATASET

TABLE V
CSI (%) IN OPEN SET CONDITIONS OF EACH CLASS IN THE

OPENSARURBAN DATASET

It demonstrates that in open set conditions, the between-class
scatter is larger and the within-class scatter is lower than in
the supervised setting. The confusion among different classes
increases greatly. It reveals the serious challenge for the classi-
fication with unknown class existing.

4) Analyzing the Classwise Separability Using CSI: Accord-
ing to (16), the CSI of each class in open set conditions is
calculated and presented in Table V. It can be seen from the
table that general residential and vegetation own the highest CSI.
Railway, highbuildings, and denselow are of the lowest CSI.

An intuitive comparison can, first, be discovered from the
images themselves in Fig. 3. In Fig. 3, patches of (a) denselow,
(c) highbuildings, and (d) single building are all composed of
strong scatter points reflected from the surface of the densely
arranged buildings. It is even hard for experts to classify them
correctly because of the great similarities among them. Thus the
unknown recognitionF2 scores and CSI of these three classes are
all low. In contrast, lower scatter intensity appears in the patches
of Fig. 3(b) general residential and Fig. 3(g) vegetation, which is
fully different from other classes with more strong scatter points.
They own higher unknown recognition F2 scores and CSI.

In addition, more detailed analysis can be obtained from
Fig. 10. Taking vegetation for instance, when vegetation is
known to SAR-SA as shown in Fig. 3(a) and (b), the difference
between the ground truth and classification results of vegetation
is less than most of the other known classes. The number
of samples in vegetation that are wrongly classified as other
known classes or recognized as unknown class, and samples
in other classes falsely classified as vegetation are lower than
those of other known classes. It shows the robust separability of
vegetation when there exist unknown classes. When vegetation
is set unknown corresponding to Fig. 3(c) and (d), though
part of samples belonging to vegetation are classified as other
known classes incorrectly, the proportion of the falsely classified

samples in vegetation is lower than that of other classes when
other classes are unknown, indicating its lower similarity with
other known classes.

The same analysis can be applied to other situations. Conclu-
sion is drawn that in open set settings, general residential and
vegetation are classes with the highest CSI, followed by storage
area and skyscraper. Railway, highbuildings, and denselow own
the lowest CSI. In open set conditions, the class with higher CSI
is much easier to be classified when it is known and recognized
as unknown when it is unknown to the model.

C. Open Set Settings With MNIST Unknown on the
OpenSARUrban Dataset

As a completely different dataset from SAR, MNIST is used in
this part for further comparison and validation. Huge differences
between MNIST and OpenSARUban dataset can be found in
Figs. 3 and 6. In each open set setting, the unknown classes are
replaced by MNIST. The parameters of the training model in
each setting are kept unchanged for a fair comparison. Results
are shown in Table VI.

In Table VI, the bold values on the diagonal line are the
F2 scores of recognizing MNIST as unknown class correctly.
Comparing with the results in Table III, the unknown recognition
performance has been greatly improved. For example, when
highbuildings is unknown to SAR-SA, the F2 score of recogniz-
ing it as unknown class is 2.64%. After replacing highbulidings
with MNIST, the F2 score of recognizing MNIST as unknown
greatly increased to 90.01%. This also happens in other cases.
Another important result worth noting is that the recall rate of
recognizing MNIST as unknown is 100.0% in all cases. None
of the samples in MNIST is wrongly classified as belonging to
other known classes.

Under the settings that known classes without denselow and
known classes without airport, the latent representations of
ground truth, and predicted results are visualized in Fig. 11.
Samples belonging to MNIST are expressed with red points.

It is apparent from Fig. 11 that though MNIST was not part of
the training process of SAR-SA and out of supervision, the latent
representations extracted from MNIST can still cluster together
and separate from other clusters of known classes clearly. As for
MNIST itself, there is no difference between the distributions
of ground truth in Fig. 11(a) and (c), and classification results in
Fig. 11(b) and (d). Besides, in terms of the latent representations
of known classes, probabilities of some representations which
locate on the edge of the known clusters are lower than the thresh-
old, thus these samples are wrongly recognized as unknown.

Moreover, as for the data separability in each setting, com-
paring the values of scatter matrix measure in the two tables,
most of the values in Table VI are greater than those in Table III.
The conclusion is reached that the between-class scatter when
MNIST unknown is larger than that when in-dataset class un-
known. The within-class scatter when MNIST unknown is less
than that when in-dataset class unknown.

This comparative experiment reveals that due to the large
difference between MNIST and SAR images, MNIST is easy
to be recognized as unknown. In terms of SAR datasets, high
degree of similarity and confusion between various classes leads
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TABLE VI
F2 SCORES (%), MEAN RESULTS (%) AND SCATTER MEASURE RESULTS OF THE OPENSARURBAN DATASET IN OPEN SET SETTINGS WITH MNIST UNKNOWN

TABLE VII
F2 SCORES (%), MEAN RESULTS (%) AND SCATTER MEASURE RESULTS OF

THE TERRASAR-X SHIP DATASET IN OPEN SET SETTINGS WITH IN-DATASET

CLASS UNKNOWN AND “ALL KNOWN” SETTING

to the great difficulty of SAR classification in actual conditions
with unknown classes exiting.

D. DSI Analyzing on TerraSAR-X Ship Dataset

Due to the great imbalance of the ship dataset, we performed
rotation, mirror, and other transformations on the small classes
such as hooker to realize data augmentation. Known classes
are split into training and testing set with a proportion of 8:2.
Experiments in “all known” setting and open set settings with
in-dataset class unknown are carried out in the same way as on
the OpenSARUrban dataset. Results are shown in Table VII,
bold values on the diagonal line are the F2 scores of recognizing
the unknown class correctly as unknown.

In supervised settings, the performance in the “all known”
setting is not as good as that on the OpenSARUrban dataset,
indicating the larger difficulty in ship classification. Since SAR
images only show scatter points, ship targets are all made of hard
materials such as metal, they all appear with lots of strong scatter
points in SAR images. Therefore, when the color information is
lost and the resolution is lower than that of optical images, the
difference between different types of ship targets in SAR images
is greatly reduced. The appearances of ships from various classes
are quite similar to each other as shown in Fig. 5.

In open set settings with in-dataset unknown, the results are
similar to those in the OpenSARUrban dataset. When there
exist unknown classes, the classification performance of known
classes and unknown recognition performance of the unknown
classes are almost completely decreased. At the dataset level,
regarding the scatter matrix measure values in the bottom row,
the values in open set settings are mostly less than that in the

TABLE VIII
DSI COMPARISON IN THE OPEN SET CONDITION AND SUPERVISED

DATA SEPARABILITY

“all known” setting. It shows that the between-class scatter in
open set settings is less than that in “all known” setting. The
within-class scatter in open set settings is larger than that in “all
known” setting. Hence, the greater degree of confusion of the
whole dataset happens in open set conditions than in supervised
conditions.

The DSI in open set conditions of the ship dataset is obtained
combining the scatter matrix measure results in all cases using
(14)

DSI =
1

4

3∑
i=0

tr(S
(i)
B )

tr(S
(i)
W )

= 0.70. (18)

The DSI in open set setting is nearly half of the separability
in the “all known” setting with 1.28.

For comparison, the DSI of the OpenSARUrban dataset and
TerraSAR-X ship dataset in open set conditions are shown in
Table VIII, together with the data separability in the “all known”
condition.

As can be seen from Table VIII, both the DSI in open set
conditions of the two SAR image datasets are nearly half of
the supervised data separability. The comparison demonstrates
that when there exist unknown classes, the separability of SAR
datasets greatly reduced, the confusion among classes greatly
increased. It is quite difficult to realize the accurate known class
classification and unknown class recognition.

Moreover, the supervised data separability and open set DSI of
TerraSAR-X dataset are far less than those of the OpenSARUr-
ban dataset. The greater challenge of the classification under the
practical conditions on the TerraSAR-X ship dataset is revealed,
in comparison with the OpenSARUrban dataset.

E. CSI Analyzing on TerraSAR-X Ship Dataset

In addition, according to (16), combining the F2 scores in all
cases, the CSI of each class in the TerraSAR-X ship dataset in
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Fig. 11. Ground truth and results of the latent representations in open set settings with MNIST unknown. (a) and (b) Known classes without denselow, the
unknown recognition F2 score is 89.09%. (c) and (d) Known classes without airport, the unknown recognition F2 score is 80.52%. (a) Without Denselow-Ground
Truth. (b) Without Denselow-Result. (c) Without Airport-Ground Truth. (d) Without Airport-Result.

TABLE IX
CSI (%) IN OPEN SET CONDITIONS OF EACH CLASS IN THE

TERRASAR-X SHIP DATASET

open set settings is presented in Table IX. CSI of cargo is the
highest, hooker has the lowest CSI.

The confusion matrices in the setting when cargo and hooker
unknown are delivered in Fig. 12. When cargo is unknown,

though hooker is in supervision, samples of it are all wrongly
recognized as unknown. While most of samples in cargo can
still be recognized as unknown. It shows the large within-class
scatter of hooker and low similarity between cargo and other
known classes. When hooker is unknown, two-thirds of samples
in cargo can be classified correctly, but none of the samples of
hooker is recognized as unknown. It reveals the high degree of
aggregation within cargo and the great similarity between hooker
and other known classes. The results demonstrate that in open
set conditions, hooker can easily be confused with other classes
no matter whether it is known. The separability of hooker in
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Fig. 12. Confusion matrices when cargo and hooker unknown. (a) Cargo
Unknown. (b) Hooker Unknown.

open set conditions is low. In contrast, cargo is much easier to
be classified when it is known and recognized as unknown when
it is unknown.

The same analysis can be applied to other classes. Thus in
open set conditions, cargo and container are classes with the
highest CSI, followed by container. Hooker owns the lowest
CSI. The class with lower CSI is more intractable to be classified
correctly when it is known, and more difficult to be recognized
as unknown when it is unknown.

VI. CONCLUSION

This article demonstrated the SAR image classification dif-
ficulty in the condition of facing unknown classes. SAR-SA
is proposed first to model each known class as a multivariate
Gaussian distribution. SAR-SA can not only classify the known
classes seen in the training phase but also can recognize samples
locating in each known distribution with probabilities lower than
the threshold as unknown. DSI and CSI are defined to quantify
the separability of a dataset at the dataset level and class level,
respectively. The OpenSARUrban dataset and the TerraSAR-X
ship dataset are prepared for experiments in supervised settings,
open set settings with in-dataset class unknown and open set
settings with MNIST unknown. According to the results, we
find that DSI in open set conditions is nearly half of that in the
supervised condition, showing the greater confusion of a dataset
in open set conditions compared with in supervised conditions.
The DSI of the OpenSARUrban dataset is much larger than that
of TerraSAR-X ship dataset, showing that the OpenSARUrban
is easier to achieve accurate classification and recognition in
open set conditions than the TerraSAR-X ship dataset. At the
class level, even though the SAR image classes are semantically
different from each other. If a class is set unknown and out
of supervision, the latent representations of unknown classes
are scattered across the distribution of other known classes,
resulting in the overlap with supervised known classes. Thus
the classification in open set settings is more difficult. Besides,
classes with low CSI are more intractable to be classified when
known and recognized as unknown when unknown correctly.
DSI and CSI are effective indicators to quantify the difficulty of
practical classification. This method is not limited to SAR data
only, it could be extended to any other kind of data.
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