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Graph Convolutional Networks-Based
Super-Resolution Land Cover Mapping
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Abstract—Super-resolution mapping (SRM) is an effective tech-
nology to solve the problem of mixed pixels because it can be used
to generate fine-resolution land cover maps from coarse-resolution
remote sensing images. Current methods based on deep neural
networks have been successfully applied to SRM, as they can
learn complex spatial patterns from training data. However, they
lack the ability to learn structural information between adjacent
land cover classes, which is vital in the reconstruction of spatial
distribution. In this article, an SRM method based on graph con-
volutional networks (GCNs), named SRMGCN, is proposed to
improve SRM results by capturing structure information on the
graph. In SRMGCN, a supervised inductive learning strategy
with mini-graphs as input is considered, which is an extension of
the GCN framework. Furthermore, two operations are designed
in terms of adjacency matrix construction and an information
propagation rule to help reconstruct detailed information of ge-
ographical objects. Experiments on three datasets with different
spatial resolutions demonstrate the qualitative and quantitative
superiority of SRMGCN over three other popular SRM methods.

Index Terms—Deep neural networks (DNNs), graph
convolutional networks (GCNs), land cover, subpixel,
super-resolution mapping (SRM).

I. INTRODUCTION

R EMOTE sensing images are considered the most important
input to produce land cover maps. However, mixed pixels,

which refer to pixels that contain more than one land cover class,
constitute a significant obstacle to accurate classification [1]–[3].
Due to the complex distribution patterns of geographical objects
and the limitation of the sensor’s spatial resolution [1], [4], mixed
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pixels are common in low-, medium-, and even high-resolution
remote sensing images. Hard classification simply assigns the
most likely land cover class to each mixed pixel; however, this
process may inevitably bring tremendous information loss [5].
Soft classification provides membership grades for each class
which can also be considered as the area proportions of different
land cover classes within coarse-resolution pixels in the form of
fraction images [5]–[7]; however, it is unable to determine the
correct position of land cover classes inside the mixed pixel.
Therefore, super-resolution mapping (SRM) technology was
developed to address this problem [6]–[9].

In the past 20 years, various SRM technologies have been
developed. These technologies can be roughly classified into
two groups, according to the model used to describe the spatial
pattern of land cover classes. One group uses explicit prior
models to analyze the spatial distribution of land cover classes
through clear formulations. The maximal spatial dependence
model based on the first law of geography [10] is used most fun-
damentally and commonly [8]. The spatial position of each class
in mixed pixels is determined by maximizing the spatial depen-
dence at the subpixel scale, the subpixel/pixel scale, the object
scale [11], or multiple scales [12]. Typical algorithms include
the spatial attraction model (SAM) [13], the vectorial boundary
model (VBSPM) [14], the maximum a posteriori (MAP) based
methods [15], etc. In recent years, some optimization algorithms
have been developed to acquire optimal SRM results. Ma et
al. [16] proposed multiobjective subpixel land-cover mapping
framework to resolve the regularization parameter determination
problem in the MAP-based SPM methods; based on this, Song et
al. [17] introduced multiple shifted images to the multiobjective
model to produce more accurate mapping results. However,
the aforementioned methods need to take the fraction images
generated by soft classification as input, and cannot fully exploit
the spectral information of the original image. Therefore, some
SRM approaches incorporating the original spectral information
and the concept of spatial dependence have been proposed
[18]. Although maximal spatial dependence is a widely used
basic assumption of SRM, the spatial heterogeneity distribution
characteristics of geographical objects are also universal [19];
this makes the maximal spatial dependence model unsuitable for
some situations, especially for intricate and fragmented patterns
in an extreme situation [20].

The other group uses learning-based methods to address SRM
issues without explicit prior models, but with implicit relation-
ships between coarse-resolution images and fine-resolution land
cover maps learned from sample pairs. Support vector regression
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[21] and back-propagation neural networks [22], [23] have been
proposed to achieve this goal. Both of them are dedicated
to describing the relationship between fractions in the local
window and the spatial distribution of subpixels in the central
coarse pixel, but they have difficulty learning elusive non-linear
hidden representation. Recently, methods based on deep neural
networks (DNNs), such as convolution neural networks (CNNs)
[24]–[26] and generative adversarial networks [27] for SRM
have gradually emerged. Some SRM methods based on DNNs
comprise two steps: fraction image super-resolution and land
cover allocation for subpixels [28], [29], and the successful
experience of DNNs in image super-resolution can be used as
references for the first step of SRM. He et al. [30] summarized
a unified deep learning framework for SRM, into which the
majority of the state-of-the-art networks could be easily em-
bedded. DNNs can extract complicated feature representations
from low to high levels by composing multiple simple but
nonlinear modules [31], which have considerable advantages in
modeling the complex relationships between coarse-resolution
images and fine-resolution land cover categorical maps [24],
[32]. Although compared with other approaches, DNNs-based
methods have shown superiority in SRM, it is still a challenge to
recover the details of SRM results with existing learning modes.
Moreover, most current SRM methods based on DNNs choose
to design deeper and more complex network structures with
many parameters, ignoring the potential structural relationship
between adjacent land cover classes; this hinders the represen-
tation capability of networks.

In recent years, owing to good performance in flexibly extract-
ing structural feature representations from complicated graph
data, graph convolutional networks (GCNs) [33] have attracted
more attention. Although GCNs initially focused on applica-
tions in which the data were represented typically in the form
of graphs, including social networks, traffic networks, citation
networks, and so on, the important roles of GCNs in the field
of image processing have been explored and proven lately. The
research on image processing revealed the strong performance of
GCNs in image recognition [34], [35], image semantic segmen-
tation [36], and hyperspectral image classification [37]–[40],
even if images have long been treated as regular grids in Eu-
clidean space rather than graph structure data. It was found that
in remote sensing image classification, local spatial structure
information between adjacent land covers can be encoded by
GCNs to flexibly preserve the class boundaries [37], which can
also provide new perspectives for better addressing the SRM
problem.

In this article, an SRM approach based on GCN is proposed,
called SRMGCN. This approach considers an enhanced spatial
neighborhood relation by building graph structures based on
spatial distance and class-fractional similarity; hence, the inher-
ent relationship between adjacent land covers can be captured
by utilizing the learned model. To the best of our knowledge,
this is the first time that GCN has been applied to solving
SRM problems. To exhaustively exploit the input features and
reconstruct detailed information of geographical objects, we
have improved the GCN [33] in two aspects. First, in the
construction of the adjacency matrix, dynamic edge weight ad-
justment is realized by adding a layer-wise trainable parameter.

Second, in the rule of information propagation, we introduce
an input feature transformation matrix into each layer to fuse
the relatively shallow features. On top of this, we extend the
original GCN proposed for semisupervised node classification
to a generalizable classifier with a supervised inductive learning
strategy in which the mini-graphs are constructed to train the
GCN. In this way, GCN can be used to solve node classification
where unlabeled data are inaccessible during the training stage.

The remainder of this article is organized as follows. Sec-
tion II elaborates on the proposedSRMGCN. Section III presents
experimental results of three datasets with different spatial res-
olutions using the proposed method in comparison with three
popular SRM methods. Sections IV and V state discussions and
conclusions, respectively.

II. METHODOLOGY

A. Basic Theory of SRM

The aim of SRM is to determine the appropriate spatial distri-
bution of land cover classes within coarse mixed pixels by taking
the fraction images as input [7], [8]. In the real situation, the frac-
tion images are obtained through soft classification. However,
the process of soft classification inevitably contains some errors
and uncertainties. Therefore, the experimental part of this article
uses synthetic fraction images to verify the effect of the proposed
SRM method without soft classification errors. For a given
fine-resolution land cover map, synthetic coarse fraction images
can be simulated by averaging the pixel values of the original
fine-resolution map contained within each coarse pixel with a
certain scale factor [24], [27]. The averaging filter in this process
can be regarded as an error free soft classifier that does not
require training. During the SRM process, each coarse pixel is di-
vided into small subpixels and each subpixel is regarded as pure
so that only one of the classes is assigned to it. As a result, a finer
resolution representation of the land cover map can be attained.

To be specific, let C be the number of land cover classes and
suppose that fraction images with spatial resolution r have been
estimated by a soft classifier. Assuming fraction images cover
n pixels, then the coarse fraction images can be represented
as X = {xi,c | i = 1, 2, . . . , n; c = 1, 2, . . . , C}. Given a scale
factor S, a fine spatial-resolution land cover map with spatial
resolution R (R = r/S) can be obtained through SRM by de-
composing each pixel into S × S subpixels.

The fine land cover map can be represented as Y =
{yj,c | j = 1, 2, . . . , N ; c = 1, 2, . . . , C} and N = n× S2,
where yj,c ∈ {0, 1} is defined in (1); this means that each
subpixel is allocated a value 1 or 0 for each class. Meanwhile,
each subpixel should be allocated only one land cover class,
meaning that the condition

∑C
c=1 yj,c = 1 should be satisfied

for all j = 1, 2, . . . , N to ensure the uniqueness of subpixel class

yj,c =

{
1, subpixel j belongs to class c
0, otherwise

. (1)

B. Definition of GCN

Based on spectral theory, GCN [33] is a multilayer neural
network architecture that directly operates on arbitrary graph
structure data and aims to generate node representations via
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a layer-wise propagation rule. The aggregation of feature in-
formation is conducted in each graph convolutional layer to
extract high-level features from neighbors to their center nodes.
Formally, let G = (V, E) be an undirected graph with N nodes
vi ∈ V , edges (vi, vj) ∈ E . An adjacency matrix A (weighted
or unweighted) of G indicates whether each pair of nodes is
connected and contains the structure information of the graph.

To acquire the hidden representation of nodes, spectral con-
volutions on a graph are defined by multiplying a graph sig-
nal with C input channels x ∈ RN×C with a spectral filter
gθ(Λ) = diag(θ) in the Fourier domain, as (2) expresses

gθ � x = Ugθ (Λ)UTx (2)

where U is the matrix of eigenvectors of the symmetric
normalized Laplacian matrix L = IN −D−1/2 AD−1/2 =
UΛUT . Here, IN is an identity matrix. D is a diagonal degree

matrix of the graph with elementDii =
∑

j Aij .Λ is a diagonal

matrix whose elements are the eigenvalues of L. In (2), UTx
represents the graph Fourier transform ofx. gθ(Λ) is considered
a function of the eigenvalues of L.

To reduce the computational costs and realize a local con-
nection [33], [41], [42], Hammond et al. [43] established an
approximating formula about the spectral filter gθ(Λ) with
Chebyshev polynomials Tk(·) up to the orderKth to circumvent
computing the eigenvectors of the Laplacian matrix L. Then the
convolution of a graph signal x with a spectral filter gθ′ can be
defined as

gθ′ � x ≈
K∑

k=0

θk
′Tk

(
L̃
)
x (3)

where L̃ = 2/(λmax)L − IN with λmax being the largest eigen-
value ofL. θk

′ ∈ RK is a vector of Chebyshev coefficients. This
formulation is K-localized since it only depends on the nodes
in the Kth-order neighborhoods of the central node.

Considering that a linear function of spectral convolutions on
a graph can improve modeling capacity on a number of domains,
Kipf and Welling [33] limited K = 1 to simplify this model and
further approximated λmax of L by 2. By doing so, (3) can be
rewritten as

gθ′ ∗x ≈ θ
(
IN +D− 1

2AD− 1
2

)
x (4)

by allowing the free parameters satisfy θ = θ0
′ = − θ1

′ to
address overfitting and minimize the number of operations
per layer. Kipf and Welling further introduced a renormaliza-
tion trick and applied it to the convolution matrix to enhance
stability during network training: IN +D−1/2AD−1/2 →
D̃

−1/2
ÃD̃

−1/2
, with Ã = A+ IN and D̃ij =

∑
j Ãij . The

Ã means an adjacency matrix with added self-loops. Therefore,
a layer-wise propagation rule in GCN is as follows:

H(l) = σ

(
D̃

− 1
2 ÃD̃

− 1
2H(l−1)W (l) + b(l)

)
(5)

where H(l)(l ≥ 1) denotes the output in the lth graph convo-
lutional layer; σ(·) represents a nonlinear activation function,
such as the rectified linear unit (ReLU) and Softmax used in this
article; W (l) and b(l) denote the trainable weight matrix of filter

parameters and the bias vector, respectively, included by the lth

layer.

C. The Proposed SRM Method

The framework is presented in Fig. 1. When input fraction
images are given, they are preprocessed by interpolating and
splitting to generate mini-graphs. In the training stage, the pro-
posed GCN is designed to train labeled data regarding subpixels
as nodes by minimizing a certain loss function. In the testing
stage, unlabeled data are fed into the trained model to produce fi-
nal fine-resolution land cover maps through two class-allocation
algorithms. The three critical aspects are detailed below.

1) Mini-graphs Generation: In studies to date, the applica-
tions of GCN in remote sensing image classification are mostly
based on feeding all samples in one big graph into the network
[37]–[39]; two main problems arise from this. First, the massive
nodes and edges of all samples will slow calculation and run
out of memory. Second, it is impossible to build a generalizable
classifier to predict unknown input through inductive learning.

To solve these problems, a training strategy based on mini-
graphs is adopted in this article. As shown in Fig. 2, on the
one hand, input coarse fraction images are first interpolated to
nominal fine resolution images with a scale factor ofS. Here, this
operation is realized by the nearest neighbor interpolation. Then
the nominal fine resolution images are used to extract a series
of patches by a certain size of sliding window with a suitable
sampling stride. For each patch, a mini-graph is constructed
with each subpixel in the patch taken as a node; the graph node
features are initialized with class fractions of subpixels after
interpolation, which is locally expressed in Fig. 2 (a). Each mini-
graph is a spatial distance-based structure graph in which each
node as center node connects to its first-order neighborhoods and
Fig. 2 (b) shows additional details. On the other hand, the ref-
erence map is extracted from the original labeled classification
map using the same size of sliding window and sampling stride;
it then forms a sample pair with the corresponding mini-graph. In
this way, the SRM is transformed into a graph node classification
problem at subpixel scale. Subsequently, these sample pairs
based on mini-graphs are used for training and predicting in
batches.

2) Proposed SRM Network: The proposed SRM model
(SRMGCN) adopts the GCN as the backbone. The proposed
model improves the construction of the adjacency matrix and
the rule of information propagation in each graph convolutional
layer to obtain node attribute information in a more detailed and
comprehensive manner.

In the first place, the GCN is dependent on the adjacency
matrix A to propagate information between nodes; hence, how
to build A is critical for the GCN [44]. Here, we select the
similarity distance-based weighted A. Each element of it, also
known as the weight of the edge between each pair of nodes, can
be computed by using the heat kernel function [40]. However,
in a graph-based SRM problem with subpixels as nodes, the
similarity between nodes will change after aggregation of layer-
wise information. There is a high computational cost associated
with assigning each edge a dynamic adjustment parameter or
recalculating the similarity distances of each layer. Thus, based
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Fig. 1. Framework of our method.

Fig. 2. Generating progress of the mini-graph and the sample pair. In the middle is an enlarged schematic view of the lower right corner of the mini-graph
constructed based on the patch. (a) Graph node features derived from class fractions of subpixels. (b) First-order neighborhood diagram in the mini-graph and
every node denotes a subpixel node. The orange node is an inner node on the graph with eight yellow first-order neighborhoods. The blue node is a corner node on
the graph with three yellow first-order neighborhoods. The green node is a border node on the graph with five yellow first-order neighborhoods. The arrows point
to the direction of information aggregation, that is, to their center nodes.

on the weightedA, an additional trainable edge weighted param-
eter is added in each layer so that the correlation between land
cover information represented by adjacent subpixels defined
by elements of A can be dynamically adjusted via layer-wise
training. Each element of A(l) in the lth layer be measured as

A
(l)
ij =

{
θ(l)e−γ‖xi−xj‖2, if vi ∈ N (vj) or vi ∈ N (vj)
0, otherwise

(6)
where xi and xj denote the feature vectors associated with the
nodes vi and vj . N(vi) (or N(vj)) is the set of neighbors of vi
(or vj). θ(l) is the trainable parameter in the lth layer with an
initial value of 1, and each element of A is multiplied by this
parameter to get theA(l). As for the parameter γ, we empirically
set 0.2 referring to [37] and [39].

In the second place, the propagation rule expressed in (5)
can only propagate the aggregated features, but cannot directly
fuse the input features (in other words, the relatively shallow
information) of each layer. Actually, the input features are ex-
pected to help supplement the boundary and contour information
of geographical objects, so we add a trainable input feature

transformation matrix W
(l)
2 of transformation parameters to

the above propagation rule to further improve the process of
feature representation. Now, we have the following layer-wise
propagation rule in this article:

H(l)

= σ

(
D̃

(l)− 1
2 Ã

(l)
D̃

(l)− 1
2H(l−1)W

(l)
1 +H(l−1)W

(l)
2 + b(l)

)

(7)

where W
(l)
1 is equivalent to W (l) in (5) and W

(l)
2 has the

same dimensions with W
(l)
1 . Ã

(l)
and D̃

(l)
vary with A(l)

in each layer. D̃
(l)− 1

2 Ã
(l)
D̃

(l)− 1
2H(l−1)W

(l)
1 represents the

features after information aggregation;H(l−1)W
(l)
2 is the trans-

formation of input features which represents relatively shallow
features.

In the SRMGCN network, a shallow GCN with four convo-
lutional layers is used to train and predict the input datasets,
where the first three graph convolutional layers are followed
by the ReLU function and the last graph convolutional layer
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Fig. 3. Diagram of propagation of feature information. The superscripts l (l = 1, 2, . . .) ofH denote the output of the lth layer. The superscripts l (l = 1, 2, . . .)

of W1 and W2 denote trained variables of the lth layer. The superscripts l (l = 1, 2, . . .) of A are calculated from the trained variables θ(l) in the lth layer.

is followed by the Softmax function. In general, the proposed
network takes an initial node feature matrix X and an adjacency
matrix A as inputs and produces node features Z ∈ RN×C by
stacking several graph convolutional layers of the form of (7),
where C is the output dimension (i.e., the number of land cover
classes in our cases). Finally, a C-dimensional feature vector
for every node is produced, which represents a soft attribute
estimation value of each subpixel, that is, the probability of each
subpixel belonging to each class. For clarity, Fig. 3 demonstrates
the propagation of feature information when stacking the first
two graph convolutional layers.

For the SRM task, we adopt the cross-entropy loss function
to evaluate the difference between the network output and the
labels in the training set, which is

loss = −
∑
g∈yG

C∑
c = 1

Y gc lnZgc (8)

where yG is the node indices in the training set and Y denotes
the label matrix.

3) Class-Allocation Algorithm: The allocation of classes for
subpixels after the soft attribute estimation values are obtained at
the subpixel scale is also a significant issue that directly affects
the result of SRM [45]. In this article, we adopt two algorithms,
direct hardening (DH) [46], [47] and linear optimization tech-
niques (LOTs) [48], to complete class allocation.

Like the traditional hard classification, DH assigns each sub-
pixel to the class with the maximum soft attribute value [47].
Its formula is shown in (9), where pj,c and pj,c′ denote the soft
attribute value of class c and c′ respectively. This approach is
simple and efficient, but it easily creates overly smooth mapping
results because it does not take constraints from class fractions
into account

yj,c =

{
1, if pj,c = max (pj,c′) and 1 ≤ c, c′ ≤ C
0, otherwise.

(9)

LOT introduces an objective function for maximizing the sum
of soft attribute values of all subpixels in each coarse resolution
pixel. This objective function expressed in (10) needs to be sub-
jected to constraints from class uniqueness and class fractions
given in (11) [45], [48], where xi,c|j denotes the class fraction
value of class C in pixel i corresponding to the given subpixel
j. Both the function to maximize and the constraints are linear

equations, so the theoretically optimal solution (i.e., optimal land
cover classes of subpixels) of the above mathematical model
can be find by LOT. Several algorithms can be applied, and the

branch-and-bound algorithm [49] is employed for this purpose in
this article. Although LOT is a little time-consuming compared
with DH due to many iterations, the experiments in related
studies have shown that it can usually produce pleasing mapping
results [45], [50]. Note that this method is only applied to mixed
pixels, whereas subpixels of pure pixels are still allocated land
cover classes by the DH method to save time

Maximize F =
S×S∑
j=1

C∑
c=1

yj,c × pj,c (10)

subject to

⎧⎪⎪⎨
⎪⎪⎩

C∑
c=1

yj,c = 1

S×S∑
j=1

yj,c = round
(
xi,c|j × S2

) . (11)

III. EXPERIMENT AND ANALYSIS

To eliminate the uncertainty of soft classification, experiments
were performed on three different resolution datasets with syn-
thetic coarse fraction images to evaluate the proposed SRMGCN

method. The synthetic images were created by degrading the
actual fine land cover map to coarse fraction images by applying
an averaging filter with a scale factor of 3. The three original land
cover maps all represented the real distribution of geographical
objects on the earth’s surface and were, respectively, used as
reference images to assess the effectiveness of mapping results.
A traditional hard classifier and three existing SRM methods
with relatively remarkable performances, VBSPM [14], SAM
[13], and SRMCNN [25], were compared with the proposed
SRMGCN method.

A. Datasets

The first dataset was extracted from GlobeLand30 V2020,
the 30-m resolution global land cover data product containing
966 tiles developed by China. This data could be obtained
from the Global Land Cover Data Product Service website of
the National Geomatics Center of China (www.globeland30.
org; DOI: 10.11769). We selected one of the tiles marked
N49_30_2020LC030 for experiments. In this tile comprising
19796× 18988 pixels, we randomly extracted 80 chips with 540
× 540 pixels, 65 of which were used to generate mini-graphs
for training, and the rest were used to generate mini-graphs for
testing. The land cover map of the study area, which is regarded
as the reference image, includes eight primary land cover classes:

www.globeland30.org;
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TABLE I
KEY INFORMATION ABOUT DATASETS

Cultivated Land, Forest, Grass Land, Shrubland, Wetland, Water
Body, Artificial Surfaces, and Bareland.

The second dataset is the example dataset of EOPatches for
Slovenia 2019 (http://eo-learn.sentinel-hub.com). This dataset
contains 25 groups of Sentinel-2 time series images and the cor-
responding 10-m resolution land use and land cover maps with
500 × 500 pixels. In our experiments, 20 land cover maps were
used to generate training set and 5 were used to generate testing
set. The land cover classes of this dataset are summarized into
eight classes: Cultivated Land, Forest, Grassland, Shrubland,
Water, Wetland, Artificial Surface, and Background.

The third dataset is a set of 20 chips very-high-resolution
images named Zurich Summer (https://sites.google.com/site/
michelevolpiresearch/data/zurich-dataset), which were cap-
tured by the QuickBird satellite in August 2002 over the city
of Zurich, Switzerland [51]. The spatial resolution of the corre-
sponding ground truth masks considered as reference images is
0.61 m as pansharpened panchromatic images, and the average
size of the masks is 1182 × 1051 pixels. We used four chips
(No. 1, 5, 6 and 13) to generate mini-graphs for testing and the
rest to generate mini-graphs for training. Nine different urban
and periurban classes were manually annotated in ground truth
masks: roads; buildings; trees; grass; bare soil; water; railways;
swimming pools; and others (Background).

Some key information about these three datasets is given in
Table I. Note that the proportion of pure pixels in the last column
refers to the ratio of the number of pixels containing only one
land cover class to the total number of coarse resolution pixels
in fraction images.

B. Experimental Settings

According to Section II-C, a series of mini-graphs of each
dataset were generated and split into a training set, a validation
set, and a test set to test our model. The training sets of the three
datasets involve samples of all classes. The size of the patch used
to construct the mini-graph and the number of mini-graphs of
the three datasets are given in Table II.

In our experiments, the numbers of input and output channels
of other layers are set to 64; the exception is that the number
of input channels of the first layer and output channels of the
last layer are equal to the number of land cover classes. The
proposed network was completed via the Python-3.6 platform
[52] and PyTorch-1.4.0 framework [53]. Training was run on an
NVIDIA Quadro RTX 5000 GPU with 16 GB GPU memory.
We selected the Adam algorithm [54] to optimize the network
with a learning rate equal to 0.005. In the process of network
training, the number of epochs and batch size were set to 200
and 8, respectively.

TABLE II
SIZE OF PATCHES AND NUMBER OF MINI-GRAPHS

C. Results

From the perspective of visual evaluation and quantitative ac-
curacy assessment, the effectiveness of the proposed SRMGCN

and aforementioned baseline methods on the test set of the three
datasets are evaluated. The per-class accuracy, overall accuracy
(OA), average accuracy (AA), and kappa coefficient (Kappa) are
employed as the metrics for the latter.

1) Results on the GlobeLand30 Dataset: A visual compar-
ison of SRM results generated by different methods on
the GlobeLand30 dataset is shown in Fig. 4(c)–(g). The
reference map and hard classification map are also pro-
vided in Fig. 4(a) and (b). The classification maps of
VBSPM and SAM result in salt-and-pepper noise on the
edge of the objects, especially linear objects. Contrarily,
SRMCNN, SRMGCN(DH), and SRMGCN(LOT) are able
to yield smoother visual effects. Additionally, it is also
notable that the linear water body is discontinuous in
the SRMCNN result. In contrast, since SRMGCN(DH)

and SRMGCN(LOT) take effort to construct and learn
the spatial relationship between nodes, the continuity and
integrity of these elongated features are well preserved.
Note that, in the SRMGCN(DH) result, some subpixels of
“Shrubland” dotted on the “grass land” are misclassified
into “grass land” because the DH class-allocation algo-
rithm brings overly smooth results to some extent.

Table III quantitatively reports the assessment results obtained
by different methods on the GlobeLand30 dataset. Since the
input fraction images produced by degrading reference images
are error free, the values of the assessment indexes of the
five SRM results are all relatively high. Consistent with the
above visual evaluation, the OA, AA, and Kappa values of
the DNNs-based SRM methods, SRMCNN, SRMGCN(DH), and
SRMGCN(LOT), are higher than those of VBSPM and SAM.
Our GCN-based methods perform better than the SRMCNN

because elongated features are fragmentary using SRMCNN. In
general, SRMGCN(LOT) with LOT class-allocation algorithm
achieves the optimal performances in AA and most specific
class accuracies, especially “Shrubland,” whose geo-objects are
spotted, and SRMGCN(DH) provides the highest values in OA
and Kappa.

2) Results on the Slovenia Dataset: The reference map,
hard classification result, and five SRM results on the
Slovenia dataset are displayed in Fig. 5. It is obvious

http://eo-learn.sentinel-hub.com
https://sites.google.com/site/michelevolpiresearch/data/zurich-dataset
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Fig. 4. Example of classification maps with 496 × 496 pixels from the test set of the GlobeLand30 dataset. (a) Reference map. (b) Hard classification map.
(c)–(g) SRM results of VBSPM, SAM, SRMCNN, SRMGCN(DH), and SRMGCN(LOT), respectively. The second and third rows are zoomed-in area 1 and
zoomed-in area 2 of the first row, respectively.

TABLE III
PER-CLASS ACCURACY (%), OA (%), AA (%), AND KAPPA COEFFICIENT ON THE GLOBELAND30 DATASET

Note: The best one is shown in bold.

that the traditional hard classification can only provide an
extremely rough description of the distribution pattern of
geographical objects, whereas the other five SRM methods
can portray this spatial distribution in more detail. In
addition, it can be seen clearly from the comparison of two
critical zoomed-in areas that the slender linear artificial
surface objects are disconnected and even almost vanish
in the fine classification maps produced by VBSPM and
SRMCNN. Although SAM retains more details, it is unable
to determine the correct spatial position of each class but
creates discrete messy small patches. Due to building the
spatial contextual structure via graph, SRMGCN(DH) and
SRMGCN(LOT) generate results that are more similar to
the reference maps than other methods with the correct and
complete linear information retained in the regions that are
difficult to recover. Also, as expected, details produced by

SRMGCN(LOT) are better reconstructed because of the
increased constraints from class fractions by utilizing the
LOT algorithm.

The accuracy assessments of the five methods on the Slovenia
dataset bear out the aforementioned findings. Similar to the
GlobeLand30 dataset, the results in Table IV indicate that the
OA, AA, and Kappa of VBSPM and SAM are at least 2%
lower than those gained by the SRM methods based on deep
learning, i.e., SRMCNN, SRMGCN(DH), and SRMGCN(LOT).
Moreover, the highest values of OA, AA, and Kappa are captured
by our proposed two GCN-based methods, i.e., SRMGCN(DH)

and SRMGCN(LOT), which validates the strength of the graph
structural features in SRM technology. As for the way of class
allocation, the LOT results are not that different from the DH
results, whereas the visual effect of the former is superior to that
of the latter, as mentioned above.
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Fig. 5. Example of classification maps with 390 × 390 pixels from the test set of the Slovenia dataset. (a) Reference map. (b) Hard classification map. (c)–(g)
SRM results of VBSPM, SAM, SRMCNN, SRMGCN(DH), and SRMGCN(LOT), respectively. The second and third rows are zoomed-in area 1 and zoomed-in
area 2 of the first row, respectively.

TABLE IV
PER-CLASS ACCURACY (%), OA (%), AA (%), AND KAPPA COEFFICIENT ON THE SLOVENIA DATASET

Note: The best one is shown in bold.

3) Results on the Zurich Summer Dataset: Fig. 6 illustrates
the SRM results of five different methods on the Zurich
summer dataset, where some enlarged areas of the first
row are further provided in the last two rows for better
visual inspection. Although the results of the five meth-
ods show no significant differences in this dataset from
the overall perspective, the local views still indicate that
SRMCNN, SRMGCN(DH), and SRMGCN(LOT) are excel-
lent at suppressing speckle noise and blurred boundaries
compared with VBSPM and SAM. For instance, “build-
ings,” “roads,” and “trees” all have clearer boundaries in
the results generated by these three SRM methods based
on DNNs, particularly when there are small protrusions in
the boundaries.

The quantitative evaluation results of the OA, AA, and Kappa
on the Zurich Summer dataset are given in Table V. It is apparent
that the performance of all methods is better than that of the Glo-
beLand30 and Slovenia datasets. This can be attributed mainly
to the higher proportion of pure pixels (see the last column
of Table I) and simpler spatial patterns of the Zurich Summer
dataset. Consistent with visual perception, the statistical results
of the evaluation indexes of all methods are similar; however,
slight superiorities can still be observed whenSRMGCN(DH) and
SRMGCN(LOT) are compared with SRMCNN and other com-
petitors in terms of all experimental assessment metrics, which
highlights the potential of the proposed GCN-based method
in SRM analysis. It is also worth noting that SRMGCN(LOT)

secures maximum values with respect to almost all statistics
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Fig. 6. Example of classification maps with 1362 × 1293 pixels from the test set of the Zurich Summer dataset. (a) Reference map. (b) Hard classification map.
(c)–(g) SRM results of VBSPM, SAM, SRMCNN, SRMGCN(DH), and SRMGCN(LOT), respectively. The second and third rows are zoomed-in area 1 and
zoomed-in area 2 of the first row, respectively.

TABLE V
PER-CLASS ACCURACY (%), OA (%), AA (%), AND KAPPA COEFFICIENT ON THE ZURICH SUMMER DATASET

Note: The best one is shown in bold.

except that the per-class accuracies of “roads,” “buildings,” and
“water” are modestly lower than the results of SRMGCN(DH).

IV. DISCUSSION

A. Usefulness of the Proposed Graph Convolutional Layer

As mentioned in the introduction and Section II-C, we are
committed to improving the original graph convolution opera-
tion in the construction of the adjacency matrix and the infor-
mation propagation rule. Here, we conducted an ablation study
on the Slovenia dataset to illustrate the usefulness of these two
operations. The DH algorithm was employed for all approaches
to determine the optimal land-cover labels of subpixels, and the
network structures were kept identical to the abovementioned

experiments except for graph convolution operations of convo-
lutional layers. At a scale factor of 3, the visual comparison of the
SRM results using four different graph convolution approaches
on another test area of the Slovenia dataset are exhibited in
Fig. 7(c)–(f), and their varied accuracy assessment results are
given in Table VI. Approach 1 uses the original convolutional
layers with the similarity distance-based weighted adjacency
matrix, but without the trainable edge weighted parameter based
on it and the trainable input feature transformation matrix. On
this foundation, approaches 2 and 3, respectively, only use the
proposed adjacency matrix construction operation and informa-
tion aggregation operation. The last graph convolution approach
is our proposedSRMGCN(DH), which contains both of the above
operations.
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Fig. 7. Example of classification maps with 440 × 440 pixels of the Slovenia dataset achieved by different graph convolution approaches. (a) Reference map. (b)
Hard classification map. (c)–(e) SRM results using the graph convolution of approaches 1 to 3, respectively. (f) SRM result of SRMGCN(DH). The second and
third rows are zoomed-in area 1 and zoomed-in area 2 of the first row, respectively.

TABLE VI
PER-CLASS ACCURACY (%), OA (%), AA (%), AND KAPPA COEFFICIENT

ACHIEVED BY DIFFERENT GRAPH CONVOLUTION APPROACHES ON THE SLOVENIA DATASET

Note: The best one is shown in bold.

It can be observed from Fig. 7 that the SRM results obtained
by different graph convolution approaches have significant di-
vergences in the recovery of small-sized patches and elongated
features. By and large, due to the lack of layer-wise input fea-
tures, the resultant classification maps of approaches 1 and 2 are
both visually smooth, such that the details fail to be restructured,
even though the performance of approach 2 is a little better than
that of Approach 1 because of an extra parameter for each layer
to regulate the edge weights (e.g., the partial linear features
of “artificial surface” are captured in Fig. 7(d–1), but not in
(c–1)). Contrarily, the results of approach 3 and SRMGCN(DH)

retain more details, especially the narrow linear information

of “water,” “artificial surface,” and “shrubland.” This further
demonstrates the significance of layer-wise input features in
the SRM process based on GCN. Most notably, SRMGCN(DH)

adopts the proposed approaches of adjacency matrix construc-
tion and information propagation and is capable of restoring
the details to the greatest extent, including boundaries of areal
objects, linear structural features, and fragmented patches. In
Table VI, consistent with visual results, there is a noticeable per-
formance drop in the quantitative results of approaches 1 and 2
compared with other graph convolution approaches that directly
integrate the input features’ transformation information of each
layer. Although the numerical value results of SRMGCN(DH)
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TABLE VII
OA (%), AA (%), AND KAPPA COEFFICIENT ON THREE DATASETS AFTER EXCLUDING PURE PIXELS

Note: The best one is shown in bold.

and approach 3 are relatively close except for several per-class
accuracies, SRMGCN(DH) contributes to the more satisfactory
visual effect, as seen in Fig. 7. The better performance of our
method is attributed to fully considering the spatial relationship
between adjacent nodes representing land covers, while making
full use of relatively shallow shape information.

B. Comparison of SRM Results on Three Datasets

Our experiments have obtained the SRM results using differ-
ent methods on three datasets with different spatial resolutions.
Since the overall assessment results of OA, AA, and Kappa
in Tables III–V are affected by the proportion of pure pixels
in the fraction images with different spatial resolutions, we
summarized the statistical results of removing pure pixels on the
three datasets, as given in Table VII. In Table VII, adjusted OA,
adjusted AA, and adjusted kappa denote the OA, AA, and Kappa
coefficients after excluding pure pixels, respectively. From the
resultant table, we find that the SRM results of all methods on the
three datasets have a certain degree of reduction after removing
the pure pixels; the Zurich Summer dataset has the smallest
reduction. Meanwhile, the gap in the quantitative evaluation re-
sults of various methods is further increased, especially between
DNNs-based methods and the traditional methods; the proposed
two methods can result in more accurate spatial location results
of subpixels within mixed pixels.

Moreover, the accuracy results of the five methods on the
GlobeLand30 dataset after pure pixels are removed are slightly
higher than those of the Slovenia dataset. On the Zurich sum-
mer dataset, the results of all methods increase significantly,
which is similar to the conclusions obtained from comparing
Tables III–V. Under the same scale factor, the reason for these
results may be related to the spatial distribution characteristics
of the geographical objects in different datasets. To clarify this
further, we calculated the values of two landscape indices on
the test set of the three datasets to represent the spatial pattern
characteristics; the results are illustrated in Fig. 8. The number
of patches (NP) per 10 000 grids can be used to describe the
heterogeneity of the entire landscape, and its value has a good
positive correlation with the degree of fragmentation of the
landscape. Generally speaking, the larger the NP, the higher the
degree of fragmentation. The aggregation index (AI) [55] is a
ratio of actual shared edges to maximal possible shared edges,

Fig. 8. NP and AI of three datasets. Note that we use the reciprocal of NP, i.e.,
1/NP, to directly reflect the positive correlation with accuracy.

which is designed to measure aggregation of spatial patterns.
The AI of the highest level of aggregation is equal to 1, and the
AI of the lowest level of aggregation is equal to 0.

Fig. 8 indicates that compared with other datasets, the spatial
pattern of the Slovenia dataset is the most fragmented, which
makes the SRM process more difficult because more compli-
cated land covers need to be located; hence, it has the lowest
accuracy. In contrast, the spatial structure of the Zurich summer
dataset is highly aggregated, which can bring more accurate
results with a simpler SRM process.

C. Impact of Different Scale Factors on the SRM Results

The influence of different scale factors on the SRM results is
also worthy of investigation. Therefore, the SRM performances
with different scale factors were analyzed by studying on the
GlobeLand30 dataset. Based on the experiments with a scale
factor of 3 in Section III, two scale factors S = 4 and S = 5
were added and tested on the GlobeLand30 dataset for evaluating
the accuracy of the five SRM methods. Fig. 9 and Table VIII
compare the visual performance and quantitative assessments,
respectively.

The results shown in Fig. 9(b)–(f) indicate that speckle noise
and blurred boundary are significantly improved by three DNNs-
based methods, especially at the scale factor of 5. In addition, the
results of SRMGCN are closer to the reference image, because
the mapping results of SRMCNN look slightly smoother, which
makes some details disappear. Moreover, the mapping accuracy
gradually decreased with an increased scale factor, which can
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Fig. 9. Classification maps with 190 × 190 pixels of different scale factors of the GlobeLand30 dataset. (a) Hard classification map. (b)–(f) SRM results of
VBSPM, SAM, SRMCNN, SRMGCN(DH), and SRMGCN(LOT), respectively.

TABLE VIII
OA (%), AA (%), AND KAPPA COEFFICIENT OF DIFFERENT SCALE FACTORS ON THE GLOBELAND30 DATASET

Note: The best one is shown in bold.

TABLE IX
PARAMETERS OF SRMGCN AND SRMCNN MODELS ON THE SLOVENIA DATASET

be more easily seen by observing the quantitative results from
Tables III and VIII. The possible reason is that the spatial
locations of subpixels within mixed pixels increased with the
increase of scale factor which makes the SRM process more
complicated [45].

D. Further Comparison between SRMCNN and SRMGCN

To further understand the CNN-based and GCN-based SRM
methods used in this article, a further comparison is made
with respect to model structure and number of parameters.
Taking the Slovenia dataset as an example, where the number
of output channels in this dataset is 8, the statistical results of
the model structure and parameters of each trainable variable
about SRMGCN are given in Table IX, and the total number of
parameters of SRMCNN at a scale factor of 3 and SRMGCN are
also reported in it.

Compared with the model structure of SRMCNN in [25],
the proposed SRMGCN has a fairly simple architecture, with

only four convolutional layers operating in the graph. In ad-
dition, SRMCNN requires approximately 18 times the model
parameters of our methods. This indicates that the proposed
method only needs significantly fewer parameters to better learn
the complex nonlinear relationship between the coarse fraction
images and fine resolution land cover maps; this also reveals the
effectiveness of the structure information defined on the graph
in SRM. In the meantime, the smaller number of parameters also
makes it possible to learn with smaller samples.

E. Limitations and Future Work

Although this study has shown the effectiveness of structure
information constructed by SRMGCN, the study has some lim-
itations. First, in terms of encoding an image into a graph, our
experiments use subpixels as nodes and the first-order neighbor-
hoods of each node as edges. As a result, there are many nodes
and edges in the graph; this means a large amount of calculation
is required, and it is inconvenient to extract the long-range spatial
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relations that help improve the effect of SRM. Therefore, other
graph construction methods based on remote sensing images
are worth exploring. Inspired by the advantages of object-based
image analysis in processing remote sensing images [11], [56],
using objects as graph nodes is a promising way to address
the above problems and is more conducive to maximizing the
advantages of GCN.

Second, to simply compare the performances of the SRM
algorithms, the synthetic coarse fraction images are used as input
in this article, and the results produced by our experiments are
the most ideal. However, the errors caused by soft classification
algorithms are inescapable. For the sake of avoiding uncertainty
propagation from soft classification to SPM, several DNNs-
based SRM methods taking coarse remote sensing multiband
images as input rather than fraction images have achieved the
joint optimization of soft classification and SRM [30], [32]. So,
similar approaches are expected to be further examined for the
GCN-based methods.

Finally, in our experiments, SRMGCN performs better than
other baseline methods, but the results still have some short-
comings compared with reference maps. Some fragmented plots
still disappear, and the boundaries of the geographical objects are
still somewhat smooth. One reason is that only applying fraction
images to extract features at the subpixel scale is insufficient to
tackle the SRM problem [25], [50]. Thus, auxiliary data [50] and
information on other scales [12], [57], such as the object-based
features from coarse remote sensing images (e.g., shape and
texture features), could be considered in the GCN-based SRM
process.

V. CONCLUSION

Inspired by the successful applications of GCN in graph
structure data, a GCN-based SRM method with simple architec-
ture, named SRMGCN, is proposed in this article. As opposed
to the original graph convolution operation, we designed two
operations in terms of adjacency matrix construction and the
information propagation rule to improve the performance of
GCN in SRM. Meanwhile, to build a generalizable classifier,
we propose a supervised inductive learning strategy of GCN
with the mini-graphs as input. The experimental results of three
datasets with different spatial resolutions demonstrate that the
SRMGCN is capable of yielding better performance in both
visual and quantitative assessments. It is particularly conducive
to restructuring small patches, and linear features draw support
from the graph structure information. In future studies, the
integration of other available information, such as object-based
features and auxiliary data, with SRMGCN is recommended
for more accurate SRM analysis. Simultaneously, other means
of graph construction for remote sensing images are worth
exploring to further improve the restorability of GCN-based
SRM methods.
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