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Abstract—Recent studies in cross-domain classification have
shown that discriminant information of both source and target
domains is very important. In this article, we propose a new
domain adaptation (DA) method for hyperspectral image (HSI)
classification, called graph embedding and distribution alignment
(GEDA). GEDA uses the graph embedding method and a pseudo-
label learning method to learn interclass and intraclass divergence
matrices of source and target domains, which preserves the local
discriminant information of both domains. Meanwhile, spatial and
spectral features of HSI are used, and distribution alignment and
subspace alignment are performed to minimize the spectral dif-
ferences between domains. We perform DA tasks on Yancheng,
Botswana, University of Pavia, and Center of Pavia, Shanghai and
Hangzhou data sets. Experimental results show that the classifi-
cation performance of the proposed GEDA is better than that of
existing DA methods.

Index Terms—Distribution adaptation, domain adaptation,
graph embedding, hyperspectral image classification.

I. INTRODUCTION

HYPERSPECTRAL remote sensing technique can simulta-
neously obtain spatial and spectral information of ground

objects, and has the ability to identify subtle difference between
different materials [1]–[3]. Nowadays, hyperspectral remote
sensing has become a hot spot in the development of Earth
observation. A large amount of hyperspectral remote sensing
images are available due to the launch of new satellites and the
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development of hyperspectral sensors [4]. Although there exist
many hyperspectral images (HSIs), the collaborative processing
of different HSIs is still very difficult due to the differences
in sensors and acquisition conditions [5]–[8]. HSIs usually
have differences in spectral coverage, spectral resolution, spatial
resolution, number of bands, etc. In addition, the acquisition
conditions of different HSIs are usually different, which bring
obstacles to the long-time sequence analysis and collaborative
processing of HSIs [5].

Recently, a new domain adaptation (DA) technique has
emerged in the field of machine learning [5], [9]. The main
idea of DA is to use the rich knowledge of a labeled source
domain to improve the model performance of limited or no
labeled target domain. DA can transfer the differences in the
imaging environment and hardware conditions of multisource
HSIs into a data or feature transformation problem [5], [10]–
[15]. By mining data correlation, it can realize the transfer of
common knowledge between domains. DA provides a theo-
retical feasibility for the cross-domain classification problems
caused by the inconsistent characteristics of HSIs. The existing
DA methods can be roughly classified as sample-based methods,
feature-based methods, and classifier-based methods [5], [16].
In this article, we focus on the feature-based DA method, which
either performs subspace learning by exploiting the subspace
geometrical and statistical structures [16]–[19], or distribution
alignment to reduce the marginal or/and conditional distribution
divergence between domains [20]–[22].

In previous years, many feature-based DA algorithms have
been proposed, such as subspace alignment (SA) [17], cor-
relation alignment [23], transfer joint matching (TJM) [19],
geodesic flow kernel (GFK) [24], transfer component analysis
(TCA) [18], joint distribution alignment [20], scatter compo-
nent analysis (SCA) [21], joint geometric and statistical align-
ment [22], and locality-preserving joint transfer (LPJT) [16].
SA intends to learn a transformation matrix that maps source
and target domains into individual subspaces, so that the dis-
tance between the resulting subspaces is reduced [17]. COR-
relation ALignment (CORAL) uses a linear transformation to
align second-order statistical features of source and target do-
mains [23]. GFK learns domain-invariant features by integrat-
ing an infinite number of subspaces [7], [24]. TCA maps the
data from the two domains together into a high-dimensional
reproducing kernel Hilbert space (RKHS) such that the distance
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between the two domains in the RKHS is minimized [18]. TJM
mainly reduces the differences between domains and constructs
new features through feature matching and instance weight-
ing [19]. Joint distribution adaptation (JDA) is designed to
learn a transformation so that the transformed data align both
the marginal and conditional distributions [20]. SCA takes the
between- and within-class scatter matrices of source domain
into consideration [21]. The above transformation-based DA
methods, such as TCA, TJM, JDA, and SCA, only learn a unified
transformation to map source and target domains into a shared
subspace. When the distribution shift between the two domains
is large, it is very different to adapt the distribution [22]. To
reduce the shift both statistically and geometrically, joint geo-
metrical and statistical alignment (JGSA) learns two coupling
mappings A and B for source and target domains, respectively.
It simultaneously performs the distribution alignment and SA
between transformed domains and considers the discriminant
information of source domain and global information of tar-
get domain [22]. However, JGSA does not consider the data
manifold structure. To preserve the local manifold structure of
data, LPJT jointly exploits feature adaptation with distribution
matching and sample adaptation with landmark selection [16].

The aforementioned methods have shown good performance
for DA in computer vision. However, directly applying these
methods for HSI cross-domain classification usually produces
poor results due to the existence of great spectral drafts between
domains. The spectral drafts mainly come from the differences in
imaging environment and hardware conditions and the variation
of materials. In the case of large domain differences, it is very
difficult to select effective landmarks with high domain matching
degrees for the sample-based DA methods, and also unlikely to
exist invariant features or shared latent feature subspace for the
feature-based DA methods.

For cross-scene remote sensing image classification, the char-
acteristics of remote sensing images can be exploited to improve
the performance of DA. Sun et al. [25] constructed discrimi-
native cross-view subspaces and applied the SA method for the
unsupervised cross-view remote sensing image classification.
Qin et al. proposed a tensor alignment method for HSI clas-
sification which performed SA between tensor domains [26].
Yang et al. [8] proposed an ideal regularized discriminative
multiple kernel SA for HSI domain adaptation. Ma et al. [13]
improved the CORAL by aligning both the class-wise centroid
and covariance. Matasci et al. [11] investigated the performance
of TCA for domain adaptation in remote sensing image classi-
fication. Garea et al. [27] combined TCA with convolutional
neural networks and proposed a TCANet for DA of HSIs. Peng
et al. [7] incorporated the label dependence constraint into the
TJM model and proposed a discriminative TJM method for DA
of HSIs. Recently, some deep learning-based DA methods have
been proposed for cross-scene HSI classification, such as deep
metric learning model [28], class-wise distribution adaptation
(CDA) network [29], and deep cross-domain few-shot learning
(DCFSL) [30]. In Ref. [28], a deep metric learning-based fea-
ture embedding model was proposed for HSI classification. It
projected input features into a well-defined metric space, where
the mapping features have small intraclass distance and large

interclass distance [28]. In CDA, a class-wise adversarial adapta-
tion network was constructed and a probability-prediction-based
maximum mean discrepancy (MMD) method was introduced to
measure the distribution distance [29]. DCFSL incorporated the
few-shot learning (FSL) and DA in a unified framework for HSI
classification, where a conditional adversarial DA strategy was
utilized to overcome domain shift, and FSL was executed to dis-
cover transferable knowledge in the source classes and to learn
a discriminative embedding model to the target classes [30].

From the above traditional and deep-learning-based DA meth-
ods, we can see that feature learning and distribution alignment
are key factors for domain adaptation. Although it is very diffi-
cult to select effective landmarks, invariant features, or shared
latent feature subspace in the case of large domain differences,
it is feasible to project source and target domains into individ-
ual subspaces and then to minimize the subspace distribution
distance statistically and geometrically to reduce the spectral
drafts. Meanwhile, previous studies have shown that spatial-
spectral features and local manifold structure are useful for HSI
DA tasks [10], [12], [13], [15], [31]. Therefore, we propose a
graph embedding and distribution alignment (GEDA) method
for the cross-domain classification of HSIs in this article. By
using the characteristics of HSI, domain relation and data label
information, the proposed GEDA can simultaneously reduce the
distributional shift and geometrical shift between domains. In the
GEDA, spatial filtering is used to increase the spatial consistency
of HSI, and then two coupling projectionsA andB are learned to
project source and target domains into subspaces, respectively.
The data after projection meets the following requirements: 1)
The discriminant information of source and target domains is
maintained; 2) the marginal and conditional distribution differ-
ences between source and target domains are minimized; and
3) the subspace offset between domains is minimized. While
keeping the discriminant information in the two domains, an
easy transfer learning (EasyTL) method is used to predict the
pseudo-labels of the target domain [32], and a graph embedding
method is used to learn the intraclass and interclass scatter
matrices of both domains. By alternatively updating subspace
features and target pseudo labels, the proposed GEDA can
effectively align source and target data. Our contribution is of
threefolds.

1) A unified DA framework called GEDA is proposed. It
simultaneously considers subspace discriminative feature
learning, pseudo-label learning, and distribution align-
ment.

2) The local spatial and spectral discriminative information
of HSI are used by means of a simple spatial mean filtering
and graph embedding.

3) An effective pseudo-label learning method (i.e., EasyTL)
is employed to generate target labels and to promote the
minimization of statistical distribution difference between
source and target domains.

The rest of the article is organized as follows. Section II intro-
duces the proposed GEDA method. Section III is the experimen-
tal part, which compares GEDA with existing DA methods for
HSI cross-domain classification. Finally, Section IV concludes
the article.
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Fig. 1. Flowchart of GEDA.

II. THE PROPOSED METHOD

Definition 1: A domain D = {χ, P (X)} is composed of
a feature space χ and a marginal probability distribution of
inputs P (X), where X = {x1, . . . ,xn} ∈ χ is a set of learning
samples.

Definition 2: A task T = {Y, f(x)} consists of classification
results Y and a classifier f(x), where f(x) = Q(y|x) can be
interpreted as the conditional probability distribution [20].

For DA, there are two domains, i.e., source domain Ds and
target domain Dt. In general, source domain has labels, and
target domain has little or no label. HSI cross-domain classifi-
cation usually focuses on the unsupervised DA problems where
the target domain has no label. Given a labeled data set from the
source domain, {(xs

1, y
s
1), (x

s
2, y

s
2), . . . , (x

s
ns
, ysns

)} with xs
i ∈

Rd and ysi ∈ {1, 2, . . . , C}. The sample and label set of source
domain are Xs = {xs

1, . . . ,x
s
ns
} and Ys = {y1, y2, . . . , yns

},
respectively. Let Xt = {xt

1, . . . ,x
t
nt
} denote the unlabeled data

set from the target domain. DA considers the following sit-
uation: the class space of source and target domains are the
same: Ys = Yt, but the marginal distribution and conditional
probability distribution between the domains are inconsistent:
Ps(Xs) �= Pt(Xt) and Qs(ys|Xs) �= Qt(yt|Xt). The aim of
DA is to predict the target label using the model trained on the
source samples.

To alleviate the effect of spectral shifts between source and
target domains, the proposed GEDA method projects both do-
mains into subspaces, and uses the potential shared features and
intradomain structure information of two domains to reduce the
domain differences both statistically and geometrically. By the
aid of pseudo-label of target samples predicted by the EasyTL,
GEDA can preserve the local spatial and spectral discriminant
information by the spatial mean filtering and graph embedding,
and meanwhile can effectively reduce the statistical distribution
difference and subspace difference between source and target
domains. The flowchart of GEDA is shown in Fig. 1. It mainly

includes two modules: subspace learning module and pseudo-
label learning module. These two modules have coupling in-
teraction. On the one hand, if the features of source and target
domains are aligned in the subspace learning module, the subse-
quent pseudo-label learning is more accurate. On the other hand,
if the pseudo-label of target samples is accurate, the discrimina-
tive information of target domain will be well preserved and the
subspace learning will be more effective.

A. Local Spatial Information Preservation

Due to spatial correlation, spatial mean filtering can be used to
maintain the similarity between neighboring pixels and preserve
the local neighborhood consistency. Mean filtering is carried out
in both domains.

B. Local Spectral Information Preservation

Considering that the source domain Ds and target domain Dt

may have great spectral differences, two projection matrices A
and B are learned for source and target domains, respectively.
The graph embedding method is used to learn the intraclass
and interclass divergence matrices of each domain to preserve
the intrinsic intraclass compactness and interclass variation of
samples [33]. The preservation of local spectral information
can be realized by solving the following Fisher-criterion-based
optimization problem

min
A

{
Tr
(
ATXsL

s
wX

T
s A
)

Tr (ATXsLs
bX

T
s A)

=
Tr
(
ATSs

wA
)

Tr (ATSs
bA)

}
(1)

min
B

{
Tr
(
BTXtL

t
wX

T
t B
)

Tr
(
BTXtLt

bX
T
t B
) =

Tr
(
BTSt

wB
)

Tr (BTSt
bB)

}
(2)

where Ls
w(L

t
w) and Ls

b(L
t
b) are the Laplacian matrices of the

intrinsic graph and penalty graph introduced in the source (tar-
get) domain [33], respectively; and Ss

w(St
w) and Ss

b (St
b) are the
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intraclass and interclass divergence matrices of the source (tar-
get) domain, respectively. The above Fisher criteria can preserve
the local spectral similarity and increase the class separability
in both domains.

In graph embedding framework [33]–[35], each sample is
regarded as a data node and the relation between nodes is
described by a weight, such as

Wij =

{
e−

‖xi−xj ‖2
t , if nodes xi and xj are connected

0 otherwise
(3)

where t is a parameter and set to 2 as recommended in Ref. [16].
A graph Laplacian can be calculated by L = D −W , where
D is a diagonal matrix with Dii =

∑
j �=i Wij . Graph Laplacian

matrix L can be used to characterize the intraclass compactness
and interclass variation of samples. To compute the graph Lapla-
cian matrices in (1) and (2), it first needs to compute the weight
matrix in each domain as follows.

a) Constructing the intrinsic weight matrix Ww: For each
sample xi, connect the k1-nearest neighbor pair v and xi

if v has the same label information with xi.
b) Constructing the penalty weight matrixWb: For each sam-

ple xi, connect the k2-nearest vertex pairs where samples
in each pair belong to different classes.

Following Ref. [16], both the parameters k1 and k2 are set to
5 for simplicity.

For constructing the graph Laplacian matrices in the target
domain, the pseudo label of target samples is needed. In this
article, we use the EasyTL algorithm [32] to predict target
domain pseudo labels. EasyTL aims to learn a probability anno-
tation matrix M ∈ RC×nt with element Mcj ∈ [0, 1] denoting
the probability of target sample xt

j belonging to class c based
on the following optimization problem:

minL =

C∑
c=1

nt∑
j=1

DcjMcj

s.t.

⎧⎨
⎩

0 ≤ Mcj ≤ 1∑C
c=1 Mcj = 1, ∀j ∈ {1, 2, . . . , nt}∑nt

j=1 Mcj ≥ 1, ∀c ∈ {1, 2, . . . , C}
(4)

where Dcj measures the distance between the sample xt
j and

the c-th class center of source domain.
Based on the probability annotation matrix M obtained by

solving (4), the pseudo label of target sample xt
j can be given

by

ytj = argmax
r

Mrj∑C
c=1 Mcj

, ∀r ∈ {1, 2, . . . , C}. (5)

The advantages of EasyTL are that it takes no parameters
and is easy to implement. There are also other algorithms for
learning pseudo labels, such as the standard K-nearest neighbor
or support vector machine (SVM) classifiers [20], [22], [36],
label propagation [16], and label regression [37]. Taking into
account both the accuracy and simplicity, EasyTL is used in this
manuscript.

C. Distribution Difference Minimization

The joint distribution can be approximately described by
the marginal distribution and conditional distribution [20]. The
marginal distribution difference is described as the distance
between the mean of samples after the projection [20], [38]

min
A,B

∥∥∥∥∥ 1

ns

∑
xi∈Xs

ATxi − 1

nt

∑
xj∈Xt

BTxj

∥∥∥∥∥
2

F

. (6)

The conditional distribution difference is approximately ex-
pressed as the summation of the difference of projected mean
sample of each class from different domains with EasyTL-
generated pseudo label of target samples

min
A,B

C∑
c=1

∥∥∥∥∥ 1

n
(c)
s

∑
xi∈X(c)

s

ATxi − 1

n
(c)
t

∑
xj∈X(c)

t

BTxj

∥∥∥∥∥
2

F

(7)

where X
(c)
s ∈ Rd×n

(c)
s and X

(c)
t ∈ Rd×n

(c)
t are the c-th class

sample sets of source and target domains, respectively.

D. Subspace Distance Minimization

The subspace difference is minimized based on the SA strat-
egy [17]. Different from the SA that learns only one transfor-
mation matrix, here we learn two projection matrices A and B
for source and target domains. Then, we directly minimize the
distance between subspaces

min
A,B

‖A−B‖2F . (8)

E. Objective Function

To simultaneously preserve local spatial and spectral discrim-
inant information and reduce statistical distribution difference
and subspace difference between two domains, the objective
function of the proposed GEDA can be formulated as

max
β{Between Class}ST(

{Distribution shift}+ λ{Subspace shift}
+β{Within Class}ST

)

where β and λ are parameters, and {Within Class}ST and
{Between Class}ST represent within-class and between-class
divergence matrices of two domains, respectively.

To obtain the explicit form of the above objective function,
we first combine (6) and (7) as follows:

min
A,B

Tr

([
AT BT

] [Ks Kst

Kts Kt

] [
A
B

])
(9)

where

Ks = Xs

(
Ls +

C∑
c=1

L(c)
s

)
XT

s , Ls =
1

n2
s

1s1
T
s

(
L(c)
s

)
ij
=

⎧⎨
⎩

1(
n
(c)
s

)2 xi,xj ∈ X
(c)
s

0 otherwise
(10)
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Kt = Xt

(
Lt +

C∑
c=1

L
(c)
t

)
XT

t , Lt =
1

n2
t

1t1
T
t

(
L
(c)
t

)
ij
=

⎧⎨
⎩

1(
n
(c)
t

)2 xi,xj ∈ X
(c)
t

0 otherwise
(11)

Kst = Xs

(
Lst +

C∑
c=1

L
(c)
st

)
XT

t , Lst = − 1

nsnt
1s1

T
t

(
L
(c)
st

)
ij
=

{
− 1

n
(c)
s n

(c)
t

xi ∈ X
(c)
s ,xj ∈ X

(c)
t

0 otherwise
. (12)

In (9), Kts = Kst, and 1n is the column vector with all ones.
Then, we combine (9), (1), (2), and (8) to generate the opti-

mization function

max
U

Tr

(
UT

[
βSs

b 0

0 βSt
b

]
U

)

Tr

(
UT

[
Ks + λI + βSs

w Kst − λI

Kts − λI Kt + λI + βSt
w

]
U

) (13)

whereU = [A;B], I ∈ Rd×d is the identity matrix. As shown in
(13), GEDA maximizes the between-class divergence of source
and target domains, and meanwhile minimizes their distribution
differences, offsets, and within-class divergences.

F. Optimization

Let Ns = Ks + λI + βSs
w and Nt = Kt + λI + βSt

w.
Then, (13) can be rewritten as

max
U

Tr

(
UT

[
βSs

b 0

0 βSt
b

]
U

)

Tr

(
UT

[
Ns Kst − λI

Kts − λI Nt

]
U

) . (14)

The optimization problem (14) is equivalent to the following
problem:

max
U

Tr

(
UT

[
βSs

b 0

0 βSt
b

]
U

)

s.t. Tr

(
UT

[
Ns Kst − λI

Kts − λI Nt

]
U

)
= 1. (15)

To solve model (15), a Lagrange function is constructed

L = Tr

(
UT

[
βSs

b 0

0 βSt
b

]
U

)

+Tr

((
UT

[
Ns Kst − λI

Kts − λI Nt

]
U − I

)
Φ

)
.

(16)

Algorithm 1: GEDA
Input: Source data Ds and label YS , target data Dt;
parameters: λ, β, subspace dimension k.

Output: Transformation matrices: A and B; Predicted
labels Yt for the target domain.

1. Spatial filtering for source and target data
2. Pseudo-label learning for target domain (EasyTL):
(Xs, Xt, Ys) → Yt0

3. Repeat:
1) Construct Ss

b , Ss
w, St

b, St
w, Ks, Kt, Kts, and Kst.

2) Solve the generalized eigen-decomposition problem
(17) and select the k eigenvectors corresponding to the
k largest eigenvalues to form U = [A;B].

3) Map the original data to respective subspace to get the
embeddings:

Zs = ATXs

Zt = BTXt

4) Update the pseudo label Yt of the target domain:

(Zs, Zt, Ys) → Yt

Until Convergence
4. Obtain the final labels Yt for target samples.

Taking the derivative of L with respect to U , we can get[
βSs

b 0

0 βSt
b

]
U =

[
Ns Kst − λI

Kts − λI Nt

]
UΦ (17)

where Φ = diag(λ1, . . . , λk) are the k leading eigenvalues
and U = [U1, . . . , Uk] contains the corresponding eigenvectors,
which can be solved analytically through generalized eigenvalue
decomposition. Once the transformation matrix U is obtained,
subspaces A and B can be obtained easily.

The pseudo code of GEDA is summarized in Algorithm 1. We
adopt an iterative optimization strategy to alternatively update
the target pseudo labels and subspace projection matrices A and
B (i.e., U ). It should be noted that the proposed GEDA method
can be extended to solve the nonlinear problems in the RKHS
by using kernel function.

III. EXPERIMENTAL RESULTS

A. Data Sets

Six HSI data sets, i.e., University of Pavia, Center of Pavia,
Yancheng, Botswana, Shanghai and Hangzhou, are used in the
experiments.

University of Pavia and Center of Pavia: These two scenes
were obtained by the ROSIS in 2003. The images have 115
spectral bands in the wavelength range of 0.43–0.86 μm, with
a spatial resolution of 1.3 m. After removing noisy bands, there
are 103 and 102 bands for the two images. These two scenes
contain 610× 340 and 1096× 492 pixels, respectively.

Yancheng: This data was acquired in April 4, 2019 by
the visible-shortwave infrared advanced hyperspectral imager
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TABLE I
NUMBER OF SAMPLES IN THE FIRST THREE TASKS

(AHSI) over the port of Yancheng City, China. AHSI is the main
payload of the China GaoFen-5 (GF-5) satellite. The spectral
resolution is 4.278–4.460 nm for VNIR and 8.420–8.450 nm for
SWIR, and the spatial resolution is 30 m. The Yancheng image
has 1175× 585 pixels and 330 spectral bands ranging from 0.4
to 2.5 μm. After removing bad bands, the remaining 267 bands
are used.

Botswana: This data was acquired at Botswana by the NASA’s
EO-1 satellite. The sensor on the EO-1 obtained 30-m pixel
resolution data in 242 bands, covering bands of 400–2500 nm
and spaced at 10-nm intervals. After removing noisy bands, the
remaining 145 bands are used.

Shanghai–Hangzhou: The Shanghai and Hangzhou data sets
were captured by the EO-1 Hyperion hyperspectral sensor [6],
which retains 198 bands after removing the bad bands. The size
of Shanghai image is 1600× 230, which includes roads, build-
ings, plants, and the water of the Yangtze River and Huangpu
River. The Hangzhou image size is 590× 230, including roads,
buildings, plants, West Lake, and Qiantang River basin.

For the DA problem, we need to construct source and target
domains such that the data of source and target domains come
from two different HSIs or different regions in one HSI. Based on
the six HSI data sets, the following four DA tasks are constructed.

1) Task 1 (Pavia University and Center task): The source and
target domains are chosen from the Pavia University and
Pavia Center images, respectively. To keep the consistence
of dimensionality, the first 102 bands of the University of
Pavia data set are used for analysis. Six common classes
in these two images, i.e., Asphalt, Meadows, Trees, Bare
Soil, Bitumen, and Bricks, are used for the DA tasks. We
randomly draw 400 samples from each class from each
image to form source and target domains, respectively.

2) Task 2 (Yancheng task): The Yancheng image is divided
into two disjoint regions for DA. The selected two disjoint
regions have similar materials, in which six classes (Off
shore water, Aquaculture, Paddy, River, Fallow land, Dry
land) are chosen for the classification tasks. The selected
six classes in the two regions constitute source and target
domains.

3) Task 3 (Botswana task): Similar to Yancheng task, the
Botswana image is also divided into two disjoint regions
for DA. Six common classes in these two regions are
chosen to form source and target domains.

4) Task 4 (Shanghai–Hangzhou task): The source and target
domains are set as the Shanghai and Hangzhou images,

TABLE II
NUMBER OF SAMPLES IN THE SHANGHAI–HANGZHOU TASK

respectively. Three common classes in these two images,
i.e., Water, Land / Building, and Plant, are used for the
DA task.

The number of samples in each class for the above four DA
tasks are shown in Tables I and II.

B. Comparison Methods

We compare our proposed GEDA with the following DA
methods on the four DA tasks.
� NA (No adaptation): directly classifies the target samples

based on the model built on the source samples.
� CORAL [23]: aligns source and target covariances.
� GFK [24]: transforms the domain by incorporating an

infinite number of subspaces that represent changes in
geometric and statistical features from the source domain
to the target domain.

� TCA [18]: minimizes the MMD in the kernel principal
component analysis feature space.

� TJM [19]: performs feature matching and instance
reweighting simultaneously in the TCA framework.

� SA [17]: performs alignment between principal compo-
nent analysis (PCA)-based source and target subspaces.

� JDA [20]: adapts both the marginal distribution and condi-
tional distribution in a principled dimensionality reduction
procedure.

� JGSA [22]: learns two coupled projections to project
source and target domains into low-dimensional sub-
spaces to reduce the geometric and statistical distribution
differences.

� LPJT [16]: combines distribution matching and landmark
selection-based sample adaptation in a feature adaptation
framework.

� GEDA: uses spatial-spectral local discriminant informa-
tion, intradomain structures, and data distribution to reduce
geometrically and statistically the differences between
domains.
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TABLE III
CLASSIFICATION ACCURACIES FOR THE PAVIA UNIVERSITY AND CENTER TASK

Values in bold indicate the best accuracy among all methods.

Using the above DA methods, source and target data can be
aligned at a certain extent, and then the classifier trained on
the source features can be used to classify the target features.
The final performance of each DA method is evaluated by the
classification results. In the experiments, the 1-nearest neighbor
(NN) classifier is chosen as the classifier because it is simple
and parameter-free. For the subspace-based DA methods, the
dimension of subspace is set to 20. In the case of randomly
selecting samples, the experiment is run 20 times and the average
results are reported. For JDA, JGSA, LPJT, and GEDA, the
number of iterations T is set as 5. For GEDA, the size of spatial
filter is determined by the characteristics of the data. The spatial
window of Pavia and Botswana data sets are chosen as 5× 5
and 7× 7, respectively. The Yancheng and Shanghai–Hangzhou
data sets do not need to be filtered. For each method, the overall
accuracy (OA) and kappa coefficient (κ) on the target domain
are used to evaluate the performance.

C. Experiments

1) Experiments on Pavia University and Center Task: In
this task, the samples of source and target domains come from
different images (i.e., Pavia University and Pavia Center, respec-
tively) and the corresponding acquisition time is inconsistent, so
there is significant spectral difference between source and target
domains, and the DA task is challenging.

Table III shows the classification results of different DA
methods on the Pavia University and Center task. It can be seen
that the classical DA algorithms show poor results in this case
and their classification accuracies are almost lower than 60%.
Even if the category information of the source domain and the
global information of the target domain are used, such as JGSA
and LPJT, the classification performance is still not satisfactory.
The main reason is that there have great spectral drifts in this
cross-scene classification problem. By using the spatial filtering
to increase spatial consistence and alleviate spectral variation of
HSIs, and meanwhile employing the local discriminant informa-
tion of source and target domains, the proposed GEDA method
can achieve a good classification effect for this task.

Table IV provides the classification confusion matrix of NA,
JGSA, and GEDA. NA shows very poor results on Classes

TABLE IV
CONFUSION MATRIX AND CA OF NA, JGSA, AND GEDA FOR PAVIA

UNIVERSITY AND CENTER TASK

The bold values in the diagonal are the number of correctly classified samples in
each class. The bold values in the last column are the highest accuracy in each
class.

5 (“Bitumen”) and 6 (“Bricks”). It misclassifies most of the
samples in these two classes to Class 1 (“Asphalt”). As known,
“Bitumen” and “Asphalt” are similar materials, so their spectra
are very similar. “Bricks” is also similar to “Asphalt.” Due to
high spectral similarity, it is very likely to produce confusions
on these classes (seeing the classification on Classes 1, 5, and
6 of NA). After the JGSA transformations, the classification
performance on Classes 1, 5, 6 are improved at a certain extent.
However, it still misclassifies most of samples in the “Bitumen”
and “Asphalt” classes. Compared with JGSA, our proposed
GEDA dramatically improves the classification performance on
Classes 1, 5, and 6, and shows better overall results. It can dis-
criminate subtle differences between similar classes using both
local spatial-spectral information and distribution information
between and within domains.

2) Experiments on Yancheng Task: The classification results
on Yancheng data are shown in Table V. It can be seen that all DA
methods obtain acceptable results with OA about 90%. As source
and target domains come from two disjoint regions in the same
HSI and the spectral resolution of Yancheng GF-5 image is very
high, the spectral difference between domains is relative small.
In particular, Class 3 (“Paddy”) is obviously different from other
five classes, and all DA methods provide correctly classification
results on this class. However, most of DA methods completely
misclassify Class 6. Comparing the three geometrical and sta-
tistical distribution alignment methods (i.e., JGSA, LPJT, and
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Fig. 2. Scatterplots after (a) original (NA), (b) JGSA feature extraction, (c) GEDA feature extraction, in the first versus second component spaces for the Yancheng
task. (•) Source data. (�) Target data.

TABLE V
CLASSIFICATION ACCURACIES FOR YANCHENG TASK

Values in bold indicate the best accuracy among all methods.

GEDA), JGSA preserves only the source global discriminant
information by using the intraclass and interclass divergence
matrices of the source domain, which cannot accurately classify
Class 6. Different from the JGSA, LPJT considers both the local
discriminant information in source and target domains, so it
produces a relatively better results on Class 6. Notwithstanding,
LPJT ignores the subspace difference and uses label propagation
to learn pseudo label of target domain. The pseudo label may
be inaccurate when the spectra of different classes are similar.
In our proposed GEDA method, we use the EasyTL method to
learn the pseudo label of target samples, and use the structural
information of the two domains simultaneously. It can be seen
that GEDA yields excellent results on Yancheng data.

Table VI provides the classification confusion matrices for
NA, JGSA, and GEDA and the classification accuracy for each
class. Although NA shows good classification results on Classes
1, 3, and 6, it mistakenly classifies nearly half of the samples in
Class 2 (“Aquaculture”) into Class 4 (“River”) and at the same
time nearly half of the samples in Class 5 (“Fallow land”) into
Class 6 (“Dry land”). It is clear that the classes “Aquaculture”
and “River” are related to water, and “Fallow land” and “Dry
land” are subclasses of land. Classes 2 and 4 and Classes 5 and
6 are similar in spectral, so they are difficult to be classified. By
performing DA, JGSA improves the classification accuracy of
Class 2 and Class 5. However, it misclassifies all the samples of

TABLE VI
CONFUSION MATRIX AND CA OF NA, JGSA, AND GEDA

FOR YANCHENG TASK

The bold values in the diagonal are the number of correctly classified samples in
each class. The bold values in the last column are the highest accuracy in each
class.

Class 6 into Classes 5 and 3. Classes 6 and 5 are subgroups with
similar spectral characteristics and are difficult to distinguish. By
adding the learned target domain pseudo labels, GEDA improves
the classification accuracy of JGSA on the sixth class, where
its classification accuracy increase from 0% to 98.36%. This
indicates that it is necessary to make proper use of the class
information of target domain.

To visually show the feature transformation results, we dis-
play the first two components of PCA of the original data, the
first two dimensions of JGSA transformed data, and GEDA
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Fig. 3. Scatterplots after (a) original (NA), (b) JGSA feature extraction, (c) GEDA feature extraction, in the first versus second component spaces for the Botwana
task. (•) Source data. (�) Target data. .

TABLE VII
CLASSIFICATION ACCURACIES FOR BOTSWANA TASK

Values in bold indicate the best accuracy among all methods.

transformed data in Fig. 2. It can be clearly seen that the same
class of source and target domains distribute in different regions.
That is, there are obvious distribution differences between dis-
jointed source and target domains in the original data. JGSA
can improve this situation, but within-class scatter is very large
especially for the Class “Off shore water” in red. The proposed
GEDA not only can reduce the distribution difference between
source and target domains, but also can make the sample points
in the same class closer to each other and samples belonging to
different classes far away.

3) Experiments on Botswana Task: Table VII shows the
classification results on the Botwana data set. The first six
DA methods that do not utilize source labels and structural
information provide similar results with OA less than 80%.
The last four methods that consider the distribution alignment
by using the source labels and target pseudo labels produce
relatively better results. JGSA improves JDA because it also uses
source discriminative information and target variance. By further
considering discriminative information of the target domain and
sample weight relations, LPJT improves JGSA slightly. The
improvements of GEDA over LPJT are pseudo-label learning,
SA, and spatial filtering processing.

Table VIII provides the classification confusion matrix of NA,
JGSA, and GEDA. For DA problem, the distribution of source
and target domains is different, so it is very likely to make a

TABLE VIII
CONFUSION MATRIX AND CA OF NA, JGSA, AND GEDA FOR BOTWANA TASK

The bold values in the diagonal are the number of correctly classified samples
in each class. The bold values in the last column are the highest accuracy in
each class.

wrong classification of target samples without DA. Here, NA
wrongly classifies many samples of Class 3 (“Riparian”) to Class
5 (“Acacia woodlands”), and some samples of Class 6 (“Acacia
shrublands”) to Class 1 (“Floodplain grasses1”). JGSA dramat-
ically improves the results by performing DA with the using of
two coupling mappings and the source label information. By
using the EasyTL to learn the pseudo label of target domain
and the graph embedding method to learn the intraclass and
interclass divergences, the proposed GEDA further improves
the JGSA and almost correctly classifies all the samples.
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TABLE IX
CLASSIFICATION ACCURACIES FOR SHANGHAI–HANGZHOU TASK

Values in bold indicate the best accuracy among all methods.

Fig. 3 illustrates the scatterplots of NA, JGSA, and GEDA
in first two principal component spaces. Fig. 3(a) shows the
differences in the data distribution and mixed sample points are
difficult to distinguish. After the JGSA transform in Fig. 3(b),
the distribution difference is significantly reduced, and the class
distance between sample points is large, and samples in the same
class are more clustered. Compared with JGSA, our proposed
GEDA in Fig. 3(c) can further reduce the distribution difference
and increase the class separability. Even though only two di-
mensions are used, there is little overlap for different classes. It
should be noted that the green class (“Floodplain grasses 2”) in
the 2-D projection space has three clusters because the original
source and target samples in this class have been distributed
in three subregions. Notwithstanding, this class can be well
classified in a high-dimensional space, i.e., k = 20, as shown
in Table VIII.

4) Experiments on Shanghai–Hangzhou Task: As the
Shanghai–Hangzhou data contains a large number of sam-
ples [36], we divide the data into ten parts for the experiment.
There are 10 data sets in source and target domains. For one
data set in the target domain, we use each data set in the source
domain to conduct an experiment and then report the average
accuracy. The final classification accuracy is obtained when all
the ten data sets in the target domain are classified.

Table IX shows the classification results of different DA
methods. Without DA, NA shows very poor results with κ being
only 0.471. The subspace learning methods, such as SA, GFK,
and TCA, cannot show improvement in this case. Due to the
scene difference, there is a large distribution difference between
the two domains which cannot be reduced by learning the
subspace alone. Rather than learning subspace, CORAL directly
aligns the second-order statistical features of the two domains,
which shows relatively better results than the subspace learning
methods. However, it does not use the label information of source
domain. Although JDA considers both the source labels and
subspace learning strategy, it only learns one transformation ma-
trix which cannot simultaneously reduce the great distribution
difference between domains. To overcome the limitation of JDA,
JGSA intends to learn two linear transformations for source and
target domains, respectively, such that the transformed source
and target domains have less distribution difference in the sub-
space. JGSA dramatically improves JDA. The proposed GEDA
shows the best results for the Shanghai–Hangzhou task.

Fig. 4 displays the ground truth map and classification maps
of the target scene by NA, JGSA, and GEDA. Although the
classification OA of JGSA is 82%, it is not able to effectively
classify “Water” (blue) and “Land/building” (cyan), as shown

Fig. 4. Visualization and classification map of the target scene Hangzhou. (a)
Ground truth map, (b) NA (68.80%), (c) JGSA (82%), and (d) GEDA (87.43%).

TABLE X
ABLATION STUDY OF GEDA FOR PAVIA UNIVERSITY AND CENTER TASK

in the white rectangle region. Compared with JGSA, GEDA
has higher classification accuracy in “Land/building” (cyan) and
“Plant” (yellow).

D. Algorithm Analysis and Discussion

1) Ablation Analysis: In order to analyze the effect of each
module in the proposed GEDA, we perform ablation experi-
ments on the Pavia University and Center cross-scene DA task.
Table X provides the classification OA. As our GEDA improves
the original JGSA method, we first list the result of JGSA and
the classification accuracy is 0.6737. Then, we incorporate the
EasyTL-based pseudo-label learning and graph embedding into
the JGSA, respectively. It can be seen that the resulting OAs are
increased at a certain extent. If the EasyTL-based pseudo-label
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TABLE XI
CLASSIFICATION ACCURACIES OF DIFFERENT DA METHODS ON SPATIAL

FILTERED DATA FOR THE PAVIA UNIVERSITY AND CENTER TASK

Values in bold indicate the best accuracy among all methods.

Fig. 5. OA versus subspace dimension k on Pavia University and Center task.

learning and graph embedding are simultaneously added into
JGSA, the accuracy is further improved with OA of 0.7775.
Finally, we consider all the above strategies and add spatial
filtering into the model, and the classification accuracy is 0.8550.
The results show that all modules in the proposed GEDA plays
a role in classification improvement.

To further compare the performance of different DA methods
when spatial mean filtering is performed, Table XI provides
the classification accuracy of various algorithms on the spatial
filtered data. When the results in Tables III and XI are compared,
it can be seen that the performance of different DA methods has
improved at a certain extent when spatial filtering is used, and the
proposed GEDA provides the best results no matter the spatial
filtering is used or not.

2) Parameter Analysis: In the proposed GEDA method, the
subspace dimension k, the regularization parameter λ, and β are
key parameters. We analyze the effect of these parameters on
the Pavia University and Center data. The relationship between
subspace dimension k and OA is shown in Fig. 5. It can be
observed that the performance of GEDA is stable when the
dimension of subspace is between 7 and 30. In the experiment,
the dimension of the subspace is fixed as 20.

The OA versus parameters β and λ is provided in Fig. 6. It
can be seen that the model is insensitive to parameters β and λ.

Fig. 6. The OA versus parameters β and λ on Pavia University and Center
task.

TABLE XII
RUNNING TIME OF EACH METHOD FOR THE PAVIA UNIVERSITY

AND CENTER TASK

In the experiment, parameters λ and β are set as 1 and 0.3,
respectively.

3) Running Time: The running time of different algorithms
on the Pavia University and Center task are shown in Table XII.
Due to the iterative updating of target pseudo labels and subspace
features, the proposed GEDA method is computationally less
efficiency than SA, CORAL, and GFK. However, it is much
more efficient than TJM and LPJT, and comparable with JGSA.

IV. CONCLUSION

In this article, we have proposed a new DA method based on
the graph embedding and distribution alignment (GEDA). For
cross-domain classification of HSIs, GEDA learns two coupling
mappings by using the discriminant information of source and
target domains, so that the mapped distributions of the two
domains are close to each other, and the local discriminant
information is maintained. The results of four DA tasks in the
experiments demonstrate that GEDA can effectively perform
cross-domain classification of HSI.
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