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Abstract—With the rapid development of earth observation
technology, high-resolution synthetic aperture radar (HR SAR)
imaging satellites could provide more observational information
for maritime surveillance. However, there are still some problems
to detect ship targets in HR SAR images due to the complex
surroundings, targets defocusing, and diversity of the scales. In
this article, an anchor-free method is proposed for ship target
detection in HR SAR images. First, fully convolutional one-stage
object detection (FCOS) as the base network is applied to detect
ship targets, achieving better detection performance through pixel-
by-pixel prediction of the image. Second, the category-position (CP)
module is proposed to optimize the position regression branch
features in the FCOS network. This module can improve target
positioning performance in complex scenes by generating guidance
vector from the classification branch features. At the same time,
target classification and boundary box regression methods are
redesigned to shield the adverse effects of fuzzy areas in the network
training. Finally, to evaluate the effectiveness of CP-FCOS, exten-
sive experiments are conducted on High-Resolution SAR Images
Dataset, SAR Ship Detection Dataset, IEEE 2020 Gaofen Challenge
SAR dataset, and two complex large-scene HR SAR images. The
experimental results show that our method can obtain encouraging
detection performance compared with Faster-RCNN, RetinaNet,
and FCOS. Remarkably, the proposed method was applied to SAR
ship detection in the 2020 Gaofen Challenge. Our team ranked first
among 292 teams in the preliminary contest and won seventh place
in the final match.

Index Terms—Category-position (CP), fully convolutional one-
stage object detection (FCOS), high-resolution (HR), ship
detection, synthetic aperture radar (SAR).

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) can provide massive
high-resolution (HR) images in day-and-night and all-

weather conditions, which has unique advantages over other
sensors such as optical sensor, infrared sensor, hyperspectral
sensor, and so on [1], [2]. For this reason, it plays a significant
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Fig. 1. Taxonomy of SAR ship target detection methods.

role in maritime management and monitoring. Recently, with the
rapid development of spaceborne SAR-imaging technologies,
the quantity and quality of SAR data have been improved con-
tinuously. Therefore, more and more scholars conduct research
on ship target detection in HR SAR images [3]–[12]. However,
it is still challenging to detect ship targets in HR SAR images
because of the complex surroundings and other tough problems,
e.g., sidelobes, targets defocusing [13]–[16].

In the field of SAR ship detection, many algorithms have been
proposed, which can be mainly divided into traditional algo-
rithms [3], [12], [17]–[22] and deep learning based algorithms
[41]–[52], as shown in Fig. 1. Generally speaking, traditional
algorithms require artificial design features to distinguish be-
tween background and ship targets in SAR images. For example,
Iervolino and Guida [17] considered both the sea clutter and
the signal backscattered from ship targets in SAR images, and
proposed a generalized-likelihood ratio test (GLRT) detector.
Lang et al. [18] proposed a spatially enhanced pixel descrip-
tor (SEPD) to enable the spatial structure information of ship
targets, which improved the separability between ship targets
and sea clutter. Leng et al. [19] defined the area ratio invariant
feature group (ARI-FG) to modify the traditional detectors. Due
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to the difference in scattering distribution between ocean and
ship targets, detection methods based on constant false alarm
rate (CFAR) [3], [12], [20]–[22] have been widely studied. Ao
et al. [20] designed an efficient multiscale CFAR detector with
a generalized Gamma distribution clutter model to detect candi-
date targets in the sea. Li et al. [3] proposed a superpixel-level
two-stage CFAR method for ship detection in HR SAR images.
However, these traditional algorithms generally produce better
detection performance for some specific scenes, and their adapt-
ability is insufficient. Besides, these methods based on CFAR
severely rely on the appropriateness of the statistical model of
clutter [21]. And the distribution parameters may be incorrectly
estimated due to the contaminated background, which will cause
severe missing detection [22].

On the one hand, the characteristics obtained by manual
analysis are not stable enough, and the designed parameters are
complex and changeable. Thus, it is often difficult to achieve
better performance when the algorithms are transferred to other
scene images. On the other hand, with the development of
HR SAR, conventional detectors may suffer from performance
deterioration due to the changes in target imaging quality and the
influence of complex surroundings. Specifically, conventional
resolution theory may not be strictly applied to the increased
resolution SAR imagery. Besides, the ship targets appear to be
more structured and shaped in HR SAR images and nevertheless
contain many weak scatters around target regions [12], which
brings great challenges for ship detection.

In recent years, the target detection methods based on convo-
lutional neural networks (CNNs) have become a research hotspot
in the field of remote sensing image target detection. Compared
with the traditional methods, CNN can automatically learn the
essential features from large amounts of image data and has
higher accuracy and better robustness in the target detection
[23], [24]. Generally speaking, according to the strategy of the
target detection algorithm, CNN-based detection methods can
be divided into two categories: two-stage methods and one-stage
methods. The two-stage methods divide the target detection task
into two parts, generating candidate regions and classifying,
regressing the regions. Among them, RCNN [25] is the first deep
learning based method applied to target detection. RCNN uses
the selective search (SS) method to obtain possible candidate
regions of the targets. After that, the obtained candidate regions
are sent to the CNN network to extract features, and then the
support vector machine [26] is adopted to complete the target
classification. Although RCNN has better detection accuracy
than traditional methods, it has poor real-time performance due
to the multistage implementation of training and testing. Then,
SPP Net [27] proposed an idea of sharing feature convolution
graphs. It only needs to convolve the input image once, avoiding
the problem of repeated calculations. In addition, this method
adds spatial pyramid pooling, which solves the output prob-
lem of multiscale images. Compared with RCNN, it has better
detection accuracy and speed. Based on the previous research,
Girshick [28] proposed Fast R-CNN. It presents multitask learn-
ing, which simultaneously performs target classification and
position regression. At the same time, Fast R-CNN introduces
ROI pooling, which is equivalent to a single-layer SPP layer. This

method improves the feature utilization rate, thereby improving
the detection efficiency.

Subsequently, Ren et al. [29] proposed Faster R-CNN, which
replaced SS by introducing the region proposal network (RPN).
RPN can share convolutional features with the classifier, thus
further improving the detection speed and accuracy. Mask
RCNN [30] adds a semantic segmentation network on the ba-
sis of Faster R-CNN, and replaces ROI Pooling with bilinear
interpolation (ROI Align). This method builds a multitask in-
tegrated network and enhances multilevel feature fusion. Cai
and Vasconcelos [31] proposed Cascade R-CNN, which designs
a multilevel cascade structure for obtaining a more accurate
target position. Different from two-stage methods, one-stage
methods do not generate candidate regions and directly obtain
the detection result from the input image. The typical one-stage
methods mainly include YOLO [32], SSD [33], R-FCN [34],
and RetinaNet [35]. They are mainly composed of a backbone
network and a detection head. The backbone network is mainly
used for feature extraction, which can obtain features of different
scales and different levels of abstraction. Based on the extracted
features and supervised information, the detection head learns
target category and position regression. During training, through
multitask loss joint training, the two branches of category pre-
diction and position regression can be carried out at the same
time. YOLO directly divides the picture into 7× 7 grids as target
candidate regions. Then the network directly predicts the target
location and category. SSD combines the regression thinking of
YOLO and the anchor mechanism of Faster R-CNN. Compared
with two-stage methods, one-stage methods perform category
prediction and position regression simultaneously, which have a
faster detection speed. However, the network structure design
makes it difficult for the one-stage methods to have higher
detection accuracy over the two-stage methods.

Furthermore, according to whether the anchors are used,
CNN-based target detection methods can be divided into anchor-
based and anchor-free methods. Anchor-based methods are rep-
resented by Faster -RCNN and RetinaNet. In these algorithms,
a large number of anchors are set in advance, and then some
anchors are removed according to the actual targets. However,
dense candidate regions consume a lot of computing resources,
and there are only a small number of positive samples in the
candidate regions, which brings about the problem of extremely
imbalanced positive and negative samples. In addition, the use of
anchors as candidate regions requires setting various parameters,
and the detection performance is greatly affected by these param-
eters. Therefore, anchor-based methods have poor generaliza-
tion ability. Differently, anchor-free methods such as CenterNet
[36], FSAF [37], fully convolutional one-stage object detection
(FCOS) [38], FoveaBox [39], and CornerNet [40] convert the
target detection from a classification problem to a regression
problem. These methods do not use anchors to predict the target
but directly use the features extracted by the network to predict
the target category and location. Therefore, anchor-free methods
have simple network architectures and occupy a small number
of computing resources, which are more suitable for practical
scenarios. However, although these methods can alleviate the
imbalance between positive and negative samples, they also have
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the problem of semantic ambiguity caused by overlapping target
borders.

At present, deep learning based methods for ship detection
in SAR images are closely related to the development of deep
learning and the enrichment of SAR image datasets. With the
release of many public datasets of ship targets in SAR images and
the development of target detection algorithms based on deep
learning, more and more researchers focus on the end-to-end
SAR ship detection methods based on deep learning [41]–[52].
Zhu et al. [41] proposed an end-to-end ship detection method
based on YOLOv3. Chen et al. [42] added a deconvolution mod-
ule and a prediction module on the basis of SSD. Ai et al. [43]
applied the multiscale rotation-invariant Haar-like (MSRI-HL)
feature to CNN. Deng et al. [44] designed a condensed backbone
network, and adopted a feature reuse strategy. Han et al. [45]
studied how the detection performance varies for images with
different complexity, backgrounds, surroundings, and quality.
Zhang et al. [46] proposed a novel balanced feature pyramid
network (B-FPN) to improve detection accuracy. In order to
reduce the interference of complex background and enhance the
salient features of ship targets in SAR images, some studies
adopt the attention mechanism in their networks. Cui et al. [47]
applied a convolutional block attention module to the pyramid
structure, which improves the performance for multiscale ship
detection. Zhao et al. [48] proposed an attention receptive pyra-
mid network (ARPN), which design a dilated attention block
to enhance the relationships among nonlocal features and refine
information at different feature maps. Chen et al. [49] designed
a novel attention mechanism to help the detector focus more
on the salient regions containing ships and combined it with
knowledge distillation to improve the performance. Yang et al.
[50] proposed R-RetinaNet to solve the problems such as mis-
match of feature scale, contradictions between different learning
tasks, and the unbalanced distribution of positive samples. In the
past two years, due to the concise framework and the ability to
make full use of information, the anchor-free methods have been
widely applied to SAR ship detection [51], [52]. Cui et al. [51]
added the spatial shuffle-group enhance attention module into
CenterNet, which can suppress noise and reduce false positives
(FP) caused by coastal and inland interferences. Fu et al. [52]
proposed a feature-balanced and optimized anchor-free network
to solve multiscale ship target detection problem. This network
leverages the proposed attention module to balance the different
levels of features extracted by the pyramid so that the network
can obtain more small ship target information. At the same time,
a feature refinement module is proposed to enhance semantic
features. The CNN-based detection algorithms can automat-
ically capture the multidimensional features of target, which
are more suitable for SAR ship detection in complex scenes.
However, the detection performance of these existing algorithms
still needs to be improved. First of all, affected by the factors in
HR SAR imaging, it is difficult for small ship targets to be fully
detected. Meanwhile, there is substantial scattering interference
in the land scene, and the public networks have a poor ability to
detect near-shore ship targets.

Furthermore, the anchor-based methods have a complex net-
work structure and take up more computing resources, which

Fig. 2. Samples of ships in the HR SAR image. Rectangles with blue color
represent ground truth targets. (a) Multiscale ships. (b) and (c) Inshore ships
with interference. (d) Overlapping ships.

are not suitable for practical scenarios. Compared with anchor-
based methods, the anchor-free methods can alleviate the im-
balance of positive and negative samples to a certain extent. But
there is also the problem of imbalance between positive and
negative samples and sematic ambiguity caused by overlapping
target borders. Some samples of ships in HR SAR image are
shown in Fig. 2.

Aiming at the above problems, an improved anchor-free
method is proposed for ship targets detection in HR SAR images
called the category-position refinement convolutional one-stage
object detection (CP-FCOS). The main contributions of our
work can be summarized as follows:

1) To improve the detection performance for ship targets in
complex scenes HR SAR images, the FCOS as the base
network is applied to our model. This network can improve
the detection efficiency through pixel-by-pixel prediction
of the SAR images and avoid intensive anchors.

2) The category-position (CP) module is proposed to opti-
mize the position regression branch features in the FCOS
network. This module can improve target positioning
performance in complex scenes by generating guidance
vectors from classification branch features.

3) Considering the imbalance between positive and negative
samples during network training and the semantic ambigu-
ity caused by overlapping target borders, we redesign the
target classification and boundary box regression methods
to shield the adverse effects of fuzzy areas.

4) We conduct extensive experiments on SAR Ship Detection
Dataset (SSDD), High-Resolution SAR Images Dataset
(HRSID), IEEE 2020 Gaofen Challenge SAR dataset, and
two complex large-scene HR SAR images to verify the
proposed improvements. More importantly, our method
was successfully applied to SAR ship detection in the 2020
Gaofen Challenge.

The rest of this article is organized as follows. Section II
illustrates the proposed method in detail. Next, the experimental
results on several dataset and the comparison with CNN-based
methods are explained in Section III. Finally, Section IV con-
cludes this article.

II. PROPOSED METHOD

In this section, the details of the proposed network structure,
the key technical points of the proposed method, and each branch
of the proposed method will be introduced. At first, the key points
of the FCOS network are introduced, which are adopted as the
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baseline in our work. Next, the overall scheme of the proposed
network structure is described in detail. Then, the proposed
CP module is illustrated. Finally, the target classification and
regression methods are redesigned by analyzing the existing
problems in anchor-free methods.

A. Fully Convolutional One-Stage Object Detection

The fully convolution one-stage object detection is a one-stage
anchor-free target detection algorithm. The target Center-ness
was proposed for the first time in this network, which is mainly
used to remove low-quality detection areas far from the center
of the target. And this network is a state-of-the-art model in
anchor-free detection algorithms. At the same time, compared
with the classic Faster R-CNN and other two-stage detection
algorithms, it has higher detection accuracy and faster detection
speed. Therefore, the FCOS network is applied to SAR ship
detection in this article. The advantages and problems of FCOS
are fully analyzed and studied in this article, and the model is
further improved by analyzing the existing problems.

The framework of the FCOS algorithm is mainly composed
of three parts: a feature extraction network, an FPN, and a three-
branch detection head network. The various pretraining models
such as ResNet-34, ResNet-50, ResNet-101, and ResNet-152
[53] can be used as the backbone of the feature extraction
network to extract multilevel features of the input image. Then,
the acquired high-level semantic elements and low-level spatial
features are fused through FPN [54], generating multiscale
fusion feature maps. The low-level spatial features contain more
detailed information, which is suitable for accurately positioning
the target. At the same time, high-level semantic features have
more semantic information, which is eligible for classification.
Finally, the target classification and position regression are per-
formed on the fused feature maps through the detection head
network.

In the following, we present the specific implementation steps
of the FCOS detector.

1) Regression Method: Generally speaking, the anchor-
based methods need to set various sizes and aspect ratios anchors
on the feature map to predict the target position. However, a
pixel-based detection strategy is applied in the FCOS network. In
other words, each pixel on the feature map is used for regression.
First, each pixel on the feature maps is mapped back to the
original input image. Then, according to the position of the
mapped pixel, it is determined where the original pixel is in and
what the corresponding category label is. If both are satisfied,
the pixel on the feature maps is a positive sample. Otherwise,
it is a negative sample. At the same time, the target regression
parameters, as shown in Fig. 3, are calculated in the network. In
addition, if the mapped pixel is in multiple bounding boxes, it
is regarded as a fuzzy sample. And the bounding box with the
smallest area is regarded as the regression target of this pixel
on the feature map. Notably, the regression is performed on the
FPN multiscale feature maps, so the number of fuzzy samples
mentioned above is small [38].

Compared with the anchor-based methods, which determine
the positive and negative samples by calculating the intersection

Algorithm 1: FCOS for the SAR Image.
Input: The testing SAR image.
Step-1: Initialize the feature extraction network
parameters with the pre-training model. Then, the input
images are sent to the backbone network to extract the
multi-scale features and obtain C3, C4, and C5 feature
maps.
Step-2: The multi-scale feature maps are fused to build
a feature pyramid.
Step-3: The detection head network is applied to
regresses the target category and position on the
multi-scale features of the feature pyramid.
Step-4: Train the network to obtain the final model
parameters.
Step-5: The trained model is used for the test data, and
the target detection results are obtained on the
multi-scale feature map of the feature pyramid.
Step-6: The Non-Maximum Suppression (NMS) [55]
algorithm is executed to select the target and obtain the
final detection result.
Output: Corresponding detection results.

Fig. 3. Regression method of FCOS. l, t, r, and b are the distances from pixel
to the left, top, right, and bottom of the bounding box.

over union (IOU) of the preset anchors and the actual bounding
boxes, the FCOS regression method mentioned above can obtain
more positive samples. And the distribution of positive and
negative samples in the network is more reasonable, which is
conducive to the improving detection performance. However,
all pixels in the bounding box will be treated as positive samples
in the network so that some pixels in the background may be
incorrectly labeled as positive samples. Therefore, this regres-
sion method directly applied to head network will interfere with
the learning of positive sample features, which will affect the
detection performance of ship targets.

2) Center-Ness Strategy: The FCOS proposes the Center-
ness strategy to suppress low-quality prediction bounding boxes
in the detection results. And this strategy does not introduce
any additional hyper-parameters. Specifically, the center-ness
prediction branch is introduced into the detection head network,
which can share parameters with the classification branch. The
calculation method of Center-ness is shown in the following
equation:

Centerness =

√
min(l, r)

max(l, r)
× min(t, b)

max(t, b)
. (1)
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Fig. 4. Detection results of the FCOS network. Rectangles with blue color are
true ships. Rectangles with yellow color are false alarms. Rectangles with red
color are the missing ships.

The centrality ranges from 0 to 1, and the cross-entropy loss
is used for training. When testing, the final score of the target
detection result is multiplied by the predicted Center-ness and
the prediction score of the classification branch. Therefore, the
Center-ness can reduce the weight of the bounding boxes farther
from the center of the target, which might be removed by the
NMS algorithm.

3) Detection Performance Analysis: To show the advantages
of the FCOS network clearly, the detection results for SAR ship
targets based on this network are shown in Fig. 4. Specially, we
first train the detector from the HRSID [57] dataset and then
leverage the backbone, ResNet-50 [53], to extract features. The
IOU threshold in experiments is set as 0.5. It can be observed
that FCOS can accurately detect ship targets in the sea area.
Nevertheless, there is a severe problem of the missing ships
in the sea-land area, especially for small-scale ships. Further-
more, ships docked in parallel are more likely to be missed or
incorrectly located. And the strong scattering objects in the land
area are mistakenly detected as ship targets. Based on the above
analysis, we can draw the following conclusions: The FCOS
can be applied as the base network to enhance ship detection
performance in SAR images. However, the feature extraction
capability of the FCOS network needs to be further improved to
avoid false alarms and missing detections. Therefore, it is neces-
sary to enhance the FCOS network feature extraction capability
and improve the network detection performance.

B. Overall Scheme of the Proposed Network Structure

Aiming at the problems of the FCOS network, an improved
anchor-free method based on FCOS is proposed for HR SAR
ship targets detection. The overall scheme of the proposed

network structure is illustrated in Fig. 5, which can be divided
into three parts: the feature extraction network, the FPN, and the
detection head network.

1) Feature Extraction Network: Generally speaking, with
the increasement of the network layers, richer semantic infor-
mation can be obtained to improve the network’s performance.
However, simply increasing the network depth can easily cause
gradient dispersion or gradient explosion problems. Therefore,
the ResNet [53] is proposed to cleverly avoid the shortcomings of
simply increasing the depth of the network. Its internal convolu-
tion residual units adopt cross-layer connections, which can ef-
fectively alleviate the problem of gradient disappearance caused
by network deepening, and extract deeper feature information
at the same time. To choose the best backbone, we leveraged
several networks to test the proposed method. Through our
experimental verification (see Section III-A for more detailed
discussion), ResNet-50 is the most suitable backbone network to
extract HR SAR image features. Compared with ResNet-101 and
ResNet-152, ResNet-50 has a shallower network layer, which
can avoid the overfitting problem. In addition, we found that
SAR images are different from optical images in that their
backgrounds are more straightforward, and their textures are
single. Therefore, there is no need for a deeper network to extract
too high-level semantic information. Then, as for ResNet-18 and
ResNet-34, their feature extraction capabilities are insufficient.
And the comparison between these networks shows that using
ResNet-50 as the backbone can provide a stable performance
improvement.

2) Feature Pyramid Network: As we all know, the convo-
lution operation of the feature extraction network can obtain
rich high-level semantic information, but the spatial position
information will inevitably be reduced. In order to achieve
accurate classification and regression of target, the feature map
pyramid is built to construct multiscale feature maps and pre-
dict multiscale ship targets. FPN is specifically composed of
three parts: bottom-up, top-down, and horizontal connections.
Bottom-up connection is the process for the feature extraction
network to extract image features. Top-down connection is an
up-sampling process. The horizontal connection is added to
combine the up-sampling results with the feature maps generated
by the CNN. Feature maps C2, C3, C4, and C5 are first extracted
by the ResNet-50. The P5 feature map is acquired after the
convolution with a kernel size of 3 × 3 and stride of 1 is
conducted on C5. Similarly, the convolution with a kernel size
of 1 × 1 and the stride of 1 are conducted on C4. After that, the
added P5 up-sampling results are sent to the convolution with
a kernel size of 3 × 3 and the stride of 1 to produce P4 feature
map. According to the above operation, the P3 and P2 feature
maps are obtained. Specially, the P6 feature map is acquired
after the convolution with a kernel size of 3 × 3 and stride of
1 is conducted on P5. Each feature map (P2 to P5) channel C
in FPN is 256, independently sent to the subsequent detection
head to complete classification and regression.

3) Detection Head Network: The structure of the detection
head network is shown in Fig. 6, which contains three prediction
branches and a CP attention feature optimization module. First,
the two prediction branches are designed for target classification
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Fig. 5. Architecture of the proposed model CP-FCOS.

Fig. 6. Structure of detection head network.

and location regression, respectively. Then, the CP module is
proposed to combine two prediction branches features, gen-
erating a guidance vector to optimize the regression feature.
Meanwhile, the target classification network directly connected
to the feature pyramid is a fully connected network (FCN). Each
fused feature map Pi is subjected to a series of convolution
processes; these processes can be summarized as

Li1 = ReLU(Conv3×3 (Pi)) i = 2, 3, 4, 5, 6 (2)

Lij+1 = ReLU(Conv3×3

(
Lij

)
) j = 1, 2, 3 (3)

where Pi represents the FPN output features, Lij represents
convolution processing features, Conv3×3 denotes 3 × 3 convo-
lutional layer, and the channels of these processes are 256. The
final classification feature is produced as shown in the following
equation:

Fc= Sigmoid(Conv3×3 (Li4)) (4)

where Fc represents the final output of the classification branch,
which is the H × W heat-map of target confidence. Another
small FCN paralleled to the classification network is added
for bounding box regression. Differently, the size of the output
feature of the regression branch is H × W × 4. The third branch
is the Center-ness branch, which represents the distance offset
between the pixel (i, j) with the center pixel. When testing,

Algorithm 2: Proposed CP-FCOS Detector.
Input: The testing SAR image.
Step-1: Initialize the feature extraction network
parameters with the pre-training model. Then, the input
images are sent to the ResNet-50 to obtain C2, C3, C4,
and C5 feature maps.
Step-2: A feature pyramid is adopted in FPN. The fused
features {P2, P3, P4, P5, P6} are produced for the
detection head.
Step-3: Detection head network is applied to target
classification and regression on the multi-scale features
of the feature pyramid. Especially, the category-position
(CP) module is added to the regression branch to
optimize features.
Step-4: Train the network with the Center-ness loss
function to obtain the improved model parameters.
Step-5: Testing image with the trained model, and the
bounding box score of the target detection result is
multiplied by the Center-ness score and the prediction
score of classification branch.
Step-6: The Non-Maximum Suppression (NMS)
algorithm is executed to select the target and obtain the
final detection result.
Output: Corresponding detection results.

the final score is multiplied by the Center-ness score and the
classification score.

The specific implementation steps of the proposed detector
are summarized in Algorithm 2.

C. CP Module

As analyzed in Section II-A, the FCOS network can achieve
better detection performance through pixel-by-pixel prediction
of the SAR images. However, there is also an imbalance between
positive and negative samples and semantic ambiguity caused by
overlapping target borders. Therefore, the CP module (see Sec-
tion II-C for more detailed discussion) is proposed to optimize
the position regression branch features in the FCOS network.
This module can improve the detector performance in complex
scenes by generating guidance vector from the classification



SUN et al.: ANCHOR-FREE DETECTION METHOD FOR SHIP TARGETS IN HIGH-RESOLUTION SAR IMAGES 7805

Fig. 7. CP module.

branch features. Fig. 7 shows its architecture in detail. The CP
module first generates the features Fmin and Favg by using the
global min pooling and the global average pooling along the
channel axis, respectively. And the features are aggregated by
a concatenation operation. Then, one 7 × 7 convolutional layer
and the sigmoid function are applied to the aggregated feature
maps. After multiplied with regression branch feature, the pixel
addition operation is performed to obtain the final refinement
feature Fcp. This process is computed as follows:

Fmin = MinPool(Fcla) (5)

Favg = AvgPool(Fcla) (6)

Fcon = Sig(Conv3×3(Concat(Fmin, Favg))) (7)

where MinPool and AvgPool represent the min pooling and
average pooling, Concat is the concatenation operation, and Sig
is the sigmoid function. Finally, the output feature maps Fcon

are combined with the position feature maps Fpos as follows:

Fcp= (Fpos(⊕ (Fcon ⊗ Fpos)) (8)

where ⊕ represents the elementwise addition, and ⊗ represents
the elementwise multiplication. The output features are used
for the target regression and the calculation of Center-ness.
Through the optimization with CP module, it can be found that
the regression features of the network will contain more position
information. In addition, the feature optimization process is
beneficial to improve the accuracy of Center-ness, which can
improve the target detection performance.

D. Classification and Regression Redesign

In the complex sea-land scenarios, ship targets often dock side
by side, which brings huge challenges to deep-learning target
detection. At the same time, there is the problem of semantic
ambiguity caused by overlapping target borders in the network.
Therefore, the target classification and boundary box regression
methods are redesigned in our model to shield the adverse effects
of fuzzy areas in the FCOS training. Specifically, the regression
range of the bounding boxes in multiscale FPN feature maps
is limited in our model. First, the regression value (l, t, r, b) of
ship targets on each feature map is calculated. Then, if the pixel
position meets the conditions as follows:

max (l, t, r, b) > Mi or min (l, t, r, b) < Mi−1 (9)

Fig. 8. Regression target and image region division. (a) Rectangle position.
(b) Classification method. (c) Image region.

then, it will be set as a negative example, and the category and
position regression will not be performed on the feature map.
Here, Mi is the maximum regression distance of the ith feature
map. Specially, [M1, M2, M3, M4, M5, M6] are preset to [0, 32,
64, 128, 256, +Inf] in the proposed model.

Generally speaking, the large aspect ratio is one of the most
significant characteristics of a ship target, and the ship’s bow
direction is randomly distributed at 360 angles. When using
rectangular to mark a target, the ship target pixel occupies a small
area in the image, but the pixel in the background occupies most
of the area. Some background pixels in the bounding box may
be incorrectly labeled by the FCOS network regression method.
Therefore, all pixels in the bounding box area cannot simply be
regarded as targets. According to the characteristic of the SAR
ship target, the target classification and bounding box regression
method are redesigned in this article. And the image region is
divided into three parts: positive region, negative region, and
blurry region. The regression target and image region division
are shown in Fig. 8.

In the FCOS network, for each location (x, y) on the feature
map Fi, it will be mapped back onto the input image as (xs +
s/2, ys + s/2), where s represents the total stride. If the location
(x, y) falls into any ground-truth box, it will be regarded as a
positive sample and the corresponding class label c� = 1 (c�

represents the class label of the ground-truth box). Otherwise, it
will be considered as a negative sample and c� = 0 (background
class). However, we redesign the positive sample region of the
feature map. We expand it a certain distance from the center
point of ship target, and the size of the area does not exceed
the outer contour of target. We define the center pixel point (xc,
yc), (x1, y1) is the corresponding point on the input image of the
location (x, y). In our model, the width of the positive sample
region is 0.5 times the target width in the feature map, as shown
in Fig. 8. Therefore, if location (x1, y1) is inside a ground-truth
box T = [(xm + xc)/2, (ym + yc)/2, (xc + xn)/2, (yc + yn)/2], it
will be considered as a positive sample, and the class label c� =
1, where (xm, ym) and (xn, yn) are the top-left and bottom-right
coordinates of the ground-truth box. If the location is outside
ground-truth box B = (xm, ym, xn, yn), it will be considered as
a negative sample, and the class label c� = 0. Otherwise, it is a
fuzzy sample but c� = 1.

Formally, during the network training stage, the label for
classification in positive sample area and negative sample area
are regressed by c�, but the c� loss of the fuzzy sample area
is not calculated. The 4-D real vector P∗ = (l∗, t∗, r∗, b∗) are
the regression value for target location in the positive region
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and blurry region, but the position loss of negative region is not
calculated. And the training regression vector P∗ = (l∗, t∗, r∗,
b∗) can be formulated as

l∗ = x1 − xm

t∗ = y1 − ym

r∗ = xn − x1

b∗ = yn − y1. (10)

It can be found that the proposed method can leverage as
many target samples as possible to train classification regressor,
which can reduce the effect of background pixels. Besides, we
choose enough foreground samples (include background pixels
in ground-truth box) to train the position regressor. Therefore,
the accuracy of the location and category regression value (P∗

and c�) can be improved in the proposed network. Meanwhile,
after such region division and loss calculation, the influence of
overlapping bounding boxes can be reduced. Detailed analysis
of improvement is explained in Section III.

E. Loss Function

The training loss function of the proposed method mainly
consists of three branch loss functions

LCP−FCOS = 1
Npos

Lcls +
m

Npos
Lreg +

n
Npos

Lcen (11)

where Lcls, Lreg, and Lcen denote the classification loss, regres-
sion loss, and center-ness loss. Npos is the number of positive
sample pixels in the standard result. m, n, and 1 are the loss
balance weight, which can adjust three branch loss proportions.

The Focal Loss [56] is adopted for Lcls, and it can be formu-
lated as

Lcls =
∑

i,j∈Rp

−αt(1−
i,j

Pr
cls

)
γ

log(
i,j

Pr
cls

)

+
∑

i,j∈Rn

−(1− αt) Pr
i,j
cls

γ
log(1−

i,j

Pr
cls

) (12)

where Rp and Rn denote the positive sample region and negative
sample region. αtand γrefer to modulation factor. Pri,jcls repre-
sents the predicted category of (i, j). We use the IOU LOSS to
calculate the regression loss, which is defined as

Lreg =
∑

i,j∈(Rp∪Ri)

(1− IOU(Pri,jbbox, Gti,jbbox)) (13)

where Gti,jbbox represents the ground truth localization of the
pixel (i, j), Pri,jbbox represents the predicted result of (i, j), and
Ri denotes the invalid sample area. The Center-ness loss is
calculated with binary cross entropy (BCE) [38] loss

Lcen =
∑

i,j∈(Rp∪Ri)

BCE(
i,j

Pr
cen

, Gti,jcen) (14)

where Pri,jcen represents predicted center-ness of the pixel (i, j),
Gti,jcen represents the truth center-ness of the pixel (i, j), and Ri
denotes the invalid sample region.

III. EXPERIMENTS

In this section, to evaluate the effectiveness of the proposed
method, extensive experiments are conducted on HRSID [57],
SSDD [58], IEEE 2020 Gaofen Challenge SAR dataset [59], and
two complex large-scene HR SAR images. First, experimen-
tal implementations such as datasets, settings, and evaluation
metrics will be introduced. Then, the ablation and comparison
experiments will be performed to prove the effectiveness of the
proposed method. Finally, the results in complex and large-scene
images imply the generalization of the proposed method.

A. Implementations

1) Datasets: The HRSID proposed by Wei et al. [57] is
established by using images from 99 Sentinel-1B imageries,
36 TerraSAR-X, and 1 TanDEM-X imagery. These large-scene
imageries are cropped to 800 × 800 pixels SAR images. There-
fore, it contains 5604 cropped SAR images and 16951 ships.
And resolutions of these images range from 1 to 15 m. The
ablation experiments are implemented on HRSID to evaluate
the effectiveness of the proposed improvements. SSDD is a
multiresolution, multisize, and multisensor SAR ship dataset
published by Li et al. [58], a benchmark dataset for scholars
to evaluate their algorithms. The SSDD dataset contains 1160
images and has 2456 ships with sizes ranging from the most
miniature scale of 7 × 7 to the largest scale of 211 × 298.
The polarization modes of these images include HH, HV, VV,
and VH, resolutions also range from 1 to 15 m. IEEE 2020
Gaofen Challenge SAR dataset is provided to participate in the
2020 Gaofen Challenge on Automated High-Resolution Earth
Observation Image Interpretation. It contains 1000 SAR images
with spatial resolution ranging from 1 to 5 m, collected from
the Chinese Gaofen-3 satellite. All the images are 1000 × 1000
pixels value, which contain multiorientations, and multiscales
ships. For ship target detection in complex and large-scene
HR SAR images, some typical slices from Gaofen-3 satellite
are applied to our experiments. Gaofen-3 satellite has different
imaging modes, such as Strip-Map (UFS), Fine Strip-Map 1
(FSI), Full Polarization 1 (QPSI), Full Polarization 2(QPSII),
and so on. The original pixel values of the two complex large-
scale SAR images are shown in this article are 16746 × 24919
and 12678 × 11328. They are cropped into 800 × 800 image
blocks under the overlapped ratio of 25%, and these cropped
images are divided into, i.e., a training set and a testing set, with
the proportion of 7:3. The detailed information of these datasets
is presented in Table I. Some instances of different datasets are
shown in Fig. 9.

2) Settings: All the experiments are implemented in PyTorch
1.3.1, CUDA 9.2, and CUDNN 7 with Intel Core i7-8700K CPU
and a NVIDIA Geforce GTX 1080Ti GPU. The PC operation
system is Windows 7. The computer and deep-learning environ-
ment configuration for our experiments is presented in Table II.

Furthermore, all the models are trained with the stochastic
gradient descent algorithm for 60 000 iterations with a total
of two images per minibatch. The initial learning rate is set as
0.0004, and the weight decay is 0.00002. The detection threshold
IOU in all experiments is set 0.5.
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TABLE I
DETAILED INFORMATION OF DIFFERENT DATASET

Fig. 9. Instances of different dataset. (a) HRSID. (b) SSDD. (c) IEEE 2020
Gaofen Challenge. All of them show the specialty of multiresolution, multisize
ships, and substantial interference in HR SAR images.

TABLE II
ENVIRONMENT CONFIGURATION

Generally speaking, the backbone used in the proposed net-
work will directly affect the detection performance. To choose
the best backbone for our model, we conduct some experiments
with different backbones based on the FCOS network; the exper-
imental results are presented in Table III and Fig. 10. From the
experimental results, we found that the detection performance
of ResNet-50 is better than the other four backbones. First,
the training and testing efficiency of ResNet-50 is significantly
faster than ResNet-101 and ResNet-152. Second, the mAP
value of network with ResNet-50 is completely better than that
with ResNet-18 and ResNet-34. Furthermore, as presented in
Table III, the mAP value of the network with ResNet-50 is
93.97%, which is 11.38, 6.99, 1.89, and 2.16% higher than
that with ResNet-18, ResNet-34, ResNet-101, and ResNet-152.

TABLE III
DETECTION PERFORMANCE OF DIFFERENT BACKBONES

Fig. 10. Detection performance of different backbones.

Therefore, the pretrained model ResNet-50 on ImageNet is used
as the backbone in the rest experiments.

3) Evaluation Metric: In our experiments, AP, APs, APm,
APl, and F1 scores are utilized to evaluate the detection per-
formance of the network, which are the same as the metric
definition on the COCO dataset. The PR curve is plotted by
calculating the precision–recall at different confidence levels in
all experiments. Average precision (AP) is the area enclosed by
the relationship curve of precision and recall. The average of
multiple categories of AP is mean average precision (mAP).
Especially for the ship target, mAP is AP. According to the
number of pixels contained in the bounding box of the ship target,
the ship is divided into small targets (0–1000 pixels), medium
targets (1000–4000 pixels), and large targets (over 4000 pixels).
Therefore, APs, APm, and APl represent AP for small ships,
medium ships, and large ships. The definition of precision and
recall is defined as follows:

Precision =
TP

TP + FP
(15)
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TABLE IV
EFFECT OF CP-MODULE WITH DIFFERENT POOLING METHODS

Recall =
TP

TP + FN
(16)

where TP (true positives), FP, and FN (false negative) refer to
the number of correctly detected ships, false alarms, and missing
ships. F1 score combines the precision and recall as follows:

F1 = 2× Precision× Recall

Precision + Recall
. (17)

AP is defined as

AP =

∫ 1

0

P (R)dR (18)

where P represents precision and R represents recall. Actually,
the AP metric is applied to evaluate the comprehensive detection
performance of the model.

B. Model Analysis

1) Effect of CP-Module: The experiments in this section
are used to investigate the impact of the proposed CP feature
optimization module on the model detection performance. Sig-
nificantly, the Center-sample [37] is applied to train the network
in these experiments. The experimental results based on the test
dataset are presented in Table IV. It turns out that the CP module
can improve the detection performance obviously, especially
the APl index. Compared with the baseline, the CP module
with average-pooling and the max-pooling finally increases the
APs and APl by 1.3 and 3.32%, respectively. Furthermore,
the mAP and F1 scores are increased by 1.33 and 1.41%,
implying that the proposed improved model can obtain better
comprehensive detection performance. And the CP-module with
average-pooling and the min-pooling can increases the value of
APm. In other words, the AP values of large, medium, and small
ships in the SAR image can be improved with the proposed
module. This is because the CP-module optimizes the position
regression branch features and obtains the balanced features for
multiscale ships. The effectiveness of the CP module can also
be verified in Fig. 11. We can observe that more false alarms
exist in the baseline detector and more small-scale ships are
missed. In contrast, our method with CP module shows a better
performance in dealing with such complex surroundings and
multiscale ships. Meanwhile, to give a more intuitive explana-
tion, basic and fine-grained feature maps of different heads, e.g.,
classification, center-ness, and regression, tested on offshore and
inshore ships are shown in Figs. 12 and 13, respectively.

Fig. 12 shows some visualization results of inshore ships
(including detection results with and without CP module, clas-
sification, center-ness, and regression feature maps). In the de-
tection results (the first left column of Fig. 12), rectangles with

Fig. 11. Comparison results of the methods without and with CP module.
Rectangles with blue color are true ships. Rectangles with yellow color are false
alarms. Rectangles with red color are missing ships. (a) Results of the baseline.
(b) Results of the baseline with CP module.

Fig. 12. Some visualization results of inshore ships. (a) Ground truths. (d)
Detection results without CP module. (g) Detection results with CP module.
(b) and (c) Classification feature maps. (e) and (f) Center-ness feature maps.
(h) and (i) Regression feature maps. Rectangles with blue color are true ships.
Rectangles with yellow color are false alarms. Rectangles with red color are
missing ships.
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Fig. 13. Some visualization results of offshore ships. The meanings of the box
color are the same as Fig. 12. (a) Ground truths. (d) Detection results without CP
module. (g) Detection results with CP module. (b) and (c) Classification feature
maps. (e) and (f) Center-ness feature maps. (h) and (i) Regression feature maps.

Fig. 14. PR curves of different improvement experiments.

blue color are true ships, rectangles with yellow and red color
refer to false alarms and missing ships, and the green rectangles
represent the ground truth (the following results are drawn like
this). As shown in Fig. 12, the method with CP module performs
better than the method without this module. Our method can
detect parallel ships in such complex background and the loca-
tions of ships are predicted more accurately. According to the
feature maps (the five columns on the right of Fig. 12), active
areas in the classification, center-ness, and regression feature
maps constructed by our method distribute more clearly than the
baseline. Especially, the Center-ness and classification feature
maps in higher head show stronger position information, which

TABLE V
EFFECT OF DIFFERENT REGRESSION METHODS

is conducive to positioning these parallel ships. However, active
areas in these feature maps predicted without CP module are
blurry, which might lead to the missing ships or wrong detection.

Fig. 13 shows some visualization results of offshore ships
(including detection results with and without CP module, and
classification, center-ness, and regression feature maps). As
shown in Fig. 13(e) and (f), the CP module significantly im-
proves the Center-ness feature of Head3, Head4, and Head5
detectors. Meanwhile, the comparison between Fig. 13(h) and
(i) shows that our method extracts more sufficient high-level
semantic information in regression branch, proving that the
proposed CP module plays an important role in enhancing the
semantic information of multiscale ships.

2) Effect of Classification and Regression Redesign: In this
section, the regression method proposed in this article is verified.
The same parameter settings are used for training the network
in these experiments. The results in Table V show that the
redesigned classification and regression method yields better
overall performance. According to the statistical results, it is
shown that the FCOS network regression method achieves the
worst detection performance. This is because the FCOS network
treats all pixels in the bounding box as positive samples, which
affects the model to learn target feature with incorrectly labeled
background pixels. Furthermore, fixed sampling ratio is applied
in the Center-sample regression to suppress the influence of
semantic ambiguity. However, it only brings a slight improve-
ment on mAP and F1. In comparison, the mAP value of ship
target is obviously improved in our method, especially for small
ships and large ships. This is because the regression method
proposed in this article can effectively avoid the interference in
the background pixels in bounding box on the network training,
which is beneficial to the network detection performance.

3) Effect of Overall Improvement: Although the CP-module
and redesigned regression method make the model better adapt
to ships detection, the effect of overall improvement deserves
further discussion. Therefore, we conducted some experiments
to verify the impact of overall improvement on the detection
performance. Experiment 1 is the baseline experiment, and the
two improvement measures mentioned are not adopted. The
detection results of these experiments are listed in Table VI.
Fig. 14 shows the PR curves of different improvements. It can be
seen from Table VI that our method brings a noticeable improve-
ment in all evaluation metrics. Specifically, compared with the
baseline experiment, the model with CP-module and redesigned
classification and regression method increases the mAP and F1
by 2.04 and 1.98%. In addition, the much higher APs, APm,
and APl indicate that our method can achieve more accurate
localization for small, medium, and large ships, especially for
small ship targets. And it can be seen from Fig. 10 that the model
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TABLE VI
INFLUENCE OF EACH COMPONENT IN THE PROPOSED CP-FCOS

TABLE VII
DETECTION RESULTS OF CNN-BASED METHODS ON HRSID

Fig. 15. PR curves of different methods on HRSID.

with overall improvement improves both the precision and recall
rate considerably. This may be because the overall improvement
optimizes the position regression branch features and avoids the
semantic ambiguity caused by overlapping target borders.

C. Comparison With Other Methods on Different Dataset

To verify the performance of our method, we compare the
proposed network with three CNN-based methods, including
Faster R-CNN, RetinaNet, and FCOS, on four different datasets.
Table VII presents the speed, accuracy, and computational com-
plexity of different CNN-based methods tested on HRSID, and
the corresponding PR curves are displayed in Fig. 15. As pre-
sented in Table VII, compared with the baseline FCOS network,
the proposed structure can improve the detection performance
in different degrees with only a slight increase in the model
parameters and the inference time per image. However, more
prominently, with the minimum model volume and minimum
number of parameters, the detection speed of the proposed
method is significantly faster than all the others. This may be be-
cause in Faster RCNN [28], anchor boxes are proposed, avoiding

repeated feature computation. However, anchor boxes can re-
sult in excessively many hyper-parameters, which typically in-
creases the adjustment time of the model. As for RetinaNet, the
network leverages a confidence threshold of 0.05 to filter the
first 1000 candidate boxes in each pyramid layer. After that,
all candidate boxes of different layers are chosen by NMS.
A large number of useless anchors cause waste of computing
and storage resources, at the same time, increasing the com-
putational complexity of the model. By contrast, the inference
of the proposed method is more straightforward than Faster-
RCNN and RetinaNet, it can directly obtain the classification
scores and location vector on the feature maps, and then the
predicted bounding boxes are chosen by threshold without any
anchor calculation. Besides, it can be seen from Table VII that
the mAP value and F1 scores of the model proposed in this
article are 96.01 and 94.50%, respectively, which are better
than anchor-based Faster R-CNN, RetinaNet, and anchor-free
FCOS methods. In terms of APs, the score of our method is
1.8, 7.71, and 2.32% higher than Faster-RCNN, RetinaNet, and
FCOS. APm of our method is 98.99%, which is close to other
methods, whereas 0.6% slightly lower APm than Faster-RCNN.
Furthermore, APl of our method is 94.50%, which is 0.62,
7.51, and 2.03% higher than Faster-RCNN, RetinaNet, and
FCOS. This means improvements proposed in this article have
a significant impact on the detection of multiscale ships. Among
them, the mAP value of RetinaNet is less than 0.9, which is the
worst detection result. In addition, it can be seen from Fig. 15
that the precision of our method (the blue curve in Fig. 15)
under different recall rates is better than other three CNN-based
methods. It is distinct that the PR curve of RetinaNet (the green
curve in Fig. 15) is lower than those of the other methods. And
the PR curves of Faster-RCNN (the yellow curve in Fig. 15)
and FCOS (the red curve in Fig. 15) decrease sharply when
the recall rate is higher than 0.8. However, the PR curve of our
method is generally stable. Significantly, the precision rate of our
model is always higher than those of Faster-RCNN, RetinaNet,
and FCOS, especially when the recall rate is higher than 0.8.
The comparison of the detection results of different methods
can be seen from Fig. 16. The meanings of the boxes color
are the same as Fig. 12. It can be observed that the proposed
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Fig. 16. Detection results of different methods on HRSID. The meanings of
the boxes color are the same as Fig. 12. (a) Our methods. (b) Faster-RCNN.
(c) FCOS. (d) RetinaNet.

method obtains a considerable performance on multiscale ships
in complex scenes. And the proposed model is not susceptible
to the interference of near-shore objects and could effectively
reduce false alarms around the land. At the same time, compared
with Faster-RCNN, RetinaNet, and FCOS, our model has a
better detection performance for dense-docking ships. These
benefit from the feature map enhanced by the CP-module, and
the redesigned classification and regression method, which can
effectively extract the shallow position features and high-level
semantic features of multiscale ship target.

To verify the robustness and generalization ability of improve-
ment, we perform ship detection in the SSDD dataset and apply
the model to the 2020 IEEE Gaofen Challenge. Figs. 17 and
18 present the detection results in the two datasets. It can be
observed that Faster-RCNN, RetinaNet, and FCOS miss some

TABLE VIII
DETECTION RESULTS OF CNN-BASED METHODS ON IMAGE 1

TABLE IX
DETECTION RESULTS OF CNN-BASED METHODS ON IMAGE 2

prominent offshore ships and produce more false alarms near
the land. Specially, only one offshore ship is missed in the result
of our model, which shows a better detection performance. As
for the ships that are docked intensively in the port, almost all
of them could be detected with the proposed network. However,
a large number of false alarms exist in the detection results of
Faster-RCNN, RetinaNet, and FCOS. This may be due to these
models have poor feature enhancement capability, which are not
well suited for ship detection in complex scenes. On the contrary,
the method proposed in this article shows strong generalization
performance and robustness.

Overall, extensive experiments conducted on HRSID, SSDD,
and IEEE 2020 Gaofen Challenge SAR dataset show that the
method proposed in this article can provide competitive perfor-
mance for ship detection in HR SAR images. Most importantly,
the proposed method was successfully applied to SAR ship
detection in the 2020 Gaofen Challenge, and our team ranked
first among 292 teams in the preliminary contest and won the
seventh place in the final match.

D. Validation on Complex and Large-Scene SAR Images

In this section, we use two complex and large-scene SAR
images collected from the GF-3 satellite to test the practica-
bility of the proposed network. Table I presents their imag-
ing information, and we compared the proposed method with
Faster-RCNN and RetinaNet. Some detailed detection results of
two large-scene images are listed in Tables VIII and IX. (TP
represents the number of correctly detected ships, FP is the
number of the false alarms, and FN is the number of missing
ships.) From Table VIII, it can be seen that most ships in
the first image can be successfully detected with our method.
There are only five false alarms meanwhile six missing ships.
The F1 score is 90.89%, which is 5.18% and 7.71% higher
than Faster-RCNN and RetinaNet. As presented in Table IX,
in the second large-scene image, the F1 score of the proposed
method is 85.71%, which is obviously higher than 70.59% of
Faster-RCNN and 78.79% of RetinaNet. In order to evaluate the
actual efficiency of different methods applied in large scenes,
we take the total processing time of the whole scene image
as the evaluation standard of speed. Significantly, the overall
processing time includes the detection time of all slices and the
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Fig. 17. Detection results of different methods on SSDD. The meanings of the boxes color are the same as Fig. 12. (a) Our methods. (b) Faster-RCNN. (c) FCOS.
(d) RetinaNet.

Fig. 18. Detection results of different methods on 2020 IEEE Gaofen Challenge Dataset. The meanings of the boxes color are the same as Fig. 12. (a) Our
methods. (b) Faster-RCNN. (c) FCOS. (d) RetinaNet.
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Fig. 19. Detection results in complex and large-scene SAR images. The meanings of the boxes color are the same as Fig. 12. Two specific areas marked with
yellow rectangles are enlarged. (a) Image 1. (b) Image 2.

merging time of the entire large-scene image. It can be seen
that the proposed method obviously has better detection speed
than Faster-RCNN and RetinaNet since there is no need for our
anchor-free method to design complex anchors that consume
lots of computing resources.

Fig. 19 shows some detection results on the two large-scene
SAR images. Two specific areas marked with yellow rectangles
are enlarged and shown on the side of Fig. 19. It can be clearly
observed that only one ship is missed in the complex scenes
where ships are docked densely. At the same time, the proposed
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method can effectively reduce false alarms at a higher detection
speed. In other words, the method proposed in this article has
a better generalization performance in terms of accuracy and
efficiency for SAR ship detection.

IV. CONCLUSION

An improved anchor-free method is proposed in this article to
improve the ship detection performance in HR SAR images. As
the special anchor-free methods, FCOS can reduce false alarms
and avoid missing ships through pixel-by-pixel prediction of
the image. However, there is also a problem of the imbalance
between positive and negative samples and semantic ambiguity
caused by overlapping target borders in this network. Therefore,
the CP module is proposed in this article to optimize the target
position features. At the same time, in order to reduce the impact
of the target fuzzy areas, the classification and boundary box
regression methods are redesigned in our model. The extensive
experiments show that the improvement proposed in this article
can obtain an encouraging detection performance in terms of
accuracy and speed. The proposed method was significantly
applied to SAR ship detection in the 2020 Gaofen Challenge,
and our team achieved a competitive result. Furthermore, in the
future, we believe that the anchor-free detectors will achieve
more fantastic performance in the field of SAR ship detection.
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