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Abstract—Phase unwrapping (PU) has always been a critical
and challenging step in interferometric synthetic aperture radar
(InSAR) data processing. Inspired by existing research, i.e., the
PGNet, we propose a novel quality-guided 2-D InSAR PU method
via deep learning, and regard PU as a two-stage process. In the
first stage, the ambiguity gradient is estimated using the proposed
global attention U-Net (GAUNet) architecture, which combines
the classic U-Net structure and global attention mechanism. Then,
in the second stage, the classical PU framework (e.g., the L1- or
L2-norm) is applied as a post-processing operation to retrieve the
absolute phase. Since class imbalance is a key factor affecting the
estimation of ambiguity gradient, different strategies based on four
commonly used quality maps are adopted to deal with the problem.
The quality map is not only input as additional information for
the guidance of the training process, but also participates in the
construction of loss function. As a result, GAUNet can pay more
attention to the nonzero ambiguity gradients. By using the number
of residues as the evaluation metric, we can choose the optimum
strategy for the restoration of the absolute phase. In addition to
the simulated interferograms, the proposed method is tested both
on a real topographic interferogram exhibiting rugged topography
and phase aliasing and a differential interferogram measuring the
deformation from MW 6.9 Hawaii earthquake, all yield state-of-art
performance when comparing with the widely used traditional 2-D
PU methods.

Index Terms—2-D phase unwrapping (2-D PU), ambiguity
gradient, class imbalance, deep learning (DL), interferometric
synthetic aperture radar (InSAR), quality-guided.

I. INTRODUCTION

INTERFEROMETRIC synthetic aperture radar (InSAR)
technology has grown to maturity in recent decades, and

has been widely used in the reconstruction of digital elevation
model (DEM) and the detection of ground deformation [1], [2].
The basic principle of InSAR is to separate the target signal
from the phase difference of coregistrated SAR image pairs
(i.e., interferometric phase) to obtain the desired information
of elevation or deformation. Due to the limitation of the InSAR
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imaging hardware system, the obtained interferometric phase is
wrapped in the range of (−π, π]. Therefore, discontinuous phase
occurs at ±π even though the phase satisfies the irrotational
property. Phase discontinuities can be removed by assigning the
correct integer multiples of 2π to each pixel of the interferogram
(2kπ with k represents the ambiguity number). The process of
recovering the absolute phase from the obtained wrapped phase
is called phase unwrapping (PU) [3], [4].

Because of the ill-posed relationship between the wrapped
phase and the absolute phase, additional prior information or
constraint will be necessary for obtaining a unique PU solu-
tion. Traditional 2-D InSAR PU methods are almost based on
the constraint of phase continuity assumption. Phase continu-
ity assumption, also known as Itoh’s condition, requires that
the absolute phase difference between adjacent pixels in the
interferogram does not exceed π [5]. Under ideal conditions,
the complex InSAR PU process can be achieved by simple
path integration. However, in practical applications, due to the
presence of noise and phase aliasing (caused by such as shadow,
layover, and foreshortening) in the SAR image, phase continuity
assumption in the areas with low coherence or steep terrain will
often fail, resulting in unwrapping errors and negative impact
on the final results. Therefore, PU is a key and thorny problem
in InSAR data processing.

Plenty of 2-D PU algorithms have been developed to tackle
the problem of PU in recent decades, which can be broadly
classified into two categories: path-following algorithms and
optimization-based algorithms. Path-following algorithms have
high achievable accuracy in high-quality areas but are easy to
form isolated islands in areas with low signal-to-noise ratio.
Global optimization algorithms have stronger robustness, but
usually induce unwrapping failure in areas with steep phase
gradients and propagate the unwrapping errors on the whole
image. That is because as a precondition to traditional PU
methods, phase continuity assumption seems unreliable in many
cases. Actually, failure of phase continuity assumption is the
intrinsic cause of PU errors and is a key issue demanding prompt
solution in all traditional PU methods.

In the past few years, deep learning (DL) has yielded unusu-
ally brilliant results in various fields including remote sensing
[6], [7]. Especially, deep convolutional neural network (DCNN)
has shown unparalleled advantages in many tasks such as tar-
get recognition, image classification, and image segmentation.
However, the applications of DL in remote sensing mainly
concentrate in optical remote sensing, whereas there are few
applications in radar remote sensing especially InSAR [8], [9].
Recently, some researchers in InSAR field are actively exploring
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the combination of DL and InSAR, attempting to draw support
from DL to solve the problems existing in traditional InSAR
technique [10].

Hitherto, DL-based PU methods have shown their elegant
demeanor. We know that the phase continuity assumption is
actually proposed by the designers of the PU algorithms based
on their own experience. However, the latest researches such
as AlphaGo have indicated that in some respects, the ability
of artificial intelligence (AI) to sum up experience is stronger
than that of humans. The biggest advantage of DL-based PU
method is that it can get rid of the constraints of phase con-
tinuity assumption and can learn end-to-end directly through
data-driven instead of model-driven method used in traditional
2-D PU. Therefore, the computer has the ability to autonomously
extract features from the wrapped phase after appropriate train-
ing, and can obtain the true phase directly or through a certain
post-processing process.

Several existing researches have proved the effectiveness of
DL-based PU methods. Spoorthi et al. [11] proposed PhaseNet,
which regards PU as a semantic segmentation problem, and is
the first application of DCNN in PU. In [12], a fully connected
neural network structure is applied. The network has the ability
to extract the ambiguity number K from the wrapped phase
after training, absolute phase can thus be recovered through a
simple post-processing process. Zhang et al. [13] and Zhang
et al. [14] adopted similar strategies as PhaseNet to solve the
PU problem. Wang et al. [15] used the absolute phase instead
of ambiguity number K as ground truth and proposed a DLPU
structure, which can directly extract the absolute phase from
the wrapped phase after training without any post-processing
step. Spoorthi et al. [16] proposed PhaseNet 2.0 on the basis
of PhaseNet, utilized DenseNet to implement PU tasks, which
greatly increases the classes of ambiguity number that can be
accurately predicted and enhances the network’s performance
by proposing a new residual loss.

The aforementioned works were all achieved by researchers
in optical field. Compared with optical PU, the application
scenarios of InSAR PU are usually more complicated due to
the effect of phase aliasing and noise; therefore, it is ineffective
to use ambiguity number or absolute phase as ground truth
in InSAR PU situations. Zhou et al. [17] proposed PGNet in
2020, which is the first combination of DL and InSAR PU.
In this article, phase gradients are used as ground truth, and
DCNN is used to replace the phase continuity assumption to
estimate the horizontal and vertical phase gradient. The 2-D
InSAR PU is transformed into a three-class segmentation prob-
lem, which greatly improves the generalization performance and
noise robustness of the algorithm. Conventional methods such
as minimum cost flow (MCF) can be used for postprocessing to
obtain the final unwrapping phase using the estimated phase
gradients. Sica et al. [18] input the wrapped phase and its
corresponding coherence simultaneously into the network for
training and also use the wrap-count gradients as ground truth.
Both of the two methods show state-of-art performance when
comparing with the traditional PU methods. Zhou et al. [19]
made a review on applications of AI in the PU domain, where the
existing methods are well summarized and analyzed. However,
to the best of our knowledge, there is no pertinent research

focus on the generalization performance and class imbalance
problem of DL-based PU method, and nobody has tested the
performance of DL-based PU method on the interferogram with
ground deformation caused by the earthquake.

In this article, we propose a novel quality-guided 2-D InSAR
PU method based on a DCNN structure, which is referred to
as global attention U-Net (GAUNet), to improve the accuracy
of the ambiguity gradient estimation and ultimately to obtain
a more accurate PU result. Specifically, compared with other
existing works, we make the following new contributions.

1) Unlike the existing researches, we generated a multisource
dataset with various noise levels for training process.
Parameters from TerraSAR-X/TanDEM-X with X-band,
Sentinel-1 with C-band, and ALOS-2 with L-band are used
to generate the training data sets, and noise is added to
the simulated phase based on constant mean coherence or
coherence derived from the real processed interferograms.

2) To deal with the adverse effects of class imbalance, global
attention mechanism is added to the U-Net architecture
to build GAUNet architecture. Therefore, GAUNet can
dynamically focus on certain parts of the input, where the
distribution of nonzero ambiguity gradients is denser.

3) Four kinds of quality maps are not only evaluated as an
input feature to the GAUNet, but also participate in the
formulation of the loss function in this work.

4) Eventually, we demonstrate the performance of GAUNet
on both simulated and real interferograms. Deserved to be
mentioned, we verified the performance of DL-based PU
method in the interferogram with the deformation caused
by an earthquake for the first time.

The remainder of the article is organized as follows. In Sec-
tion II, we introduce the principle and categories of traditional
2-D InSAR PU in detail, then review the mechanism of current
DL-based PU methods. Materials and details of the proposed
method are presented in Section III. In Section IV, the perfor-
mance of GAUNet-PU is evaluated both on simulated and real
SAR interferograms. Finally, Section V concludes this article.

II. PRINCIPLE AND RELATED WORK

In this section, we first give a detailed introduction of the
principle and categories of the traditional 2-D PU method, then
overview the implementation mechanism of the DL-based PU
method.

A. 2-D Phase Unwrapping and Ambiguity Gradient

The relationship between the obtained wrapped phase ϕ and
the unknown absolute phase ψ in an interferogram can be stated
as follows:

ϕ(s) = ψ(s)− 2k(s)π, whereϕ(s) ∈ (−π, π] k(s) ∈ Z (1)

where s denotes the pixel position, k(s) is the unknown ambi-
guity number of the sth pixel, and Zdenotes set of integers.
From (1), we can find that 2-D PU is actually an ill-posed
inverse problem. With one observation and two unknowns, the
unwrapping phase can not be solved directly. As mentioned
in Section I, phase continuity assumption can be used as a
restriction for traditional 2-D PU. If phase continuity assumption
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Fig. 1. Example of (a) wrapped phase and its corresponding: (b) coherence,
(c) HG, and (d) VG.

holds at any position in the interferogram, PU can be easily
realized by a simple integration process.

Ambiguity gradient Δk(s, s− 1) refers to the difference of
ambiguity number between adjacent pixels according to (2).
For 2-D InSAR PU problem, there are two kinds of ambiguity
gradients in the azimuth and range (i.e., horizontal and vertical)
directions

Δk(s, s− 1) = k(s)− k(s− 1)

where k(s) = round((ψ(s)− ϕ(s))/2π). (2)

Under the constraints of phase continuity assumption, ambi-
guity gradient can be defined as

Δk(s, s− 1) =

⎧⎨
⎩

1, ϕ(s)−ϕ(s− 1) < −π
0, |ϕ(s)−ϕ(s− 1)| ≤ π
−1, ϕ(s)−ϕ(s− 1) >π .

(3)

Fig. 1 shows an example of the wrapped phase and its
corresponding coherence, horizontal ambiguity gradient (HG),
and vertical ambiguity gradient (VG). It can be found that the
distribution of nonzero gradients is closely related to the fringe
pattern and the presence of noise. Coherence can reflect the
distribution of nonzero gradients to some extent.

B. Path-Following Algorithms

The path-following algorithms utilize external information
to choose the most reasonable integration path. Goldstein’s
branch-cut (BC) method is a typical path-following algorithm,
which uses the residues to assist the choice of the integration path
[20], [21]. Simply stated, residues are recognized by calculating
a 2× 2 loop-integration of the wrapped phase difference (see
Fig. 2). Integration path via nonzero residues will cause unwrap-
ping errors, which can transfer from the low-quality areas to the
high-quality areas of the input interferogram. BC method can
balance the positive and negative residues by setting reasonable
branch cuts. Another path-following algorithm received almost
as gospel is the quality-guided phase unwrapping (QGPU)
method [22], [23]. The value of the quality map represents the

Fig. 2. Illustration of identify residues from the wrapped phase grid. The red
circular represents the positive residue, whereas the blue circular represents
the negative residue. Green circulars represent nodes without residue, i.e., the
loop-integration value is 0.

quality of the corresponding interferogram. It is believed that
high-quality pixels are not likely to cause unwrapping errors.
Therefore, researchers insist that high-quality pixels should be
considered first when selecting the optimum integration path.
That is to say, QGPU unwraps high-quality areas at the beginning
and then gradually expands to low-quality areas.

C. Optimization-Based Algorithms

Optimization-based algorithms regard PU as a global opti-
mization problem. It believes that a dependable PU result can
be obtained by solving the global optimal solution of the certain
constraint minimum energy function [24]. According to [4], in its
general form the formulation of optimization-based algorithms
can be expressed as follows:

arg min
ψ(s)

Σ
(s,s−1)

f(ψ(s)− ψ(s− 1)−
�

Δψ(s, s− 1)). (4)

Depending on the choice of PU model f(·), optimization-
based algorithms can be divided into two sorts: minimum-norm
algorithms and statistics-based algorithms. MCF [25] and least
square [26] are two typical minimum-norm methods. Repre-
sentative statistics-based methods include phase unwrapping
via max flows (PUMA) [27] and statistical-cost, network-flow
algorithm for phase unwrapping (SNAPHU) [28]. Some specific
details of optimization-based algorithms will be elaborated later.

D. Deep Learning Based Algorithms

According to existing research [11]–[18], the key point of
DL-based PU is to determine an appropriate learning object
(i.e., the ground truth), so as to investigate the PU problem
from DL perspective. Through clever transformation, PU can
be converted into an image segmentation task, which is DL’s
area of expertise.

So far, three learning objects, i.e., the absolute phase, the am-
biguity number, and the ambiguity gradient, can be utilized for
DL-based PU. DL-based PU methods taking absolute phase as
learning object can be regarded as one-stage processes, whereas
those taking ambiguity number or gradient as learning object
are two-stage processes, or in other words, additional steps
are required for obtaining the unwrapped phase. As mentioned
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earlier, using ambiguity gradient as ground truth seems more
reliable for the complex scenarios of InSAR, and has the ability
to process a larger size of interferogram.

III. MATERIALS AND PROPOSED METHOD

Inspired by the existing research [17], we regard 2-D InSAR
PU as a two-stage programming approach. For the first stage,
GAUNet based on DCNN is proposed to estimate the ambiguity

gradient
�

Δk(s, s− 1). It is worth emphasizing that the true
ambiguity gradient Δk(s, s− 1) in (2) is assumed only three
values (i.e., 0 or ±1) due to the limitation of DCNN’s capacity
in dealing with the minority class. Hence, we replace ambiguity
gradient larger than 1 with 1, and that smaller than−1 with−1. It
is acknowledged that this range can cover most of the common
situations [17], [18]. According to (2), the estimation of the
ambiguity gradient can be regarded as a semantic segmentation
problem with three classes (0,±1) [29]. Due to the unbalanced
quantity and uneven distribution of the nonzero ambiguity gradi-
ents, class imbalance becomes a key factor restricting the results.
We adopt several strategies to deal with the problem, which will
be introduced in details in this section. For the second stage,
the traditional optimization-based PU framework is employed
as a postprocessing process to obtain the final unwrapped phase
based on the ambiguity gradient estimated in the first stage.
Therefore, (4) can be converted to the formulation as follows:

arg min
k(s)

Σ
(s,s−1)

f(k(s)− k(s− 1)−
�

Δk(s, s− 1)). (5)

From (5), we can see that the reliability of the PU result

is highly dependent on the correctness of
�

Δk(s, s− 1). If the

estimation of
�

Δk(s, s− 1) is totally correct, the result of PU will
be unambiguous. However, in low-quality areas, the ambiguity
gradient estimation based on the phase continuity assumption
has proved wildly inaccurate. In this case, errors will always exist
in the PU solution whatever kind of f(·) is chose. Compared with
the phase continuity assumption, the proposed method shows
significant accuracy improvement in the estimation of ambiguity
gradient under various noise levels; thus, we can obtain more
robust PU results even using identical optimization framework.

A. Quality Map

QGPU is a very effective PU method, which can make a
good balance between efficiency and accuracy. The result of
QGPU is highly depend on the quality map. The range of value
in the quality map is between 0 and 1, which can evaluate
the goodness of each pixel in the corresponding interferogram.
There are four most commonly used quality maps in InSAR PU,
i.e., the correlation map, the phase derivative variance map, the
maximum phase gradient map, and the pseudocorrelation map
[3]. Now, we will briefly introduce the definitions of these quality
maps. Among them, the correlation map is what we commonly
referred to as coherence, and can be defined as follows:

γ(m,n) =
Σu(i,j)v

∗
(i,j)√

Σ|u(i,j)|2Σ|v(i,j)|2
(6)

where u(i,j) and v(i,j) represent the multilook averaging plural
pixels performed in the k × k neighborhood centered at pixel
(m,n) of the coregistrated master-slave interferogram, and v∗(i,j)
and |v(i,j)| represent the complex conjugate and the modulus of
v(i,j), respectively.

The phase derivative variance is a frequently-used quality
map, which is closest to the distribution of residues. It can be
computed using (7). The results of selecting the phase derivative
variance tend to be more reliable especially when the terrain of
the application scenario is steep

Zm,n =

√∑
(Δx

i,j −Δx
m,n)

2
+

√∑
(Δy

i,j −Δy
m,n)

2

k2
(7)

where k is the length of the smoothing window, (m,n) is the
central pixel of the smoothing window, Δx

i,jand Δy
i,j are the

partial derivative of the wrapped phase, and Δx
m,nand Δy

m,n

are the mean values of the partial derivative in the smoothing
window.

The maximum phase gradient measures the magnitude of the
largest phase gradient (i.e., wrapped phase difference or partial
derivative) of each pixel in the k × k neighborhood, and its
definition is shown as follows:

Gm,n = max{max{|Δx
i,j |},max{|Δy

i,j |}}. (8)

The pseudocorrelation is proposed to deal with the situation
when the correlation coefficient is unknown, but there is a certain
difference between them. Pseudocorrelation can be computed
using the following equation:

|Zm,n| =
√
(
∑

cosϕi,j)2+(
∑

sinϕi,j)2

k2
(9)

where k is the length of the smoothing window, (m,n) is the
central pixel of the smoothing window, ϕi,j is the wrapped
phase, sum operations in (9) are taken in the smoothing window.

The corresponding phase derivative variance map, maximum
phase gradient map, and the pseudocorrelation map of Fig. 1(a)
are presented in Fig. 3. Through comparison, it is found that
the phase derivative variance map [Fig. 3(a)] is quite similar to
the correlation map [Fig. 1(b)]. The maximum phase gradient
map [Fig. 3(b)] and the pseudocorrelation map [Fig. 3(c)] have
a disposition to mark the area with steep terrain as low-quality,
which will undoubtedly bring negative effect on the traditional
2-D PU method. However, nonzero ambiguity gradients tend to
be very crowded in areas with steep terrain. Marking these areas
as low-quality can make the DCNN pay more attention to them
and may have a beneficial effect on the gradient estimation.
Therefore, all four kinds of quality maps are tested in the
following experiments.

B. Generation of Dataset

A high-quality dataset is one of the compelling requisites
for DL-based method. Fortunately, unlike many other applica-
tions, there is a definitive input-output relationship between the
wrapped phase and the ambiguity gradient in PU, as shown in (1)
and (2). Therefore, we can generate our dataset effortlessly. The
topographic component of interferometric phase is simulated
to represent the true phase, which can be computed using the
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Fig. 3. Corresponding (a) phase derivative variance map, (b) maximum phase
gradient map, and (c) pseudocorrelation map of Fig. 1(a).

TABLE I
SIMULATED PARAMETERS

following equation:

ψ(m,n) =
4π

λ

B⊥h(m,n)
R sin(θ)

(10)

where ψ(m,n) is the true phase of pixel (m,n), B⊥ is the
perpendicular baseline, λ is the wavelength,R is the orbit height,
and θ is the incidence angle. Altitude h(m,n) can be obtained
by back-geocoding the existing DEM database, such as Shuttle
Radar Topography Mission (SRTM) DEM or TanDEM-X DEM
(TanDEM) [30], [31]. The final choice depends on the specific
situation, mainly referring to the size of the holes in the DEM
of the study areas. To enhance the noise robustness and general-
ization capability of our method, the acquisition parameters of
the X-band TerraSAR-X and TanDEM-X satellites, the C-band
Sentinel-1 satellite, and the L-band ALOS-2 satellite are all
utilized to simulate the interferometric phase. The coverages of
the data are shown in Fig. 4. Constant coherence and coherence
derived from the real interferograms are used to add phase noise
into the simulated wrapped phase, constituting two training data
sets.

For data sets 1, the simulated parameters of three different
SAR satellite sensors are listed in Table I. According to [32],
the phase noise of pixel (m,n) is added by

noi(m,n) =

√
1− γ(m,n)2

2Lγ(m,n)2
· randn(1) (11)

where γ(m,n) is the coherence of pixel (m,n) andL represents
the number of looks. Constant mean coherence ranging from

0.4 to 1 with 0.05 as the interval is used to add noise into the
simulated interferometric phase.

For data sets 2, the parameters obtained from real interfero-
grams are used to simulate the interferometric phase referring
to (10). Because of the large quantity, the specific details of
the simulated parameters will not be explained here for sim-
plicity. It is worth recalling that the length of the perpendicular
baseline is between 5 and 320 m. Long spatial baselines show
denser phase fringes and can represent the complex topographic
interferograms, whereas short baselines result in sparse fringes,
which are more consistent with the deformation interferograms.
Coherence derived from the real interferograms is used to add
phase noise according to (11).

We can wrap the simulated phase with different noise levels
through a simple step, using

ϕ(m,n) = angle(exp(jψ(m,n))). (12)

Here, angle(·) is used to calculate the principal value of
the argument of a complex number, this is what we call the
wrapped phase. We cropped the simulated wrapped phase and
its corresponding four kinds of quality maps to a fixed size
of 128× 128 as inputs, and cropped the HGs and VGs to the
identical size as ground truth for guidance of the training process.
Ultimately, we got a training-validation set comprising 164 726
samples (80% reserved for training).

C. Proposed Method

In this part, we first introduce the basic compositions of
GAUNet, i.e., the U-Net structure and the global attention
upsample (GAU) module, then give a detailed description of
the GAUNet architecture, the loss function, and the training
hyperparameters.

1) U-Net: Through observation and comparison, it can be
found that there are many similarities between the process of
estimating the ambiguity gradient from the wrapped phase and
the medical segmentation task [33]. Analogous to medical im-
ages, the noisy wrapped phase images have blurred boundaries
and complex gradients, more high-resolution information is
thus required for accurate segmentation. On the other side, the
semantics of the ambiguity gradient are relatively simple and
clear; therefore, low-resolution information is also significant
for target recognition.

U-Net is a classic medical semantic segmentation model.
Since the unique U-shaped structure and skip-connection can
combine low- and high-resolution information, U-Net is very
appropriate for our task [34]. The architecture of classic U-Net
is shown in Fig. 5.

2) Global Attention Upsample: GAU is an efficient
attention-based decoder proposed in [36]. As mentioned above,
it is very important to fuse low- and high-resolution information
in our task.

The structure of GAU is shown in Fig. 6. By performing global
average pooling, GAU can extract high-level global context to
weight low-level features. Compared with the low-level features,
high-level features have rich semantic information. Therefore,
high-level features can provide guidance information for low-
level feature maps to select category localization details, i.e.,
the localization of the nonzero ambiguity gradients in our task.
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Fig. 4. Black dotted bordered rectangles denote the coverage of the data using for simulated InSAR system, red stars in the inset map show the location of the
three study area. From left to right: (a) TerraSAR-X/TanDEM-X, (b) Sentinel-1, and (c) ALOS-2.

Fig. 5. Architecture of classic U-Net (modified from [34]). The network consists of a contracting path and an expanding path, exhibits U-shaped structure.

Fig. 6. Structure of GAU module (modified from [36]).

Specifically, a 3× 3 convolution operation is performed on low-
level features to reduce the number of channels in the DCNN fea-
ture map. The global context information generated from high-
level features undergoes 1× 1 convolution, batch normalization

(BN), and nonlinearity in turn, and then is multiplied by low-
level features. Finally, the high-level features are added to the
weighted low-level features and a gradual upsampling process is
performed. GAU module can not only adapt to feature mapping
at different scales with high efficiency, but also provide guidance
information for mapping low-level features in a simple way.

3) GAUNet: By combining U-Net structure and GAU mod-
ule, we proposed GAUNet specialized for ambiguity gradient
estimation. As shown in Fig. 7, GAUNet is based on classic
encoder-decoder architecture, and the overall structure of the
network still maintains a U-like shape. The encoder module
gradually reduces the resolution of the feature map and captures
high-level semantic information while the decoder module re-
stores spatial information step-by-step. Changes in the number
of feature maps during the sampling process can be seen in Fig. 7.

As illustrated in Fig. 7, the encoder of GAUNet is consis-
tent with the encoder of classical U-Net, containing four max-
pooling layers sandwiched between five DoubleConv modules.
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Fig. 7. Network structure of the proposed GAUNet, which takes wrapped phase and its corresponding quality map as input and outputs HGs and VGs.

TABLE II
NETWORK CONFIGURATION FOR GAUNET

Through downsampling, the size of the feature map becomes
one-sixteenth of the input size. The detailed configurations are
shown in Table II.

We mainly modified the decoder subnetwork to specialized
in treatment of the PU problem. First, we use a combination
of upsample and 3× 3 convolution layer, which is referred to
as UpConv (detailed configurations are also shown in Table II)
to replace the transposed convolution layer in the classic U-
Net. Second, GAU module is used to provide global context
information as guidance for low-level features, for indicating
the positioning of pixels with nonzero ambiguity gradients.
Other attention mechanisms, such as spatial attention mech-
anism, channel attention mechanism, and the combination of
them [37]–[39], have been tried to introduce into our task.
However, the experiments indicated that the results of ambiguity
gradient estimation will be more inaccurate after the addition
of these attention mechanisms. The specific representations are
embodied in the decreases of mean IoU (MIoU) on validation
set in terms of the evaluating indicators. MIoU on validation
set is a generally used metric to evaluate the performances of
different DCNNs after the training process. After that utilized
skip connection, the upsampled features are concatenated with
the corresponding features coming from the encoding path and
the features generated by GAU module. Concatenated feature
blocks are fed into DoubleConv module as the same as that
in the encoding path, and the number of channels is changed
back to the number before concatenating. The decoder also
contains four UpConv modules. After four upsampling steps,
the features are restored to the size of the original input image.
The last DoubleConv module comprises an additional 1× 1

convolutional layer, which compresses the output into three
channels. Finally, through a three-way softmax activation, the
final output is expressed as the desired pixel-wise class mem-
bership probabilities.

As shown in Fig. 7, the wrapped phase and its corresponding
quality map (any one of four) are fed into the network as channels
1 and 2, respectively. As an additional input, the quality map
can assist GAUNet to focus on the areas with denser nonzero
gradients distribution automatically. The output is the horizontal
or vertical components of the ambiguity gradient. It is no-
ticed that compared with simultaneously obtaining HG and VG
through a single training process, disjoint training procedures
show higher accuracy of ambiguity gradient estimation. This can
be ascribed to the highly nonisotropic SAR geometry and has
been demonstrated in the experiments. Therefore, in our method,
GAUNet is trained separately to extract HG and VG. Ultimately,
two sets of different network parameters are estimated for each
guiding strategy.

4) Loss Function and Training Process: An important start-
ing point for solving the problem of class imbalance in classi-
fication or segmentation tasks is the loss function [40]. In this
article, a weighted combination of quality-guided focal loss and
dice loss is used to counter the class imbalance in ambiguity
gradient estimation.

Focal loss is designed to solve the problem of unbalanced
samples in one-stage target detection [41]. In essence, focal
loss is a loss that can solve the class imbalance and mine hard
samples by down-weighting the contribution of easy samples
during training. The basis of focal loss is the cross entropy (CE)
loss, which can be defined as follows:

LCE = −
M∑
t=1

yt log(pt) (13)

where M represents the number of classes, which is three in our
task. yt is a one-hot vector that takes the value of either 0 or
1. If the predicted value of ambiguity gradient is the same as
ground truth, yt takes 1; otherwise, yt takes 0. pt represents the
membership probability of class t. On the foundation of the CE
loss, focal loss adds a modulating factor (1− pt)

γ and can be
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written as

LFocal = −αt(1− pt)
γLCE. (14)

The modulating factor can adjust the corresponding loss value
according to the difficulty of the sample. When a pixel is misclas-
sified and pt is small, the modulating factor is near 1 and the loss
is unaffected. However, as pt → 1, the modulating factor goes
to 0 and the loss for well-classified examples is down-weighted.
The focusing parameterγ smoothly adjusts the rate at which easy
examples are down-weighted. When γ = 0,LFocal is equivalent
toLCE, and as γ is increased, the effect of the modulating factor
is likewise increased. Different from [41], we dynamically adjust
γ according to the value of the corresponding pixel in the quality
map instead of setting it to a fixed value. In detail, γ is obtained
by mapping the value of each pixel in the quality map, and
the experiments have shown that by mapping the value of γ to
[0,2], the best performance can be achieved. αt is the weight of
different classes. According to [41] and our experimental result,
it can be found that the value of αt will not have a great impact
on the result in the multiclassification task, we thus set it to 1.

Dice coefficient is a commonly used index in image seg-
mentation, especially in medical image segmentation field [42],
[43]. According to the Lee Raymond Dice command, the Dice
coefficient is a metric function to measure the similarity of sets.
It is usually used to calculate the pixels between two samples.
The formula of dice loss is defined as follows [42]:

LDice= 1− 2|X ∩ Y |
|X|+ |Y | = 1− 2TP

2TP + FN+ FP
. (15)

For our segmentation task, X and Y represents the ground
truth and the predicted gradient images, respectively. TP, FP,
and FN represent the number of true positive, false positive,
and false negative samples, respectively. Dice loss is suitable
when the samples are extremely unbalanced. If dice loss is used
under normal circumstances, it will have an adverse effect on
backpropagation and make the training process unstable. There-
fore, dice loss is usually weighted with other loss functions.
Performance analysis demonstrates that using a combination of
focal loss and dice loss performs better than using one of them or
other tested loss functions in our ambiguity gradient estimation
task. So our final loss can be given by

LTotal = αLFocal + (1− α)LDice. (16)

By experimental verification, α is set to 0.6. The proposed
GAUNet is implemented in Pytorch. We trained on an NVIDIA
RTX 3090 with 24 GB of GPU memory for 200 epochs, 80% of
the generated dataset is used for training, and the remaining
20% is used for validation to prevent overfitting. The initial
learning rate is set to 5e − 5, and the batch size is set to 64.
Parameters are initialized using Xavier initialization, and Adam
optimizer is used to update and calculate the parameters that
affect model training to approximate or reach the optimal value,
thereby minimizing the loss function [44]. We use the cosine
annealing strategy as scheduler to adaptively adjust the learning
rate. As aforementioned, HG and VG are estimated separately,
so we finally get two sets of different network parameters for
each guiding strategy. By directly inputting the cropped wrapped

phase (128× 128) and its corresponding quality map into the
trained GAUNet, the targeted HG and VG can be well estimated.

D. Absolute Phase Reconstruction

Estimating HG and VG is the first step of the 2-D PU task. As a
consequence of the noise and phase aliasing, it is nearly imprac-
ticable to get a completely correct estimation of the ambiguity
gradient. Therefore, the absolute phase cannot be reconstructed
by a simple flood-fill integration process. According to [45],
almost all the existing 2-D PU methods, such as MCF and LS,
can be used to obtain the absolute phase with the estimated
ambiguity gradients. In this study, the L1-Norm is chosen as
f(·) to reconstruct the absolute phase; therefore, the problem is
transformed into a nonlinear minimization process with integer
variables. According to [25], (5) can be written as

arg min
k(s)

Σ
(s,s−1)

c(s, s− 1) · |k(s)− k(s− 1)−
�

Δk(s, s− 1)|
(17)

where
�

Δk(s, s− 1) is the ambiguity gradient estimated by
GAUNet. By the way, all of the four kinds of quality maps de-
scribed earlier can be used as c(s, s− 1) to weight the optimized
process. The objective is to solve the minimum cost flow on the
network, or more generally, to minimize the weighted number
of locations where the estimated ambiguity gradient differs from
the true ambiguity gradient. As an effective PU method based
on L1 norm, minimum cost flow (MCF) has been developed and
perfected in practice since it was proposed. Currently, MCF can
be solved effectively by several algorithms according to [46].
Since MCF can reduce the time and space complexity of PU, it
is feasible to be used as the postprocessing step in GAUNet-PU.
According to the estimated ambiguity gradients under different
guidance strategies, we can calculate the corresponding number
of residues and select the best guidance strategy for subsequent
absolute phase reconstruction. The overall flow of GAUNet-PU
is shown in Fig. 8.

IV. PERFORMANCE ANALYSIS

In this section, we first utilize ablation experiments to clarify
the effectiveness of our three contributions in dealing with the
problem of class imbalance. Next, we explore the performance
improvements of GAUNet with different guiding strategies by
comparing the number of residues under various noise levels.
Then, the performance evaluation of GAUNet-PU methodology
is implemented through three experiments, which are performed
on simulated topographic interferogram, real topographic inter-
ferogram exhibiting rugged terrain, and real differential inter-
ferogram measuring surface deformation of Hawaii earthquake,
respectively. In all of the three experiments, the performance of
GAUNet-PU is compared with several representative traditional
2-D PU methods.

A. Performance Improvements Brought by Three
Contributions

As aforementioned, to deal with the negative impact of class
imbalance, GAU module is added to the U-Net to build GAUNet
architecture, and the quality map is not only fed into the network
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Fig. 8. Overall flow of GAUNet-PU. Best guiding strategy is selected based on the number of residues, and L1-Norm is applied to restore the absolute phase.

TABLE III
ABLATION OF GAUNET

together with its corresponding wrapped phase, but also used for
the formulation of the loss function. By adopting the methods
of ablation experiment, the performance improvements brought
by these three contributions are clarified in this part.

To analyze the performance of GAUNet architecture, MIoU is
utilized as the evaluation metric [47]. IoU, also known as Jaccard
index, refers to the intersection and the union ratio between the
predicted segmentation and the ground truth, has been used as
a standard measuring metric in multifarious semantic segmen-
tation tasks. By calculating the IoU of each semantic class, and
then calculating the average over classes, we can get the MIoU,
which is defined as

MIoU =
1

k + 1

k∑
0

TP

TP + FP + FN
(18)

where TP, FP, and FN represent the number of true positive,
false positive, and false negative samples, respectively, and k
takes the value of 2 in our task.

The ablation experiments of GAUNet are implemented on
a test dataset consisting of 2439 samples of 128× 128 pixels
simulated by acquisition parameters from three satellites (1300
with noise added by constant coherence and 1139 with noise
added by real derived coherence), and the results are illustrated
in Table III. Contribution A represents the addition of GAU
module, contribution B represents the input of quality map
(take coherence for example), and contribution C represents
the participation of quality map in the loss function. Through
analysis, it can be found that all three contributions have positive
effects on ambiguity gradient estimation, whereas contributions
A and B can yield greater improvements.

B. Strategies Analysis Under Various Noise Conditions

To verify and compare the performances of GAUNet under the
guidance of different quality maps, in this part we use simulated
data under various noise levels (noises added by fixed coherence
and coherence derived from the real processed interferograms,
respectively) to test five trained GAUNet with different strate-
gies.

To begin with, GAUNet is tested in synthetic data with the
noise added by constant coherence from 0.4 to 1 with 0.05 as
interval; therefore, the robustness of five implemented strategies
for varying noise is demonstrated. For each noise level, 1000
samples of 128× 128 pixels simulated by acquisition param-
eters from three satellites are applied. Note that the samples
used for test are independent from the previously used training
sets. In this experiment, two evaluation metrics, i.e., the MIoU
and the kappa coefficient, are used to evaluate the performances
of GAUNet with different guidance strategies [47], [48]. The
MIoU has been covered previously, here we only provide details
regarding the kappa coefficient. Kappa coefficient is a metric for
consistency test, and can also be used to measure the effect of
classification. Kappa coefficient is derived from the confusion
matrix, which is a square matrix with the size of the classification
number, and the element at position (i, j) in confusion matrix
represents the number of pixels whose ground truth is i and
predicted to be j. Kappa coefficient can be calculated as follows:

kappa =
p0 − pc
1− pc

where p0 =

∑
r
i=1xii
N

, pc =

∑
r
i=1(xi+ × x+i)

N2
(19)

where r represents the class number of ambiguity gradient,
i.e., r = 3 in GAUNet. xii represents the number of correctly
predicted pixels of each class, xi+ and x+i represent the number
of pixels belonging to the ith class in prediction map and ground
truth map, respectively, andN is the total number of pixels in the
wrapped phase images. Actually, p0 is the metric of accuracy,
which is the most basic and simplest evaluation metric but is
not so effective in dealing with the imbalanced classes. Kappa
coefficient can punish the bias of the model to replace the metric
of accuracy in the case of class imbalance.

The trained GAUNet is directly applied, so that the param-
eters do not change during the test process. The performance
evaluation results under various coherence levels with different
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Fig. 9. (a) and (b) exhibit MIoU and kappa coefficient of HG estimation with different guiding strategies under various coherence coefficient levels, respectively.
(c) and (d) exhibit those of VG estimation, respectively. (e) shows the comparison of the average number of residues obtained by different methods under various
coherence coefficient levels, and the local enlarged drawing of red rectangle dashed box in (e) are shown as (f).

guidance strategies are shown in Fig. 9. Through comparison, it
can be found that different quality maps have different degrees
of influence on the ambiguity gradient estimation process. In the
situation of low coherence, the help brought by the quality map
is not obvious. This is expected since the entire input image is
very noisy, and almost all of the pixels need to be paid attention
to. With the increase of the coherence coefficient, quality maps
begin to show their advantages. In general, GAUNet guided by
pseudocorrelation shows the best performance, and GAUNet
guided by maximum phase gradient seems to perform better
than the ones guided by correlation and by phase derivative
variance here. Because constant images of coherence are used,
the correlation map cannot provide local information for each
individual sample actually, can only tell the GAUNet how much
attention it needs to provide for this sample at the scale of the
whole data sets. The phase derivative variance map resembles
the correlation map by comparing Figs. 1(b) and 3(a), yield-
ing relatively similar performance. As mentioned earlier, the
pseudo-correlation map and the maximum phase gradient map
tend to mark the areas with steep terrain as low quality; thus, they
can guide GAUNet to focus on them and achieve better perfor-
mance, especially in the situation of higher coherence. Fig. 9(e)
reveals the relationship between the coherence coefficient and
the average number of residues obtained by phase continuity
assumption and GAUNet with two diverse guiding strategies.
As expected, all three methods perform well in the application
scenario of high coherence coefficient, but it is very easy to
find that the ability of GAUNet in dealing with low coherence
coefficient is far stronger than that of phase continuity assump-
tion. In other words, GAUNet has stronger noise robustness.
For the sake of clarity, the local enlargement of Fig. 9(e) with

the coherence coefficients ranging from 0.8 to 1.0 is shown in
Fig. 9(f). Drawing support from it, the performance comparison
of the three methods in the case of high coherence coefficient
can be observed more intuitively. It is worth pointing out that
the result presented in Fig. 9 is a universal result based on a
large number of test samples, and the best strategy in specific
application scenarios may have subtle differences. However,
the overall conclusion will never change, that is, the ability of
GAUNet to estimate the ambiguity gradient is better than that of
phase continuity assumption, and the quality map can provide
effective guidance for this process.

GAUNet is then tested by synthetic InSAR data with noise
added by coherence extracted from the real processed interfer-
ograms. In this way, the simulated data are more consistent
with the real cases, ergo the corresponding test results are
more convincing. Using the system parameters together with
the coherence information obtained from the real single-pass
interferograms of the three satellites, 1193 samples of 128× 128
pixels are simulated for this purpose. The real coherence has
a wider variation range, and the value of many regions is
even lower than 0.2, which greatly increases the difficulty of
ambiguity gradient estimation. Fig. 10(a) and (b) illustrate the
testing results of GAUNet using different guiding strategies on
simulated data with real coherence. These results indicate that
they do have somewhat of a different behavior when comparing
with the results shown in Fig. 9(a)–(d). One of the most obvious
differences is that the performance improvement of GAUNet
under the guidance of correlation is greatly increased, and the
optimum guiding strategy changes from pseudocorrelation to
correlation. This is because coherence is no longer a constant
over the whole correlation map. Instead, as the basis of noise
addition, it can accurately reflect the quality of each pixel and
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Fig. 10. Strategies 1–5 represent GAUNet without quality guided, GAUNet with correlation guided, GAUNet with phase derivative variance guided, GAUNet
with maximum phase gradient guided, and GAUNet with pseudocorrelation guided, respectively. Strategy 6 represents phase continuity assumption. (a) and (b)
demonstrate MIoU and kappa coefficient of horizontal and VG estimations under real coherence coefficient, respectively. (c) shows the comparison of the average
number of residues obtained by phase continuity assumption and five GAUNet-based methods under real coherence coefficient.

preferably help GAUNet to deal with the presence of high-
density nonzero ambiguity gradients. The other three quality
maps can still provide certain guidance for the estimation of
ambiguity gradient under the condition of true coherence, and
the promotion of performance is basically consistent with the
case of using constant coherence. Although the pseudocorrela-
tion and the maximum phase gradient tend to divide the steep
terrain areas into low-quality areas, which is conducive to the
gradient estimation, they also inevitably make wrong judgments
on the quality of some pixels. Hence one can see that, same as the
traditional quality-guided methods, an ideal quality map is very
important for our method, poor quality maps may have a negative
impact on the results. Fig. 10(c) shows the average number of
residues obtained by phase continuity assumption and GAUNet
with five different guiding strategies, and we can still clearly see
the incomparable superiority of GAUNet in estimation of the
ambiguity gradient. As mentioned earlier, the results obtained
in each individual application scenario may differ slightly from
the general results depicted in Fig. 10. However, we believe that
the real situation should be quite similar to the results shown
in Fig. 10. It is acknowledged that coherence is an intermediate
product of InSAR data processing, which is very convenient
to obtain. Therefore, in practical application, we recommend
using coherence to guide GAUNet for InSAR PU for the sake
of simplicity. But in order to ensure the preciseness of the
subsequent experiments, we will first determine the optimal
guiding strategy for each example according to the number of
residues, then compare the best result with other state-of-art
methods to prove the effectiveness of the proposed method.

C. Performance Evaluation With Simulated Datasets

In this section, we compare the performance of GAUNet-PU
with serval typical PU methods, including QGPU [23], MCF
[25], and PUMA [27], on the synthetic interferograms with
constant coherence and real coherence, respectively. The code
of QGPU used in this article comes from [3], MCF method
is implemented in GAMMA software [49], and the code of
PUMA is supplied by its designers. In this and the subsequent
experiments, QGPU is guided by phase derivative variance, the
triangulation mode of MCF (Delaunay triangulation mode or

filled triangular mesh) and the parameters of PUMA are deter-
mined by the best performance. The first row in Fig. 11 illustrates
a series of wrapped phase images with mean coherence from 0.4
to 1, and the corresponding residue images obtained by GAUNet
and phase continuity assumption are shown in rows 2 and 3.
It is noteworthy that the residue images obtained by GAUNet
are determined based on different quality maps, guiding strategy
minimizing the number of residues is used to guide the follow-up
unwrapping process for each coherence level. The wrapped
phase images are simulated with parameters from ALOS-2, with
128× 128pixels in size. We can find that with the decrease of the
mean coherence, the phase fringes become blurred; it is thus very
challenging for accurate estimation of the ambiguity gradient.
The pattern of phase in the observed area is not exactly compli-
cated except for three NW-SE oriented phase jump; therefore,
the residues estimated by the two methods are mainly distributed
around the jump regions. By comparison, we can clearly see that
the number of residues obtained by GAUNet is much lesser than
that obtained by phase continuity assumption for each coherence
level. The specific statistic is shown in Table IV. Through statis-
tics analysis, we learn that the total number of residues obtained
by GAUNet is only 14.1% of that obtained by phase continuity
assumption.

Based on the wrapped phase images presented in Fig. 11 and
the estimated ambiguity gradient, we use L1-norm model to
attain the final GAUNet-PU results, as shown in Fig. 12. For
comparison, we also calculate the PU results using QGPU,
MCF, and PUMA. Although using quality maps as weighted
factors may improve the accuracy of GAUNet-PU, for the sake
of fairness, we unweight all PU methods used in this and the
follow-up experiments. In order to ensure the facticity of the
mean coherence, no filtering operation is performed before PU.
The same reference point is chosen to ensure that all PU methods
are in the same scale. Through visual comparison, it can be found
that except for QGPU, the other three methods can basically
obtain robust PU results when the mean coherence is greater than
0.6. As a member of the path-following PU family, QGPU shows
the general problem of these methods in this experiment, that is,
the islanding effect. When the mean coherence is less than 0.6,
the results obtained by MCF and PUMA begin to show obvious
unwrapping errors. Especially when the mean coherence is 0.4,
the results obtained by all three traditional methods seem not
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Fig. 11. Row 1: wrapped phase images with constant mean coherence (a) 0.4, (b) 0.5, (c) 0.6, (d) 0.7, (e) 0.8, (f) 0.9, and (g) 1.0. Row 2: corresponding residue
images obtained by GAUNet. Row 3: corresponding residue images obtained by phase continuity assumption.

TABLE IV
NUMBER OF RESIDUES

Fig. 12. Row 1: corresponding true absolute phase of row 1 in Fig. 11. Row 2: absolute phase obtained by GAUNet. Row 3: absolute phase obtained by QGPU.
Row 4: absolute phase obtained by MCF. Row 5: absolute phase obtained by PUMA.
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TABLE V
RMSE BETWEEN TRUE PHASE AND ESTIMATED PHASE OF FOUR PU METHODS

Fig. 13. Column 1: SRTM DEM and synthetic wrapped phase with real coherence. Columns 2–5: estimated DEM and corresponding error images between the
estimated DEM and the reference SRTM DEM obtained by GAUNet-PU, QGPU, MCF, and PUMA.

credible at all. This is because the phase continuity assumption
almost fails when the wrapped phase is too noisy, and it is
difficult for the traditional methods to deal with the ambiguity
gradient with too many errors effectively. In contrast, GAUNet
can estimate the ambiguity gradient accurately even when the
coherence is low; therefore, our method exhibits strong noise
robustness and is very applicable in situations with high noise
levels. For quantitative comparison, we calculate the root mean
square error (RMSE) between the predicted unwrapped phase
and the true phase, as illustrated in Table V. With respect to
all tested methods, GAUNet-PU shows the best performance,
getting an overall lowest mean RMSE. It can be found that even
if the same optimization model is used, since the estimation of
ambiguity gradient is more accurate, GAUNet-PU can perform
better than MCF at each coherence level. When the mean coher-
ence is high (≥ 0.7), GAUNet-PU and PUMA both perform very
well, but in the situations of low mean coherence, GAUNet-PU
is significantly better.

Using the parameters obtained from the TerraSAR-
X/TanDEM-X interferogram, a wrapped phase sample with
128× 128 pixels in size is simulated, to evaluate the perfor-
mance of GAUNet-PU on cases with real coherence. The first
column in Fig. 13 shows the reference SRTM DEM and the
synthetic wrapped phase. The DEMs estimated by GAUNet-PU,
QGPU, MCF, and PUMA are illustrated in row 1, columns 2 to
5 of Fig. 13. To reveal the discrepancy more clearly, the error
images between the estimated DEM and the reference SRTM
DEM are calculated, as shown in row 2, columns 2 to 5 of Fig. 13.
It is worth mentioning that the colorbars of the four error images
are in the same range. Through observation, it can be found that

TABLE VI
RMSE BETWEEN THE ESTIMATED DEM AND THE REFERENCE DEM

the error image obtained by GAUNet is the smoothest overall. In
the high-quality regions, all the tested methods seem to achieve
reliable PU results. However, in the regions with low coherence,
due to the influence of noise, the estimated DEMs show certain
errors when compared with the reference SRTM DEM. In gen-
eral, the results obtained by GAUNet-PU and MCF are more
robust. Since the ambiguity gradient estimated by GAUNet is
more correct than that estimated by phase continuity assumption,
GAUNet-PU can avoid many local unwrapping errors when
compared with MCF although the same optimization model is
applied. Besides the obvious unwrapping errors existing in the
upper right corner of the image, PUMA has a similar perfor-
mance with MCF. QGPU produces extensive unwrapping errors
in all the low-quality areas. This can be ascribed to the fact that
the error information containing in ambiguity gradient estimated
by phase continuity assumption results in too many residues,
thus QGPU cannot choose an effective integration path.

To quantitatively evaluate the performance of GAUNet-PU,
we calculate the RMSEs between the estimated DEMs and
the reference DEM, as illustrated in Table VI. Seen from the
numerical point of view, the RMSEs of the four PU methods are
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Fig. 14. (a) Reference SRTM DEM. (b) SAR intensity image. (c) Coherence
map. (d) Flattened real interferogram.

Fig. 15. (a) Residue image estimated by GAUNet. (b) Residue image esti-
mated by phase continuity assumption.

not particularly different due to the high quality of most areas on
the test image, but GAUNet-PU still achieves the lowest RMSE.

D. Experiments With Topographic Interferogram of
Dingxi, China

To test the practical applicability of the proposed method,
the experiment with the real topographic interferogram is im-
plemented in this part. A TerraSAR-X/TanDEM-X interfero-
gram covering Dingxi City, Gansu Province, China, acquired
on August 22, 2013, is applied in this experiment. Fig. 14
shows the corresponding reference SRTM DEM, SAR intensity
image, coherence map, and the flattened real interferogram
of the study area. After 4:4 multilook processing, the size of
the interferogram is 1000× 1000 and its spatial resolution is
approximately 12 m because the satellite adopts Stripmap Mode.
As shown in Fig. 14(c), due to the special side-looking imaging
mechanism of SAR system, phase aliasing often occurs in areas
with big topographic relief, resulting in local low coherence.
Under such circumstances, the ambiguity gradient estimated by
phase continuity assumption is not credible. Fig. 15(a) and (b)
are the residue images of Fig. 14(d) obtained by GAUNet and
phase continuity assumption, respectively. By visual contrast,
we can clearly see that the residues obtained by GAUNet are
significantly lower than that of phase continuity assumption.

TABLE VII
RMSE BETWEEN THE ESTIMATED DEM AND THE REFERENCE DEM

Through statistical analysis, the number of residues obtained by
GAUNet (6515 residues) is only 16.25% of that obtained by
phase continuity assumption (40 078 residues). This proves the
effectiveness of GAUNet in real scenarios.

The first row in Fig. 16 illustrates the DEMs estimated by
GAUNet-PU, QGPU, MCF, and PUMA, respectively. Except
for the obvious difference of QGPU, it is difficult for us to
distinguish the results of the other three methods with naked
eyes. For a more intuitive and clear comparison, we compute
the error images between the estimated DEMs and the refer-
ence SRTM DEM, as shown in the second row of Fig. 16.
On account of a large number of mistakes in ambiguity gra-
dient estimated by phase continuity assumption, QGPU can
not choose an appropriate integration path, thus exhibit quite
obvious unwrapping errors. It can be found that the results
of GAUNet-PU, MCF, and PUMA are still relatively similar.
However, compared with the other two methods, GAUNet-PU
can avoid some local unwrapping errors in certain low coherence
regions. By calculating the RMSE between the estimated DEM
and the reference SRTM DEM (see Table VII), the PU accuracy
can be compared quantitatively.

Considering the similarity of the DEMs and RMSEs obtained
by GAUNet-PU, MCF, and PUMA, it is inferred that the domi-
nant error source is the inaccuracy of the reference SRTM DEM.
Due to the difference of noise robustness, the RMSEs of the four
methods present certain discrepancies. Even none of the tested
methods can completely avoid the local unwrapping errors,
GAUNet performs better than all the traditional PU methods,
resulting in the lowest RMSE. Due to the constraints of data, we
conduct the test in Dingxi, where the terrain is not particularly
undulating. However, we believe that GAUNet-PU will show
greater advantages in the case of more undulating terrain or
lower mean coherence.

E. Experiments With Differential Interferogram of 2018
Hawaii Earthquake, USA

Traditional 2-D PU methods usually fail to unwrap the
severely decorrelated areas in the interferograms, which leads
to the inability to obtain or underestimate the coseismic defor-
mation in the near-field of the earthquake. On 4 May 2018, a
thrust-faulting MW 6.9 earthquake occurred on Hawaii Island,
USA [50]. This earthquake is a volcanic earthquake caused by
the volcanic activity of the Kilauea Volcano Group on Hawaii
Island. Fig. 17 demonstrates the distribution of earthquakes with
magnitudes greater than 3.0 that occurred on the island of Hawaii
from May 1 to 10, 2018.

To test the ability of GAUNet in dealing with the differential
interferogram, two ALOS-2 data obtained on January 20, 2018
and May 26, 2018 (corresponding to the region of the red
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Fig. 16. Row 1: corresponding DEM of Fig. 13(d) obtained by GAUNet-PU, QGPU, MCF, and PUMA, respectively. Row 2: error images between the estimated
DEM and Fig. 13(a).

Fig. 17. Earthquakes with magnitudes greater than 3.0 that occurred on the
island of Hawaii from May 1 to 10, 2018.

Fig. 18. (a) Deformation interferogram of 2018 Hawaii earthquake, USA.
(b) Corresponding coherence image of (a).

rectangle in Fig. 17), are implemented to generate deformation
interferogram of the Hawaii earthquake, as shown in Fig. 18(a).
After 2:9 multilook processing, the size of the interferogram is
512× 696. From the corresponding coherence image shown in
Fig. 18(b), this can seem like a challenging task. In particular,

Fig. 19. (a) Residue image estimated by GAUNet. (b) Residue image esti-
mated by phase continuity assumption.

Fig. 20. (a) Absolute phase recovered by GAUNet-PU. (b) Absolute phase
recovered by MCF.

the interferogram covers the East Rift Zone of Hawaii Island,
which causes serious decorrelated effects in local areas under
the earthquake function. Even multilook processing is applied,
it is difficult to obtain correct ambiguity gradient information
using phase continuity assumption. Although our training sets
do not contain any samples of deformation interferograms, as
depicted in Fig. 19, the number of residues obtained by GAUNet
(5098 residues) is still significantly less than that of phase conti-
nuity assumption (16 510 residues). This indicates the powerful
generalization performance of the proposed method. Since the
coherence of the fracture region is almost close to zero, neither
of the methods can estimate the ambiguity gradient effectively.
However, in other regions of the interferogram, the distribution
of residues obtained by GAUNet is much sparser than that
obtained by phase continuity assumption. The unwrapping phase
obtained by GAUNet-PU and MCF are shown in Figs. 20(a) and
(b), respectively. The overall trend is relatively consistent, but
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there are obvious differences in local areas. For the lacking of
real reference, we can not compare the PU results quantitatively.
However, since the same optimization model is applied and the
ambiguity gradient information estimated by GAUNet is more
accurate, we believe that the unwrapping phase obtained by
GAUNet-PU will be more in line with the real situation than
that obtained by MCF. From Fig. 20(b), we can clearly observe
the PU errors existing in the upper left corner and right area
of the image where they are characterized by lower coherence.
In contrast, GAUNet-PU can get smoother unwrapping phase
and avoid many local unwrapping errors, which proves the
effectiveness of the proposed method once again.

V. CONCLUSION

In this article, we proposed a novel quality-guided GAUNet-
PU algorithm for 2-D PU in InSAR interferogram. PU is re-
garded as a two-stage process. The first stage is the estimation of
ambiguity gradient, whereas the second stage is the restoration
of absolute phase by utilizing the gradients obtained in stage
1. We have innovated mainly for the first stage, committing to
deal with the problem of class imbalance in ambiguity gradient
estimation and thus improve the accuracy of the final unwrap-
ping results. Specifically, GAU module is added to the classic
semantic segmentation network—U-Net, and the quality map
is not only input into the network as additional information, but
also used to modify the loss function. Undergo the modification,
the network can focus on the areas with denser nonzero gradient
distribution. After training on the generated multisource dataset,
GAUNet can estimate the ambiguity gradient more conveniently
and accurately when comparing with the phase continuity as-
sumption. Experiments show that the quality map can provide
certain guidance for GAUNet, and GAUNet-PU demonstrates
state-of-the-art performance on both synthetic and real data,
including topographic and deformation interferograms.

Because there are no open source code and parameter settings,
it is quite difficult to reproduce the existing DL research [17],
[18]. Despite all this, it will be necessary to compare the per-
formance with other DL-based PU methods in future studies.
To ensure fairness, all methods tested are unweighted in this
article. But actually, the quality map can play its third role in
GAUNet-PU, that is, the weighted coefficient of PU. Moreover,
the second stage of the proposed method is based on the original
version of MCF. In fact, many academics have made further
improvements on MCF, which can be added to our method.
In addition, according to Fig. 19(a), we can find that for the
case of extremely low coherence, it is challenging to estimate
the correct ambiguity gradient even using DL. Therefore, a
necessary mask is still required in this circumstance. Being
directed against the unique characteristics of the interested signal
(e.g., topography or deformation), more reliable quality maps or
other InSAR products such as DEM can be explored as guid-
ance in GAUNet to achieve higher PU accuracy in topography
mapping or deformation monitoring. In addition, multi-temporal
InSAR (MT-InSAR) has received widespread attention in recent
years, but parameter estimation based on the wrapped phase
is still a critical step. GAUNet-PU can be introduced into the

processing of time-series InSAR to aid the parameter estimation
in MT-InSAR techniques.
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