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Hyperspectral Remote Sensing Imagery Generation
From RGB Images Based on Joint Discrimination

Liqin Liu , Sen Lei , Zhenwei Shi , Member, IEEE, Ning Zhang, and Xinzhong Zhu

Abstract—Spatial resolution and spectral resolution both play
an important role in the recognition of objects in hyperspectral
remote sensing. However, the imaging characteristics of hyper-
spectral images (HSIs) result in a mutually restrictive relationship
between the spatial and spectral resolutions. Generative adversar-
ial networks (GANs) have achieved significant success in image
generation. The introduce of the discriminators plays a key role
in improving the reality. In this article, we propose an RGB to
multiband hyperspectral imagery (150 bands) generation method
based on GAN (R2HGAN). The method solves the high ill-posed
problem and introduces high spectral resolution into RGB images
by learning from multiple scenes of HSI. In R2HGAN, we extend
the adversarial learning from spatial to spectral dimensions and
joint discrimination is designed to generate HSIs closer to the real
ones, where two discriminators (the conditional D and the spectral
D) are put forward to supervise the spectral similarity and the
conditional reality of the HSI jointly. In detail, the conditional dis-
criminator comprehensively judges the quality of each area in the
reconstructed HSI. At the same time, to ensure that the generated
spectra are close to the real ones, a spectral discriminator based
on multilayer perceptron is designed. Through the experiments on
GF-5 imagery, the method has significantly improved the quality
of the generated images over other state-of-the-art methods.

Index Terms—Generation adversarial network (GAN),
hyperspectral image (HSI), remote sensing, spectral
superresolution (SSR).

I. INTRODUCTION

THE hyperspectral image (HSI) is a 3-D cube, which con-
tains spatial and spectral information at the same time.

Compared with RGB and multispectral remote sensing im-
ages (MSIs), HSIs’ high spectral resolution is of great sig-
nificance for identifying the diagnostic spectrum of ground
objects. Therefore, HSIs have been widely applied on precision
agriculture [1], ecological sciences [2], mineralogy [3], and
other fields. In the past 30 years, HSI processing technology
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has made great progress, including HSI classification [4]–[7],
target detection [8], [9], anomaly detection [10], hyperspectral
unmixing [11]–[13], etc. [14]. Among the aforementioned tech-
niques, spatial information is widely used and plays an important
role. Therefore, we hope to get imagery with both high spatial
and spectral resolutions.

In remote sensing imaging, the spectral and spatial resolu-
tions restrict each other under the same imaging time due to
the architectural constraints of the imaging system [15]. Many
RGB or MSI images with high spatial resolution usually lack
spectral information. For example, Chinese Gaofen-1 (GF-1)
with spatial resolution of 8 m/pixel has four bands covering
wavelength 0.45−0.89 μm [16] and Gaofen-2 provides four
band MSI with spatial resolution of 4 m/pixel. Landsat 8 has
seven bands with spatial resolution of 30 m/pixel covering the
wavelength range of 0.433−2.3 μm [17]. Besides, hyperspec-
tral imagery mainly with a low spatial resolution. For satellite
HSI, the spatial resolution is even lower than 20 m/pixel, such
as the resolution of Chinese GaoFen-5 (GF5) [18] and Earth
Observation-1 Hyperion [19] are both 30 m/pixel. At present,
it is difficult to obtain remote sensing images with high spatial
and spectral resolution at the same time.

Since the spatial resolution and the spectral resolution are
very important for HSIs, and the imaging equipment limits the
simultaneous acquisition of good spatial and spectral resolu-
tions, some postacquisition methods are widely used [19], [20].
That is, through enhancement techniques to improve the spatial
resolution [20] of HSI or to increase the spectral resolution of
images with a higher spatial resolution [19] (such as RGB and
MSI).

A typical way to improve the spatial resolution of HSI is
hyperspectral superresolution (HSI SR) [20], [21]. The SR
methods can be classified into two representative categories,
one is SR only use the low-resolution HSI (LR-HSI) [22], [23],
another contains the methods that enhance the spatial resolution
of HSI with the spatial information in high-resolution RGB or
multispectral images (MSI) [24], [25]. The HSI SR can improve
the spatial resolution on the basis of existing HSI.

Unlike HSI superresolution (SR), spectral SR (SSR) promotes
the spectral resolution of the image, which has attracted signif-
icant attention in recent years. SSR can provide high spatial
resolution HSI only from a multispectral or RGB image without
the use of hyperspectral sensors, which saves a lot of imaging
hardware. Some SSR methods are designed to increase the chan-
nels of the MSI [26], [27]. Besides, a typical SSR application is
spectral reconstruction from RGB images [28], [29].
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The SSR methods from RGB images can provide HSI only
with the RGB input, which makes SSR unique advantages in
acquiring HSIs with high spatial and spectral resolution at the
same time. However, there are two main shortcomings of the
existing remote sensing HSI reconstruction methods, which are
as follows.

1) The methods are usually trained and tested on a single
scene, lacking a large amount of data support, and cannot
reflect the universal mapping between RGB and spectrum
of different ground objects. Besides, they usually recover
HSI from more than four bands. For example, Mei et al.
recover HSI from four or six bands [26] use the 3-D CNN
on PaviaU or Cuprite dataset only in one scene. In [27],
several standard benchmark datasets, which are single
scene images or their subsets, are adopted.

2) Most methods use CNN and other structures to constrain
the pixelwise distance between the generated image and
the real image, MSE or L1 loss is usually adopted. Mei
et al. adopt L1 loss to train networks [26]. Arun et al.
use multiloss functions, including MSE loss and SAM
loss [27]. In [30], Gewali et al. use 1-D CNN for single-
pixel SSR and propose a new spectral loss function to
constrain the Euclidean distances and first and second
derivatives between the generated HSI and the real one. It
is easy to cause oversmoothing or even some generation
that does not meet the actual situation. The framework
affects diversity and reality of the spectra.

To overcome these problems, we propose a generative adver-
sarial network (GAN) based framework to generate HSI from
RGB. The model can export 150 bands HSI with RGB input
without the need for any HSI. It is trained on multiple scenes
GF-5 HSI, thus it provides the nonlinear mapping of RGB to
spectrum. In addition to the traditional minimize pixelwise error
and keep fitting, a GAN-based framework and joint discrimina-
tion by two discriminators are devised. One is the conditional
discriminator based on PatchGAN [31] to distinguish true or
false of multiple regions in the HSI. Another is spectral dis-
criminator based on multilayer perceptron (MLP) to determine
whether the spectra sampled from HSI are true. Meanwhile, the
random global uniform sampling (RGUS) technique is applied
for sampling a limited number of spectra from HSI as the
overall expression of it. The experimental results show that
R2HGAN outperforms other state-of-the-art methods on various
indicators.1

In summary, the main contributions can be summarized as
follows.

1) We provide a general framework for RGB to HSI
(R2HGAN) and experiment it on multiple scenes. The
framework reveals the general mapping between RGB
values of each pixel and its corresponding spectrum in
large amounts of data. Meanwhile, it is based on GAN to
avoid overfitting and abnormal generation.

2) We extend the adversarial learning from spatial to spec-
tral dimensions. In addition to the traditional exist-
ing conditional discriminator, we design a spectral dis-
criminator based on MLP together with the conditional

1Codes of R2HGAN are available at http://levir.buaa.edu.cn/Code.htm

discriminator to generate HSIs closer to the real ones by
joint discrimination. Two discriminators separately super-
vise the conditional and spectral reality of the generated
HSI, and the generator can export more realistic HSI on
spectral and spatial.

The rest of this article is organized as follows. Section II
introduces the related works on HSI reconstruction and GAN,
and Section III details the proposed method. Section IV provides
experimental evaluations of the proposed method on the dataset.
Finally, Section V concludes this article.

II. RELATED WORK

In this section, we introduce the two HSI reconstruction meth-
ods, including HSI SR and SSR from RGB images. Meanwhile,
a brief introduction of GAN and its use on image generation,
remote sensing image processing is exhibited. Various indicators
used for evaluating the quality of reconstruction are demon-
strated at last.

A. HSI Superresolution

The HSI SR mainly includes two types of methods: SR from
LR-HSI only and fusion of high spatial resolution RGB/MSI
and low spatial resolution HSI.

Akgun et al. [20] represent different wavelengths as weighted
linear combinations of a small number of aliased and blurred
basis image planes and solve the SR problem by a set-theoretic
method. Similarly, many research works use the interband in-
formation for SR [22], [32]. In [32], Hu et al. use very deep
CNN for keybands, SDCNN for other bands, and spatial-error-
correction model to correct the spatial error. Intrafusion net-
work [22] utilizes spatial–spectral information and reconstructs
high-resolution HSI (HR-HSI) directly. Hu et al. [23] propose a
3-D-CNN-based method that integrates multiscale features for
SR. Many GAN-based methods introduce the discriminator to
judge the reality of HR-HSI. Li et al. [23] adopt band attention
to promote the consistency of generated spectra. In addition,
Bayes-based single-image SR method proposed by Irmak et
al. [33] transforms the problem of ill-posed SR reconstruction
in the frequency domain into a quadratic optimization problem
of abundance mapping and solves it by energy minimization
method based on MRF. These methods require LR-HSI without
need of corresponding MSI/RGB images.

In addition to the previous means, more HSI SR methods
use other images with high spatial resolution and make full
use of the spatial information [34], [35]. On this basis, some
research base on the sparsity of HSI [21], [24], [35]–[38] to
reconstruct the HR-HSI, some authors study the self-similarity
between local and nonlocal patches [25], [34]–[36] and the low
rank of them [38]–[40]; some literatures have use or model the
imaging principles and degradation process for SR [24], [41],
[42]. From the perspective of the solution process: dictionary-
based methods are common, such as the works in [25], [38], and
[39]. Since HSI is a 3-D tensor, Xu et al. [35] provide a t-product
to establish the relationship between HR-HSI and LR-HSI and
constraint nonlocal similarity, Li et al. [37] propose a fusion
method based on coupled sparse tensor decomposition, Dian
et al. [40] compose 4-D tensor with similar HSI patches, and

http://levir.buaa.edu.cn/Code.htm
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transform HSI SR problem into LTTR regularization constraint
by using low-rank property. In [41] and [42], CNN is used to fit
the reconstruction process, and in [41], GAN [43] is adopted for
SR. Kwon and Tai [21] guide the up-sampling process of LR-HSI
by RGB and spectrum substitution to refine the upsampled
spectra. Borsoi et al. [44] adopt spectral unmixing and model the
spectral variability to study the SR problem of seasonal variation.
The fusion methods of HSI and MSI (or RGB) make use of
spatial information to achieve more accurate SR. Compared with
HSI only methods, they need to correspond other images in the
scene, which is difficult to obtain in many cases.

The two kinds of HSI HR methods need HSI with low reso-
lution, which still need hyperspectral sensors. Usually, the cost
of hyperspectral sensors is expensive due to complicated optics
and electronics [45]. Therefore, many times the acquisition of
LR-HSI is hard to satisfy.

B. Spectral SR

Different from HSI SR needs HSI input, the SSR reduces
requirements on the spectral resolution of input images. SSR
restores HSI with the high spatial resolution images, such as
MSI or RGB images.

To our knowledge, SSR methods for remote sensing mainly
recover HSI from MSI and most methods work on one scene,
which lack applicability. For example, Mei et al. [26] use 3-D
CNN for simultaneous spatial and SSR and experiment on
datasets for classification to select a patch for testing, whereas
others for training. Besides, many CNN-based methods are
adopted [27], [30]. In [30], a 1-D CNN is designed with tunable
spectral subsampling layer, and in loss function, not only the
Euclidean distances are constrained but also the first and second
derivatives. The works in [15], [19], and [46] enhance spectral
resolution by dictionary learning and spectral sparse. In [15],
Fotiadou et al. adopt coupled dictionary learning along with
sparse representations based on the assumption that the sparse
codes in MSI and HSI are the same. Yi et al. [19] use both the
spectral improvement and the spatial preservation strategies to
enhance the spectral information while retaining the spatial one
for HSI reconstruction. Meanwhile, Arun et al. [27] and Sun et
al. [47] extract endmembers from MSI and reconstruct HSI from
the abundance map. Arun et al. [27], combines the collabora-
tive unmixing process and correct the pixel-level reconstruction
results, where 3-D CNN is used to combine spatial information.

Compared to MSI, RGB imaging is simpler and requires less
hardware. Many methods generate HSI from RGB images in
natural scene. Some methods use image priors, such as Yan et
al. [48] introduce category and location information into the
network. In [49], Arad and Ben-Shahar adopt dictionary learning
and in [50], manifold learning is used for the HSI generating.
The most common RGB to HSI reconstruction methods is based
on CNN [51], [52]. Pixel and channel attention are adopted in
methods [53], [54] to expand the receptive field or focus on
key channels. Li et al. provide 3-D RAN to extract contextual
information between bands [53] and attention is adopted to
weight different channels. Zhao et al. [54] propose a four-layer
hierarchical regression network and increase the receptive field
by establishing an attention mechanism for the residual global

module. In [28] and [55], the authors take the imaging mecha-
nism and physically plausible into account to constrain the SSR
process. Nie et al. [55] learn spectral response functions (SRFs)
using modern film filter techniques. Shi et al. [56] upsample the
bands and learn residuals to achieve accurate spectral recovery.
Several methods [57], [58] use a GAN discriminator to ensure
the reality of generated HSI. These methods are all based on
natural HSI data, such as ICVL [49], [50], Bgu HS [51], [53], and
Arad HS [54], [59]. They mainly generate 31 bands from RGB
images, which different from the remote sensing HSI generating
to 150 bands.

We can find that there lacks SSR technology for reconstructing
multiband remote sensing HSI from RGB images.

C. GAN on Generation and Remote Sensing Image Processing

GAN was proposed in 2014 [43] and has been widely used in
various fields, such as image generation [31], [60], image style
transform [61], [62], and image SR [63], [64]. GAN is composed
of a generator G and a discriminator D, the G and D zero-sum
game jointly promote each other.

Image generation is to generate specific images from other
images or text. The HSI reconstruction can be seen as a gener-
ation from RGB to HSI. GAN has been widely used on image
generation. A generator aims to generate a target image from an
image or other input and the discriminator aims to distinguish
whether the image generated is real or not. Early methods used
GAN [43] and its improvements to generate [65], [66]. After that,
a number of hierarchical generation methods are used to generate
an image closer and closer to the target one, such as Stack-
GAN [67], LAPGAN [68], and PGGAN [69]. In [31], a generic
image-to-image translation framework based on CGAN [70]
is proposed and PatchGAN is proposed to improve the dis-
criminator on output. Different from the pair image generation
or style transform, unsupervised generation methods have also
been gradually developed. CycleGAN [62] use cycle-consistent
to realize unpair image translation. Meanwhile, DualGAN [71]
and DiscoGAN [72] adopt a similar approach. In addition to one-
to-one generation, many one-to-many generation methods have
been developed, most of which are implemented by introducing
latent code [73], [74]. A typical method is StyleGAN [61],
[75], it aims to generate image with a specific style or obtain
corresponding style image from latent code.

GAN has also achieved ideal results on remote sensing image
processing [64], [76]. Ma et al. [77] is a GAN model for
unsupervised pan-sharpening. Zhao et al. study remote sensing
change detection via GAN [78]. In [64] and [76], the authors use
GAN for remote sensing SR. GAN is also used for cloud detec-
tion [79] and scene classification [80]. Many studies use GAN
for hyperspectral anomaly detection [10] and classification [81],
whereas Mehta et al. [82] adopt GAN for HSI dehazing.

In this article, we will adopt GAN for the reconstruction of
HSI from RGB images.

D. Quantitative Metrics on HSI Reconstruction

At present, the evaluation indicators used in the literature that
recover HSI from RGB are different, and we will introduce the
commonly used ones in the following. Let I(i)R represents the ith
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spectrum in the real HSI and I
(i)
G represents the ith spectrum in

the generated HSI. n is the total number of spectra. d represents
the number of bands in HSI.

1) Root-mean-squared error (RMSE) measures the pixelwise
square root error between spectra generated and the real.
It is the most commonly used metric in RGB-to-HSI
research [19], [28], [30], [48], [49], [51]–[58]

RMSE =

√√√√ 1

n

n∑
i=1

(I
(i)
R − I

(i)
G )

2
. (1)

2) Mean relative absolute error (MRAE) is the magnitude of
the error relative to the true value. Same as RMSE, they
both measure the distance between the spectrum and its
true value, except that MRAE is the error related to the L1

norm [28], [48], [52]–[54], [56], [58]

MRAE =
1

n

n∑
i=1

|I(i)R − I
(i)
G |

I
(i)
G

. (2)

3) Mean peak signal-to-noise ratio (MPSNR). PSNR is often
used as a measurement of signal reconstruction quality in
image compression and other fields, and it can be derived
from mean squared error (MSE). For HSI, we need to
calculate PSNR for different bands separately, and then
take the average value, which is called MPSNR [19], [26],
[27], [53]. Similar to MRAE, MPSNR reflects the relative
magnitude between the error and real HSI

MSEj =
1

n

n∑
i=1

(I
(i,j)
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1

d
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j=1
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(
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)
. (3)

In (3), MSEj is the MSE of jth band and MAXj is the

max possible value in jth band of real HSI. I(i,j)R/G is the
jth intensity in ith spectrum.

4) Spectral angle mapper (SAM) reflects the spectral angular
distance between the generated spectrum and the real
one. Different from MPSNR or MRAE, SAM has more
constraints on the shape of the generated spectrum [19],
[26], [27], [30], [47], [48], [51]–[53]

SAM =
1

n
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5) Mean structural SIMmilarity (MSSIM). SSIM is a mea-
surement proposed in [83]. Unlike RMSE and MRAE,
which measure error visibility, SSIM measures the struc-
tural similarity of two bands. MSSIM is the mean of SSIM
of every generated HSI band and the real [19], [26], [27],
[53]

MSSIM =
1

d

d∑
j=1
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2
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R

2
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G

2
+ C2)

(5)
where μj

G/R and σj
G/R denote the mean and standard of

patch in jth band of generated or real HSI, respectively.

σjj
RG is the covariance between the patches in jth band in

R and jth band in G. C1 = (K1 × L)2 and C2 = (K2 ×
L)2 are constants where L denotes the dynamic range of
pixel values and we select K1 = 0.01,K2 = 0.03, and
L = 65535.

In addition, there are also other indicators adopted, such as
NRMSD [50], ERGAS [47], and SSM [27], which evaluate pix-
elwise error; GFC [58], CC [19], and R [30] from the perspective
of relevance; ΔE [58] and BPMRAE [54], that is colorimetric
based.

In this article, we will compare R2HGAN with other state-of-
the-art methods on RMSE, MRAE, SAM, MSSIM, and MPRNR
to comprehensively evaluate the recovery result.

III. PROPOSED METHOD

In this article, we propose a 3 to 150 bands mapping frame-
work for HSI reconstruction and experiment it on multiple scene
images. To promote the diversity and the reality of the gener-
ated HSI, we design a joint discrimination method under the
GAN framework. One discriminator is designed as a conditional
PatchGAN, which supervises the consistency between HSI and
input RGB. It outputs a patch in which each element represents
the performance of a region in HSI. Another discriminator is
proposed to ensure the physical reality of the generated spectra.
Meanwhile, RGUS technique samples the spectra in HSI, and
then they are input to the MLP to get reality scores for everyone.
The flowchart of R2HGAN is illustrated in Fig. 1.

A. U-Net Generator

To make use of multiscale features of RGB image and gen-
erate an HSI containing semantic characteristics and detailed
information in both, we design a U-Net for the generator (G).
In G encoder, to realize rapid reduction of the image size, there
are eight conv-layers with kernel_size = 4× 4, stride = 2 each
followed by leaky ReLU. To save computing resources, we adopt
convolutional kernel with Kernel_size = 4× 4, stride = 2 in-
stead of kernel_size = 44, stride = 1 and 2× 2 pooling. In the
encoder, the size of feature maps is down by half layer by
layer. Since the input image size is cropped to 256× 256,
to leverage information at the deepest semantic level, eight
conv-layers are used one by one. After eight downsamplings,
the size becomes 1/28 = 1/256 of the input image. We utilize
deconv kernel_size = 4× 4, stride = 2 for upsample and before
it, ReLU is used for activation. In the first three layers in the
decoder, dropout with keep_prob = 0.5 is adopted to avoid over-
fitting. After the concatenate with seven encoder layers, a deconv
layer followed by Tanh activation restores the 150-channel HSI.
It is worth noting that we removed all the BN layers in G as we
select batchsize = 1 for the generator because it is well known
that BN will cause poor effect when batch size is small [51].

B. Joint Discrimination: Conditional Discriminator

We design a joint discrimination for prompting the generator
to produce more realistic spectra and ensure the correspondence
between generated samples and input RGB. The joint discrimi-
nation is conducted by two discriminators, one is the conditional
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Fig. 1. Flowchart of R2HGAN. We design a U-Net generator to fully integrate features of different semantic levels, thus get a more precise HSI. The generator
consists of an eight-layer convolutional encoder and a corresponding decoder. Joint discrimination is conducted by conditional discriminator and spectral
discriminator. The conditional discriminator takes the RGB image and generated or real HSI for input, and output an N ×N metric for correspondence of
the two inputs. Before the spectral discriminate, RGUS is used for sample spectra from HSI, including steps patch divide and random sample. Then, the selected
spectra are input to the MLP-based spectral discriminator.

discriminator (Con-D), which with a input concating HSI and
RGB images. For the Con-D, we adopt PatchGAN to avoid
one value between 0−1 cannot express the whole generative
result. With the input of RGB and HSI combined, the output of
the Con-D is an N ×N patch where each one correspond to
the conditional reality of a local area in the generated image.
Different from the traditional GAN, which the variable output
evaluates the whole picture, our conditional D can consider the
reality of each patch and integrate each one. See Table I for the
detailed structure of conditional D.

C. Joint Discrimination: Spectral Discriminator

To improve the physical reality of the generated spectra, a
spectral discriminator is provided. The main structure of the
spectral discriminator (Spe-D) is an MLP with an input of one
dim with 150 elements (a spectrum) and an output between 0–1
with details in Table II.

To comprehensively percept the spectral curve shape informa-
tion, MLP is adopt instead of 1-D CNN. The output is to select
the first of the softmax layer, which represents the probability
of whether the spectrum is true.

We extract a certain number of spectra from the HSI for
spectral discriminator to improve the calculation efficiency and
prevent overfitting. To make the selected spectra more represen-
tative of the global spectral characteristics, we propose an RGUS
technique. The RGUS can sample spectra evenly distributed in

TABLE I
STRUCTURE OF THE CONDITIONAL DISCRIMINATOR

each position of the HSI, with greater randomness. Details of
RGUS is shown in Algorithm 1.
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TABLE II
STRUCTURE OF THE SPECTRAL DISCRIMINATOR

Algorithm 1 Random Global Uniform Sampling (RGUS)
Input:HSI data with size N ×N ; Patch size for division
S × S;

Output:M ×M spectra selected from the HSI;
1: Divide the input HSI into M ×M patches with size

S × S, where S ×M = N ;
2: Randomly generate two numbers a, b between 0 and S

as the horizontal and vertical coordinates respectively;
3: Extract the spectra with the location [a, b] in each

patch and get M ×M spectra;
4: return M ×M spectra;

Force the output to 1 when training G to generate more
real spectra and optimize them to 0 of the generated HSI
(and the output of the real HSI to 1) to improve the discrimination
performance of the spectral discriminator.

D. Loss Function

We use the L1 loss and binary cross-entropy (BCE) loss to
construct our loss functions. The goal of the generator is to
generate pseudo-HSI to obey the real data distribution p_data(x)
as much as possible, which can fool the discriminator. For this
purpose, we first constrain the proximity of each generated
spectra with the real ones. L1 loss is a pixelwise loss and it
can avoid the sensitivity to outliers and prone to oversmoothing
of L2 loss. Therefore, we choose L1 loss in generator. Let y
be the real HSI and x be the RGB image, z be the parameters
in G, the output of G is G(x, z), the L1 loss can be calculated
according to the following:

LL1 = Ex,y,z [‖y −G(x, z)‖1] . (6)

In addition, in order to fool the conditional discriminator, BCE
is used for adversarial loss

Lconadv(G,Dcon) = Ey [logDcon(y)]

+ Ex,z [log(1−Dcon(G(x, z)))] . (7)

In the same way, the adverse loss of the spectral discriminator
is

Lspeadv(G,Dspe) = Ey [logDspe(y)]

+ Ex,z [log(1−Dspe(G(x, z)))] . (8)

In summary, the loss of generator is in (9), where λ1 and λ2

represent the weight coefficient between the three losses

LG = LL1 + λ1Lconadv(G,Dcon) + λ2Lspeadv(G,Dspe). (9)

For discriminators, the optimization goal is to distinguish
between generated HSI and the real, as (10) and (11)

max
Dcon

Lconadv(G,Dcon) = Ey [logDcon(y)]

+ Ex,z [log(1−Dcon(G(x, z)))]
(10)

max
Dspe

Lspeadv(G,Dcon) = Ey [logDspe(y)]

+ Ex,z [log(1−Dspe(G(x, z)))] .
(11)

In total, the optimization process can be expressed as follow:

G∗ = argmin
G

max
Dcon,Dspe

LL1(G) + λ1Lconadv(G,Dcon)

+ λ2Lspeadv(G,Dspe). (12)

E. Implementation

The training samples are a set of 256 × 256 image patches
randomly cropped from RGB and corresponding HSI. During
the spectral discrimination, we first select 4 × 4 spectra from
the generated HSI and the spectra in the corresponding real HSI
are also extracted. As for loss function, we set λ1 = λ2 = 0.01.
For optimization, we adopt Adam Optimizer with β1 = 0.9 and
β2 = 0.999 and during the process, the two discriminators are
trained together and take turn with G. Learning rate decreasing
strategy is adopted, the initial learning rate of G, conditional D,
and spectral D are 1× e−4 and become 0.1 times the previous
after every 300 epochs. In order to generate reliable results early,
we first train 100 epochs of G to obtain preliminary results and
then add the two discriminators into the training process to adjust
the quality of generation. After two Ds join, every training G 3
iters, training the two Ds 1 iter.

IV. EXPERIMENT

In this section, we experiment with R2HGAN on GF5 dataset.
We conduct a detailed introduction of the dataset and present
different quantitative metrics on HSI construction. Then, a com-
parison with other state-of-the-art generation methods is carried
out. Finally, ablation studies of the architecture are stated.

A. Datasets and Experiment Setup

The dataset includes six scenes of hyperspectral, including
inland, island, and sea. It covers cities, mountains, arable land,
forests, ports, etc., and the imaging time includes four seasons
of 2018/2019. The HSIs are imaged by GF5 visible and near-
infrared (VN) sensor with 16 b (the range of reflection value
is 0–65535). Each HSI has a total of 150 bands covering the
wavelength range of 390− 1035˜nm with a nominal spectral
resolution of 5 nm. The RGB images are extracted from the
HSIs’ bands 72, 35, and 23. Each scene of the dataset has a spatial
size of 2083× 2008 and is cropped to 512× 512 batches. Thus,
the dataset has 120 512× 512 HSIs and corresponding RGB
images. 115 image pairs are selected for training and 5 image
pairs for testing.



7630 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 2. False-color image of the generated HSI for three test images. (a)–(e) Result of MsCNN, HSCNN+, HSRNet, FMNet, and R2HGAN, respectively, for
image 1. (f) False color of real HSI. (g)–(l) Result and real HSI for image 2. (m)–(r) Result and real HSI for image 3.

The experiment is carried out under win10 system with Intel
(R) Core (TM) i7-7700 K CPU @ 4.20 GHz and NVIDIA
GeForce GTX 1080. The training process of R2HGAN takes
approximately 19 h. Under the same conditions, we com-
pare R2HGAN to four SSR methods, including MsCNN [51],
HSCNN+ [56], FMNet [84], and HSRNet [85]. MsCNN and
HSCNN+ are based on U-Net and DenseNet, respectively. FM-
Net adopts pixel-aware to keep pixel-learning ability. HSRNet
uses physical mechanism, reconstructing according to SRF.

To train all the deep-learning-based methods adequately, we
train them on the whole training set (115 image pairs) and chose
different parameters by evaluating them on the testing set (five
image pairs). Therefore, we choose the parameters by selecting
the best result of each method. All experiment settings are set
same for R2HGAN and other four methods.

B. Comparison With Other Methods

We compare our R2HGAN with some state-of-the-art SSR
methods, including MsCNN [51], HSCNN+ [56], FMNet [84],
and HSRNet [85]. All these methods are fully optimized on our
dataset under same condition to obtain the best performance
for fair competition. The exception is that HSRNet is cropped
during the test due to GPU memory limitations. Fig. 2 shows
a comparison of the false-color images of the HSI generated
by these methods. We can find that R2HGAN generates HSI
whose false-color image is closer to the real HSI. MsCNN has
a large loss of both spatial and color information. HSCNN+
and HSRNet can maintain the spatial structure well, but lost
information of the color. FMNet can better preserve color infor-
mation while maintaining spatial structure relatively completely.
R2HGAN has a good recovery of spatial and color information at
the same time. The HSI generated by HSRNet has seams because

TABLE III
COMPARISON OF DIFFERENT METHODS ON OUR DATASET

Note: For RMSE, MRAE, SAM, and RSDS, a lower score indicates better,
whereas for MSSIM and MPSNR, a higher score indicates better.

of the limitation of GPU memory, we cut the RGB image input
512× 512 into 256× 256 and resplicing.

Table III shows the performance of different comparison
methods on various indicators, including MPSNR, MRAE, and
RMSE to measure the result of image reconstruction, spectral
angle mapping (SAM) to quantity related to spectral shape
and category information, and MSSIM that measure the spatial
structure. The bold entities indicate the best performance on cor-
responding indicators. MPSNR represents RMSE and MRAE
to a certain extent and MAXj = 65535. From these indicators,
we can find that FMNet is underperforming in terms of spatial
structure, which is related to its use of pixel-aware. HSCNN+
and HSRNet perform relatively well on both spectral and spatial
information except R2HGAN. R2HGAN performs better than
any other comparing methods in five indicators. R2HGAN gets
the highest MPSNR of 61.479 followed by HSRNet with 48.166.
Meanwhile, R2HGAN preserves the most structural information
with MSSIM = 0.9972 followed by HSCNN+. The SAM be-
tween R2HGAN generated HSIs and the real ones reach as low
as 0.0435, whereas HSCNN+ gets a second at 0.192 more than
four times of R2HGAN.

Besides, our method can avoid generating abnormal or non-
physical spectral curves. As shown in Fig. 3, the relatively
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Fig. 3. Abnormal spectra generated by comparison methods. The title of the figure represents the methods generating abnormal spectra. In (a), MsCNN and
HSRNet have abnormal generation. In (b), except for R2HGAN and HSCNN+, other methods all generated abnormal spectra. In (c), MsCNN and FMNet have
abnormal generation. (a) MsCNN and HSRNet. (b) MsCNN, HSRNet, and FMNet. (c) MsCNN and FMNet.

Fig. 4. Compare real spectra with those generated by various methods. (a)–(d) Spectra of different ground objects produced by five methods. The titles represent
objects selected to plot spectra. R2HGAN generates spectra that are more like real ones on multiobjects. (a) Building. (b) Soil. (c) Water. (d) Cloud. (e) Road.
(f) Tree.

competitive HSRNet and FMNet in the comparison method
are both prone to outliers. Furthermore, MsCNN is almost
impossible to produce spectra without anomalies. R2HGAN has
not been found to produce abnormal spectra.

We randomly select different objects and plot their spectra
generated as well as the real ones. Fig. 4 shows the difference
between spectra generated by five methods and the real ones.
Note that the lack of spectral curves from a certain method in
some figures is due to the abnormal spectrum generated by the
method. We only show the generated spectra, which are similar
to the real ones. It is obvious that R2HGAN generated spectra
more like the real ones for various objects. Besides, FMNet
performed relatively well, HSRNet and HSCNN+ performed
poorly, and MsCNN was the worst, barely able to generate a
normal spectrum.

In Fig. 5, some typical bands of the HSI generated by the
five methods are exhibited. From left to right are, respectively,
bands of MsCNN, HSCNN+, HSRNet, FMNet, R2HGAN, and
the GroundTruth. The performance of MsCNN in all bands is far
from the true value. Besides, all methods except MsCNN get a

relatively close generation to the real HSI for band 60 in image 1.
For band 10 and 80 in image 1, the five methods distorted slightly
in spatial details of the band and FMNet also caused brightness
distortion. But for band 135 in image 1 and band 100 in image
2, all methods failed to generate reliable bands, only R2HGAN
can reserve more spatial information. Test image 3 is relatively
simple with cloud and sea water, but FMNet and MsCNN all
cause abnormal points. Test image 3 is relatively simple with
cloud and sea water, but FMNet and MsCNN cause abnormal
points.

C. Ablation Studies

The ablation studies are conducted to improve the effective-
ness of the two discriminators. We compare the joint discrimi-
nation with conditional discriminator only or spectral discrimi-
nator only, respectively.

1) Study of Joint Discrimination: Here, we mainly ana-
lyze the excellence of joint discrimination. In Table IV, we
demonstrate RMSE, MRAE, SAM, MSSIM, and MPSNR of
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Fig. 5. Different bands of the generated HSI on three test images. Each row represents the effect of different methods on the same band, and each column
represents the different bands of the same method to generate HSI. Numbers before the methods represent different test images and the following ones represent
the index of the band. For example, 1 MsCNN 30 means it shows the 30th band in the HSI generated for image 1 by MsCNN.

six ablation experiments and the bold entities indicate the best
performance on corresponding indicators.

Comparing experiments 1 and 3 in Table IV, we can find that
the introduce of the conditional discriminator greatly improved
the generation effect that the MPSNR gains an increase of around
8.2. Meanwhile, the MSSIM also has a 1.4% improvement,
which means that the conditional discriminator enables the
generator to recover more spatial structure information.

In experiment 4, only the spectral discriminator is adopted
together with the RGUS. It can be seen that the addition of the

spectral discriminator has greatly improved the quality of the
generated spectra, and the PSNR has been increased from 51.29
to 60.08. At the same time, the spectral discriminator can obtain
a lower SAM than the conditional discriminator.

The experiment 6 in Table IV shows the results of adopting
joint discrimination and using RGUS sampling for spectral
discriminator. And it is shown that with the discriminators, all in-
dicators have improved. When we use conditional discriminator
and spectral discriminator simultaneously, the spectra generated
are more similar to the real ones that use G alone or G and
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TABLE IV
ABLATION STUDIES, THE CROSS IN BN MEANS MOVING BN FROM G, THE CHECK MARK MEANS WITH THE D OR RGUS

Note: Con-D represents the conditional discriminator, whereas Spe-D means the spectral one.

Fig. 6. Comparison of generated spectra after adding discriminators on different objects. R2HGAN represents the joint discrimination, G+Con-D means only
use conditional D and G only is the spectral without any discriminator. (a) Building. (b) Soil. (c) Tree. (d) Cloud. (e) Port. (f) Road.

conditional D. As is shown in Fig. 6, G alone method causes a
huge deviation in the generated spectra. R2HGAN represents the
joint with the conditional and spectral discriminator, it generates
spectra very close to the method with conditional D only. The
spectral discriminator fine-tunes the spectra to make it closer
to real. For example, Fig. 6(d) shows the spectra of a cloud
pixel. G only method generates spectrum far from the real. The
conditional D and R2HGAN obtain spectra exactly alike, and
the one from R2HGAN is more similar to the real.

2) Ablation on RGUS: For the spectral discriminator, we
randomly select several spectra from the HSI. We design an
RGUS technique to extract spectra, which represent global
spectral information of the HSI. For experiment 5 in Table IV,
we randomly select the same number of spectra as RGUS for
spectral discrimination. As compared between 5 and 6, the
RGUS promotes the MPSNR from 60.75 to 61.30. Therefore,
the global information by the RGUS is helpful for the generation.

Meanwhile, we compare the patch size of RGUS in Table V,
the bold entities indicate the best performance on corresponding
indicators. A larger patch size results in fewer selected spectra,
which reduces training time. Smaller patch size selects more
spectra and causes consumption of the training time. As is shown

TABLE V
EXPERIMENT ON THE PATCH SIZE OF RGUS

in Table V, with the increase of patch size in RGUS (M), the
spectra input to Spe-D reduce, the various indicators gradually
improve till M = 64. Thus, we select the patch size as 64.

3) Effect of Removing BN in G: From Table IV, experiments
2 and 6 show the different effects of whether to remove BN.
Comparing with BN in G, the removal of it won a 3.16 improve-
ment of MPSNR as well as promoting of other indicators.

V. CONCLUSION

We propose a general framework for generating HSI from
RGB images. The R2HGAN can generate reliable spectra while
retaining more spatial information. We collect six scenes of
HSI from GF5 for the experiment, which is different from



7634 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

the previous methods of conducting testing and training on
one-scene HSI. And to overcome the ill-posedness during 3–150
bands generation and overfitting (over smooth), we design a
joint discrimination method to distinguish the reality of the
generation by two discriminators. The conditional discriminator
based on PatchGAN measures the correspondence between the
generated HSI and the input RGB. The spectral discriminator
adopts MLP architecture to avoid the problem of CNN being
affected by the receptive field. Furthermore, we newly design an
RGUS method to extract spectra from the generated HSI for the
spectral discriminator. The RGUS is closer to obtaining a subset
of the global spectral expression. Ablation studies improve the
effectiveness of our framework. Our method achieves better
generation results than other state-of-the-art methods under the
evaluation of multiple indicators.2
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