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Hyperspectral Image Classification Using a Hybrid
3D-2D Convolutional Neural Networks

Saeed Ghaderizadeh, Dariush Abbasi-Moghadam, Alireza Sharifi , Na Zhao , and Aqil Tariq

Abstract—Due to the unique feature of the three-dimensional
convolution neural network, it is used in image classification. There
are some problems such as noise, lack of labeled samples, the
tendency to overfitting, a lack of extraction of spectral and spatial
features, which has challenged the classification. Among the men-
tioned problems, the lack of experimental samples is the main prob-
lem that has been used to solve the methods in recent years. Among
them, convolutional neural network-based algorithms have been
proposed as a popular option for hyperspectral image analysis due
to their ability to extract useful features and high performance. The
traditional convolutional neural network (CNN) based methods
mainly use the two-dimensional CNN for feature extraction, which
makes the interband correlations of HSIs underutilized. The 3-D-
CNN extracts the joint spectral–spatial information representation,
but it depends on a more complex model. To address these issues,
the report uses a 3-D fast learning block (depthwise separable
convolution block and a fast convolution block) followed by a 2-D
convolutional neural network was introduced to extract spectral-
spatial features. Using a hybrid CNN reduces the complexity of the
model compared to using 3-D-CNN alone and can also perform well
against noise and a limited number of training samples. In addition,
a series of optimization methods including batch normalization,
dropout, exponential decay learning rate, and L2 regularization
are adopted to alleviate the problem of overfitting and improve the
classification results. To test the performance of this hybrid method,
it is performed on the Salinas, University Pavia and Indian Pines
datasets, and the results are compared with 2-D-CNN and 3-D-CNN
deep learning models with the same number of layers.

Index Terms—Convolutional neural network (CNN), deep
learning, hyperspectral image (HSI) classification, spectral-spatial
features.
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I. INTRODUCTION

INFORMATION and data related to spectral images have
been available since the late 1980s, showing the reflective

wavelengths in the range of 400 to 2400 nm. These images are
used for distance measurement studies in research fields, such
as agricultural, forestry and environmental monitoring and land
surface mapping. Using the classification method, hyperspectral
images (HSIs) can be used to the maximum in the future research
[1]. Hyperspectral datasets have rich information both spatially
and spectrally. However, spectral and spatial correlations make
a lot of such information redundant. One can obtain efficient
representations using techniques such as band selection [2],
multimodal learning [3] dimensionality reduction [4]. Also, ad-
vanced methods and technologies in the field of machine learn-
ing have provided the conditions to benefit from HSI information
in various fields such as natural language processing[5], medical
connection prediction [6], remote sensing image processing
[4]–[9], etc. In the early stages, traditional classification methods
are based on spectral information, which generally includes two
main elements: feature engineering and classifiers [10]. The
function of feature engineering is to obtain discriminative fea-
tures or bands and reduce the dimension of HSIs. Two common
methods in feature engineering are feature selection and feature
extraction [11]. Feature extraction is aimed at changing high-
dimensional space data to low-dimension space data, so that
the categories can be easily separated from each other. Typical
methods of feature extraction include minimum noise fraction
[12], linear discriminant analysis [13], principal component
analysis (PCA) [14], independent component analysis [11], etc.
Whereas the function of feature selection is to retain the spectral
information of the most representative bands from the raw HSIs
and discard the bands that contribute less to the classification.
Common methods of feature selection include Jeffries–Matusita
distance [15], spectral angle mapper [16], etc. Features generated
by feature engineering are used as the input of the classifier. Rep-
resentative classifiers include k-nearest neighbor [17], random
forest [18], support vector machine (SVM) [19], etc. However,
the traditional classification methods based on spectral informa-
tion do not make full use of the spatial information of HSIs.
Nevertheless, the traditional classification methods of HSIs,
rely on hand-crafted features with limited representation ability,
which cannot fit the classification task well. On the other hand,
researchers have exploited spectral-spatial contextual informa-
tion and developed a variety of classification algorithms. These
methods assume that neighboring pixels share similar spectral
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signatures and thus belong to the same landcover types. Based
on this assumption, spectral-spatial feature extraction methods,
such as Gabor filtering [20], wavelet transformation [21] are
proposed to improve the discrimination of classes.

Most recently, deep learning has emerged as the state-of-
the-art machine learning technique with great potential for HSI
classification [22]. Instead of depending on shallow manually-
engineered features, deep learning techniques can automatically
learn hierarchical features (from low-level to high-level) from
raw input data. Such learned features have achieved tremen-
dous success in many machine vision tasks. Nowadays, the
existing classification methods based on the CNN framework
provide rich solutions for HSI classification tasks [18]–[31].
In general, there are three categories of the convolution op-
eration in the existed CNN HSI classification frameworks in-
cluding one-dimensional (1-D) CNN, 2-D CNN, and 3-D CNN,
respectively.

The network architecture of 1-D CNN is designed to use
the pixel vector along the radiometric dimension as a training
sample to extract deep feature, which is called spectral-based
classification approach conceptually. In [23], it was the first
time to employ CNN with multiple layers for HSI classifi-
cation directly in the spectral domain. A novel RNN model
[24] was proposed to effectively analyze hyperspectral pixels as
sequential data to capture the intrinsic feature, which designed a
new activation function to train the network without the risk of
divergence.

The 2-D CNN model for HSI classification is called spatial-
based classification approaches tried to learn spatial features
[20]–[22] by utilizing the similar approaches for traditional
images with the colorful pattern of RGB, which brought out
an inevitable drawback caused by the ignore the united spectral-
spatial attributes of the specific hypercube. In [27], Hao et al.
designed the SRCL model for HSI classification, which explored
a super-resolution-aided way to construct a spatially enhanced
image. In [26], a CNN-MRF model was proposed to integrate
spectral and spatial information in a unified Bayesian frame-
work by learning the posterior class distributions. Li et al.
[25] introduced a CNN model to reconstruct an enhanced im-
age cube by bands selection with a new spatial feature-based
strategy.

Since the HSI is originally 3-D hypercube with the spectral
and spatial continuity, the HSI classification methods integrated
both spectral and spatial information have gained more popu-
larity [23]–[31]. Handling the hyperspectral CNN classification
with 3-D convolutions is a straightforward way, which is also
called the spectral-spatial classification approach. In this way,
3-D regions with joint spatial-spectral information can be pro-
cessed simultaneously. Chen et al. [28] used several convolu-
tional and pooling layers of 3-D CNN for HSI classification.
In 2017, a 3-D convolutional neural network (3-D-CNN) was
introduced for the classification of HSIs [29]. The proposed HSI
cube data method extracts spectral-spatial properties without
relying on any preprocessing or post-processing. It also requires
fewer parameters than other deep learning methods, which are
lighter in model and easier to teach. This is the main moti-
vating factor in the current work. Feng et al. [30] proposed a

multiclass spatial-spectral GAN method to utilize generators
for the samples production and the discriminator for the joint
spatial-spectral feature extraction. In [31], a semisupervised
3-D convolutional neural network for the spectral-spatial HSIC
is proposed by engaging adaptive dimensionality reduction to
deal with the problem of the curse of dimensionality. In [32],
Hong et al. propose a semi-supervised approach to exploit mul-
timodal data for better inference. With GCNs, label information
is allowed to flow from labeled nodes to unlabeled nodes. A
novel version of GCN called miniGCNs is proposed, where
regular patches of the original HSI are used for training the
GCN model, yielding lower computation cost. Recently, a series
of popular deep learning-based methods have been exploited for
spatial-spectral classification. In [33], Pauletti et al. proposed a
deep and dense 3-D-CNN for full use of HSIs information. In
[34], the input data is fed to CNN in two different architectures,
and several features are taught to better predict the class label
for an HSI pixel. Roy et al. Proposed HybridSN, which extracts
features using CNN 3-D-2-D layers [35]. In [36], a cascaded
RNN model was designed to explore the redundant and com-
plementary information of HSIs by utilizing two RNN layers.
In [37], the multiscale hierarchical recurrent neural networks
was proven to be efficient in HSI classification, which learns
the multiscale local feature by 3-D CNNs and learns the spatial
dependency of non-adjacent image patches in the spatial domain
by RNN. However, there are two main limitations revealed with
the 3-D convolution model. On one hand, with the increasing
number of the 3-D kernels, the complexity and time cost get
higher, on the other hand, more training examples are needed
to train a deeper 3-D CNN model which is not practical as the
public HSI datasets are rather small.

The CNN model has an advantage over other learning models
due to its high ability to identify spatial and spectral features and
is a significant model in the field of HSI classification, but this
model also has weaknesses, for example, during the process
of gradient descent, it is easy to make the results converge
to the local minimum, and the pooling layer will lose a lot
of useful information, as it is known, the preprocessing stage
plays a vitally important role in the accuracy of classification
models, and PCA is known as a preprocessing method among
HSI classification models and this preprocessing eliminates the
nonlinear features of the image. The 2-D CNN alone is not able
to extract good discriminating feature maps from the spectral
dimensions. Similarly, a deep 3-D CNN is more computationally
complex and this alone seems to perform worse for classes
having similar textures over many spectral bands. The use of
2-D-CNN and 3-D-CNN together leads to maximum accuracy
so that they make full use of spectral as well as spatial feature
maps.

The proposed model presents the following characteristics
which make it different from the models mentioned.

1) It uses a 3-D fast learning block which makes the model
more robust and efficient by introducing 3-D depthwise
separable convolution block and the fast convolution
block.

2) The network parameters are fewer compared to the exist-
ing methods which reduce the overfitting.
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3) It uses many algorithms for optimization, including
dropout, batch normalization, exponential decay learning
rate, and L2 regularization, so as to make the network more
robust and generalized.

II. MATERIAL AND METHODS

A. Convolutional Neural Networks

Recently, the use of deep learning techniques in the classifi-
cation process has received much attention. CNN is the same
multilayer neural network that consists of different layers such
as: convolution layer; pooling layer; and fully connected layer.
The convolution operation is performed on the input data in the
convolution layer as the primary layer of the CNN model. Convo-
lution is a dot product operation between two matrices, namely
receptive field and kernel (learnable parameters). Generally, the
kernel is smaller than the size of the input data, and the kernel
slides are located in the receptive field and the feature map will
be created according to the input data and available features.
The pooling layer is effective in reducing the spatial dimension
of the feature map. The fully connected layer, which consists
of neurons and the nature of perceptron, is multilayered, and in
which all neurons connected to every succeeding layer neurons,
and the output features are used in the mapping. This layer is
used to map features into the output. The individual neuron’s
output for inputs x is calculated as

z = f (w ∗ z + b) . (1)

Here, w is the filter weight, and b is biased. f (.) stands for the
nonlinear activation applied on a weighted sum of input

f (x) = max (0.x) (2)

where f (.) is a nonlinear function known as the activation
function. In this section, the ReLU function is used [38]. This
function, if the value of x is greater than zero, is the output of x,
and if the value of x is less than or equal to zero, the output is
zero. The main advantage of using the ReLU nonlinear function
is that it has a fixed derivative for all inputs greater than zero.
This fixed derivative accelerates network learning. The main
purpose of layers is to extract useful features to be used in later
layers to perform the classification process. But, the 2-D-CNN
model consists of three main steps: patch extraction; feature
extraction; and label identification. According to an HSI, we
first extract a small patch with the center of each pixel as input.
Then, an in-depth learning model is developed to acquire the
feature maps of these patches. Finally, the label for each pixel is
categorized based on the corresponding patch feature map. For
all three models, we remove the pooling layers to preserve as
much information as possible from a single pixel. The three-step
processing of the 2-D-CNN model is shown below. Suppose an
HSI is the size N × M × D, where N and M are the number of
rows and columns in the image, and D represents the number
of spectral bands. Our goal is to predict the label of each pixel
of the image. The first step in processing the S × S × B patch
extraction model is for each pixel. Specifically, each patch (e.g.,
spatial context) is built around a pixel, the central point of the
patch. For pixels near the edge of the image, there may not

Fig. 1. (a) 2-D convolution operation, as per (3). (b) 3-D convolution operation
as per (4).

be enough information to make a patch of the expected size.
Accordingly, we provide a spatial background for these pixels
by using a mirror padding operation. For the second stage of
processing, each extracted patch with several channels is treated
as an image separately. Thus, a deep CNN model with 2-D
convolution layers is applied to extract feature maps for patches.
The 2-D-CNN operation formula in each layer can be shown
as follows:

zl.rx.y = f

⎛
⎝∑

m

Il−1∑
i=0

Jl−1∑
j=0

wl.r.m
i.j ∗ zl−1.m

x+i.y+j + bl.r

⎞
⎠ (3)

where l represents the layer to be considered, r is the number of
feature maps in layer l, zl, rx, y the output in position (x, y) is the rth
feature map in layer i. bl, r is the network bias. f (.) indicates the
layer activation function. The m index is a set of feature maps of
layer (l − 1), which are the inputs of layer l. wl, r, m

i, j is a value
in position (i, j) where the convolution kernel is related to the
rth feature map in the lth layer, Il and Jl are the row and column
sizes of this kernel. As shown in Fig. 1, the operational details of
the 3-D-CNN model are quite similar to those of the 2-D-CNN
model. The main difference is that the 3-D-CNN model has
an additional step. In this step, we arrange the hyper-spectral
bands D in ascending order. By doing this, images of similar
spectral bands are arranged in sequence, maintaining their cor-
relations in a spectral context. The patch extraction step and
the label recognition step of these two models are quite similar.
For the feature extraction step, a 3-D convolution operator is
applied to the 3-D-CNN model instead of the 2-D convolu-
tion operator. The formula for 3-D convolution operation is
as follows:

zl.rx.y.d = f

⎛
⎝∑

m

Il−1∑
i=0

Jl−1∑
j=0

Kl−1∑
k=0

wl.r.m
i.j.k ∗ z(l−1).m

x+i.y+j.d+k + bl.r

⎞
⎠
(4)

where Kl refers to the size of the 3-D kernel along the spectral
dimension and k is the number of kernel in layer l. wl, r, m

i, j is a
value in position (i, j, k) whose convolution kernel is related to
the rth feature map in the lth layer. The ReLu function is again
shown as the activation function f.

The computational cost of a 3-D convolution operation is

k × k × k × cG × cF × lF × wF × hF (5)

where lF × wF × hF × cF and lG × wG × hG × cG are the
input and output size, respectively, with l, w, and h representing
the length, width and height; and cF , cG are the number of
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channels before and after the convolution. The kernel k here is
of the following size: k × k × k × cG × cF , where k is the filter
side length.

To classify HSI, the three-dimensional convolution opera-
tion simultaneously analyzes the input data in both spatial and
spectral dimensions, and the 2-D complexity operation includes
the input data in the spatial dimension. The 3-D convolution
can store the spectral information of the input HSI data, and
this is especially important for HSIs containing rich spectral
information, whereas if two-dimensional convolution opera-
tions are applied to the HSI, significant spectral information
from They disappear, but for 2-D convolution operation, it
is 2-D output, regardless of whether it is applied to 2-D or
3-D data.

B. Proposed Neural Network Model

For HSI analysis, researchers demonstrated that the redun-
dancy from inter band correlation is very high. The data structure
in the spectral dimension can be reduced without the significant
loss of useful information for subsequent utilization. However,
an HSI contains hundreds of spectral bands, which increases the
pressure on the network model to process data and also consumes
a lot of computing resources. In recent years, many studies on
HSI classification use PCA for data preprocessing [33], [34].
PCA is the most commonly used linear dimensionality reduction
method. Its goal is mapping high-dimensional data to corre-
sponding low-dimensional data through some linear projection
that is, maximizing the variance. This method reduces the data
dimension while retaining more original data features. The core
idea of PCA is calculating the similarity between different data
features, extracting the main features according to the strength
of the correlation, and completing the information fusion [41].
Hence, PCA is applied to the original HSI for dimensionality
reduction in the proposed method.

As in the original paper [42], the 3-D depthwise separable
convolution is a factorized convolutions which divides the nor-
mal 3-D convolution into a 3-D depthwise convolution and a
1 × 1 × 1 convolution called 3-D pointwise convolution to
combine the output of the 3-D depthwise convolution later. This
process significantly reduces the computation and the model
sizes. Equation (4) becomes

vl.rx.y.d = f

⎛
⎝Il−1∑

i = 0

Jl−1∑
j=0

wl.h
i.j.s ∗ z(l−1).h

x+i. y+j..d+s + bl.r

⎞
⎠ (6)

s = ceil
( r

m

)
. h = r − s×m− 1 (7)

zl.rx.y.d = f

(∑
m

wl.r.m ∗ vl.mx.y.d + bl.r

)
. (8)

The computational cost of such decomposition is

k× k× k × cF × lF × wF × hF + cF × cG × lF × wF × hF

(9)
where lF × wF × hF × cF and lG × wG × hG × cG are the
input and output size, respectively, with l, w, and h representing
the length, width and height; and cF , cG are the number of

channels before and after the convolution. The kernel K here is
of size k × k × k × cG × cF , where k is the filter side length.
Compared with the standard 3-D CNN, the computational cost
becomes
k×k×k × cF ×lF × wF × hF + cF × cG × lF × wF × hF

k × k × k × cG × cF × lF ×wF ×hF

(10)

k × k × k × cF + cF × cG
k × k × k × cG × cF

=
1

cG
+

1

k3
. (11)

The amount of calculation is reduced in (11) by about eight
to nine times.

The model proposed in this study combines the 3-D CNN and
2-D CNN to extract good spectral and spatial features maps from
the HSI at a cheap cost. The proposed model uses 3-D stacked
convolution layers (a Conv3-D – fast learning block) followed
by a reducing dimension block which consist of a Conv3-D +
reshaping operation + a Conv3-D, and then the output features
maps from that block is then reshaped and fed to a Conv2-D to
learn more spatial features. The output of the Conv2-D layer is
flattened and passed to the first fully connected layer in which
a dropout layer was added before the last fully connected layer.
The 3-D fast learning CNN block of the proposed model is
with much less computational cost and faster than the normal
3-D CNN block because of the presence of depthwise separable
convolution and the fast convolution block in the fast learning
block. The architecture of the proposed method is shown in
Fig. 2.

This report briefly discusses the proposed convolutional neu-
ral network architecture. You can see the workflow in Fig. 1.
Cubes of spectral and spatial data are denoted by I ∈ RN×M×D,
so that I is the main image, N is the number of rows, M
is the number of columns, and D is the number of spectral
bands in the I image. Each HSI pixel in I has a vector labeled
Y = (y1, y2, . . . , yC) ∈ R(N×M)×C , where C represents the
number of images classes. In an HSI, there is a high correla-
tion between neighboring bands. Reducing the dimension is,
therefore, a widespread preprocessing step required for effective
classification. To eliminate spectral band redundancy, we apply
PCA to the primary data of the I spectral images. In addition to
reducing the number of spectral bands from D to B, PCA also
preserves spatial dimensions (N × M). X ∈ RN×M×B the HSI
reduced by PCA.

To use image classification techniques, hyperspectral data
cubes for input are divided into small 3-D patchesP ∈ RS×S×B

whose class labels are defined by a central pixel. The number of
input data patches is initially the same as the size of the correct
N × M labels. But in the correct labels there is a background
that after removing the background from the correct labels
and patches, we enter the data as input to the network. The
convolution layer consists of a sliding kernel on the input image.
This kernel contains weights that change during the training
process to extract important feature maps from the input. These
features are used during the classification process. Patches of
hyperspectral data are entered into the network for training, after
passing through different layers of the network, i.e., applying
weights and nonlinear functions to the data, a result is obtained
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Fig. 2. HSI classification architecture using hybrid convolutional neural network.

Fig. 3. Simple demonstration to better understand the concept of backward
diffusion and to show the relationship between the output of the layers and the
weights.

at the end of the network. Result z the output of the network will
be different from the desired result we expect y. The difference
between the network output results and the desired result of
these two outputs is a function of the network error or cost.
In neural networks, certain functions are usually used. In this
article, the cross-entropy error function and minibatch update
are used, which is more suitable for calculating the probabilities
of the neural network, and the following relation is obtained:

L0 (y.z) = − 1

m

m∑
i=1

[yi log zi] (12)

where yi is the real label and zi is the output of our model,
and m is the number of batches. After calculating the error by
the cost function, we must use the obtained error to modify
the network parameters, called the optimization process. The
optimization process is the correction and updating of weights
to achieve the minimum error. The gradient descent method is
one of the optimization methods used. Another method used for
this purpose is the Adam technique (adaptive motion estimation)
to solve non-convex problems [43]. In this particular method, we
consider a different learning rate for each weight amount in the
network from the first and second moment of the gradient. After
defining the cost function and the optimization function, we
come to the central part of network training, weight correction.
As can be seen in Fig. 3, Weight correction in neural networks

is usually done by a method called backpropagation. The chain
rule is used to correct the weight, and the backward propagation
is done by calculating the output error and returning layer by
layer from the output to the input.

In this method, we have two round trips. In the path, the
input enters the network and the parameters are applied to it,
and output is created and the error is calculated. In the return
path, the obtained error is used to correct the parameters, but
the parameters are updated from the end to the beginning; That
is, it starts from the last layer of the network and corrects the
parameters, and then goes back one layer, and the same process
continues until the first layer of the network, which is the return
path. How the parameters are corrected by the error function is
determined by the optimization function. With the new param-
eters obtained, we calculate the output, and the new output will
be a new error. We repeat this round trip process until we get
the least error. Since HSI data is a limited training sample, this
problem can be somewhat improved with Dropout and network
overfitting can be prevented [44]. Dropout technique in practice,
neurons are removed with a probability of p or conserved with
a chance of 1-p. In each iteration of the process, it randomly
selects some neurons and removes them from the network. In
general, the dropout rate between 0.2 and 0.5 can be the right
choice, which is set at 0.4 in this report. Finally, the classification
is done using a possible softmax model. The softmax function
takes a next C vector of real numbers, such as Z as input and gives
values between [0, 1] as output whose sum of its components
is 1

s (Z)i =
eZi∑C
j=1 e

Zj

For i = 1.2. . . . . C (13)

where Zi represents the property extracted with the trained
model and C represents the number of classes. Finally, by
maximizing the argument, the class label can be predicted.

CNN-based HSI classification methods mainly include 2-D
CNN and 3-D CNN. Roy et al. [35] used three 3-D CNN and a
2-D CNN to build the network. Ben Hamida et al. [45] mainly
utilized 3-D CNN in the network. Combining 2-D CNN with
3-D CNN can improve the performance to a certain extent, but
selecting the appropriate number of network layers is not easy
to control.
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TABLE I
SUMMARY OF CNN HYBRID PROPOSED MODEL FOR SA DATA

The proposed model consists of seven layers. The first to third
layers, a 3-D convolution (C1-C3) is used to extract spectral-
spatial features, followed by a 2-D (C4-C5) convolution in the
fourth and fifth layers, and two fully connected layer (F1-F2)
in the end of the model. Each neuron in a fully connected layer
connects to all the neurons in the previous layer and sends the
output value to the classifier. Though the pooling layer (such as
the max-pooling layer and the average pooling layer) can reduce
the dimensions of feature maps and simplify calculations be-
cause the spatial resolution in the image is reduced, the pooling
layer is not applied to preserve more information. In the first
layer, the dimensions of the 3-D convolution kernel are 8 × 3 ×
3× 3× 1 (for example, in Fig. 2,K1

1 = 3, K1
2 = 3, K1

3 = 3),
16 × 3 × 3 × 3 × 8 (for example, in Fig. 2, K2

1 = 3, K2
2 =

3, K3
3 = 3), 32 × 3 × 3 × 3 × 16 (for example, in Fig. 2,

K3
1 = 3, K3

2 = 3, K3
3 = 3), in the subsequent first, second,

and third convolution layers, respectively, where 32 × 3 × 3 ×
3 × 16 means 32 3-D-kernels of dimension 3 × 3 × 3 (i.e., two
spatial and one spectral dimension) for all 16 3-D input feature
maps. the output of the first layer contains eight feature maps that
are used as the input is used in the next layer. In the fourth layer,
to perform 2-D convolution operations, its information needs to
be a 3-D image, by resizing, we prepare the input size for 2-D
convolution operations (in Table I, you can see the deformation
performed). After preparing the input of the fourth layer, the
2-D convolution operation, whose kernel dimensions are 3 × 3
(for example, K2

1 = 3, K2
2 = 3 in Fig. 2), is applied to the

input of the forth layer and 64 feature maps for the output of the
next layer, and 288 is the number of 2-D input feature maps. The
next layer, the dimension of depthwise 2-D convolution kernel
is 128 × 3 × 3 × 64 (i.e., K5

1 = 3 and K5
2 = 3 in Fig. 1).

Finally, by flattening the production of the fifth layer, all the
neurons are connected to the neurons of the next layer, which
is considered to be 256. A summary of the proposed model in
terms of layer type, output map dimensions, and the number
of parameters is given in Table I. It can be seen that the largest
number of parameters is in the first dense layer (fully connected).
The number of neurons in the last layer of Dense is 16, which is
the same number of classes in the Salinas dataset. Therefore, the
total number of parameters in the proposed model depends on
the number of classes in a dataset. The total number of trainable
weight parameters in the proposed model for the Salinas dataset
is 1 033 728. All weights are initially initialized randomly;
they are then taught using the backpropagation algorithm with
the Adam optimizer and Softmax classification. We train the
network for 100 epochs of minibatches with 256 and a learning
rate of 0.001 without data augmentation.

C. Optimization Methods

In the field of the hyperspectral classification, the large
amount of noise in the HSIs, the limited number of labeled
samples, the complex structure of the model, and the numer-
ous parameters of 3-D CNN all lead to the phenomenon of
overfitting. To prevent overfitting and improve the accuracy, a
series of optimization methods including batch normalization,
dropout, exponential decay learning rate, and L2 regularization
are adopted.

1) Batch Normalization: To alleviate the problem of over-
fitting and accelerate the convergence of the network, the opti-
mization method of BN is used in the article. Suppose the input
of BN is X = [x1, x2, . . . , xm] , where xm represents one of
the samples, and m represents the batch size. The mean μB and
variance σ2

B of the input data can be calculated by as

μB =
1

m

m∑
i = 1

xi (14)

σ2
B =

1

m

n∑
i = 1

(xi − μB)
2. (15)

Next, each element of the input is normalized, as show in (19),
where ε represents a constant

x̂i =
xi − μB√
σ2
B + ε

. (16)

Finally, the final output yi is obtained through scaling and
shifting, as shown in the following:

yi = γx̂i + β. (17)

2) L2 Regularization: The basic idea of L2 regularization
which can alleviate the problem of overfitting is to add an
L2 norm penalty to the loss function as a constraint. The loss
function J with L2 regularization is calculated as follows:

L = L0 +
λ

2m

∑
w

w2 (18)
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where J0 represents the original loss function, λ
2m

∑
w w2 is the

L2 norm penalty, λ is the hyperparameter that controls the ratio
of the L2 norm penalty, m is the size of the training samples
and w represents the weights of the model.

3) Exponential Decay Learning Rate: The setting of learning
rate is very important, which determines whether the model
converges to the global optimal value and affects the running
speed. If the learning rate is too large, the gradient of the model
will oscillate back and forth on both sides of the global optimal
solution and cannot converge. If the learning rate is too small,
the convergence speed of the algorithm will be very slow and the
training time will increase, resulting in the waste of resources.
To solve these problems, the exponential decay learning rate
is used. The core idea of exponential decay learning rate is to
obtain the suboptimal solution quickly by using a large learning
rate at the beginning, and then gradually reduce the learning rate
as the iteration continues, so as to make the gradient converge to
the optimal value. The equation of exponential decay learning
rate ηd is calculated as follows:

ηd = η × d
gs
ds
r (19)

where η represents the initial learning rate, dr represents the
decay rate, gs represents the global step, and ds is the decay
step.

4) Dropout: Dropout is adopted to alleviate the problem of
overfitting. The basic principle of dropout is that the weights
of some neurons in the hidden layer stop updating according to
a certain probability in the training process, so as to ease the
complex co-adaptation relationship between neurons.

D. Dataset

We have used three publicly available HSI datasets, namely
Salinas scene (SA), Pavia University (PU), and Indian pines
(IP). The SA dataset contains the images with 512 × 217 spatial
dimension and 224 spectral bands in the wavelength range of
360–2500 nm. There are 16 classes in this dataset. The SA
dataset mainly reflects vegetation information and includes a
variety of features with a regular distribution. Table II gives 16
challenging land-cover categories and the training and test sets.
The PU dataset with the spatial dimension of 640 × 310 and
103 spectral bands in the wavelength range of 430–860 nm with
a spatial resolution of 1.3 meters. The label is divided into nine
urban classes. The class name and the number of training and
test sets are given in Table III.

The PU datasets mainly reflect urban landscape information
and include small types of features with an utterly irregular
distribution. The IP dataset has images with 145 × 145 spatial
dimension and 224 spectral bands in the wavelength range of
400 to 2500 nm, out of which 24 spectral bands covering the
region of water absorption have been discarded. The ground truth
available is designated into 16 classes of vegetation. Table IV
gives 16 main land-cover categories involved in this studied
scene, as well as the number of training and testing samples used
for the classification task. The experiments are implemented
using the Keras framework on Google Colab.

TABLE II
SAMPLE SIZE FOR SALINAS

TABLE III
SAMPLE SIZE FOR PU

TABLE IV
SAMPLE SIZE FOR IP

III. RESULTS AND DISCUSSION

In this section, we introduced three HSI datasets, described the
structure and process of the model, and evaluated the proposed
methods using classification criteria, such as mean accuracy
(AA), kappa coefficient (kappa), and overall accuracy (OA).
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TABLE V
CLASSIFICATION ACCURACY ON THE SALINAS DATASET (100 SAMPLES FROM EACH CLASS FOR TRAINING)

1) Overall Accuracy: The percentage of correctly classified
pixels.

2) Average Accuracy: The mean value of the OAs measured
over each category.

3) Kappa Coefficient: A statistic measurement over the inter-
rater agreement among qualitative items.

Randomly equal amounts of data from each set were used for
training and the remainder for model testing. A total of 10% of
the training samples are dedicated to validation set. To obtain a
more convincing estimate of the capabilities of these methods,
the simulation is repeated 25 times for each dataset, finally, the
mean accuracy of the report is given.

A. Experiment 1: Comparing Accuracy Between the Proposed
Model and Other Classification Models

Our first experiment shows a comparison between the pro-
posed method and the three different and well-known classifica-
tion methods in HSI with the number of training samples of 100
for each class. Table V gives the classification results obtained
by different classifiers for the Salinas dataset. Salinas data have
a significant order in terms of spatial distribution, and network
performance has a structure with acceptable OA. According to
Table V, the best result is related to the combined method,
which achieved an OA of 99.07%, which is 0.66% higher
than the second accuracy (98.41%) obtained by the HybridSN
model.

Classes 8 and 15 are challenging to classify and have lower
accuracy than other classes. Fig. 4 shows the best results of the
confusion matrix of all models. It can be seen that classes 8 and
15 have a percentage of error due to their high similarity, but the
hybrid model, due to its structure, can have less error in classes

that are spectrally and spatially complex. Based on the mea-
sured values from different classes, the stability of the proposed
network will be obtained. According to Table VI, it is shown
that the combined method with an OA of 98.90% achieved the
best result, which is 0.53% higher than the second-best accuracy
(98.37%) obtained by HybridSN.

The hybrid model has better classification accuracy in most
classes compared to other related methods. A comparison be-
tween the ambiguity matrices is shown in Fig. 5 to illustrate the
performance of the hybrid model better. If the class 8 hybrid
model is used, it has an error of approximately 1.7% with the
class 3, and also for other classes that were misclassified, it has
an error percentage of less than 0.9%. But in different models,
there are many error classes with an error rate of more than 2%.
Of course, the SVM model has abysmal performance compared
to other classification models.

The training sample percentage of the IP scene is set to 10%
randomly, the patch size is fixed as 15 × 15. According to
Table VII the listed value, it can be observed that our proposed
3-D-2-D CNN model achieves the OA of 97.14%, and the
second (97.09%) OA is implemented by the HybridSN model.
The accuracy obtained on this dataset is clearly lower than the
accuracies obtained on the other two datasets using the same
method. To explore the reason for this, we drew the confusion
matrix for methods on this dataset for a quantitative analysis,
as shown in Fig. 6. According to Fig 6, the confusion matrix
shows the best accuracy in the experiments, the 3-D-2-D CNN
model has achieved higher accuracy for classes 1, 4, 7, and 9
where there are very few training samples available than other
methods.

The methods compared in the experiment can be divided into
two ways. The SVM method, which belongs to the traditional
classification and classifies based on spectral information, does
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Fig. 4. Comparison of a confusion matrix for classification results on SA dataset. (a) 2-D-CNN. (b) 3-D-CNN. (c) HybridSN. (a) 3-D-2-D-CNN.

TABLE VI
CLASSIFICATION ACCURACY ON THE PU DATASET (100 SAMPLES FROM EACH CLASS FOR TRAINING)

not make full use of the spatial information of HSIs. While
2-D CNN, 3-D CNN, HybridSN, and 3-D-2-D CNN are all
deep learning classification methods. The 2-D CNN method is
based on spatial information classification, while the 3-D CNN,
HybridSN and 3-D-2-D CNN classification methods are based
on spectral-spatial information. Deep learning-based classifica-
tion methods are usually superior to traditional classification
methods. Deep learning models have a hierarchical structure,
which can automatically learn high-level semantic information
from data. Therefore, they are more powerful than conventional

methods in extracting features. Spectral-spatial information-
based classification methods perform better than spectral-
information-based or spatial information-based methods. Be-
cause features extracted by spectral-spatial information clas-
sification methods include not only spectral information but
also spatial information that can contribute to the effective use
of features. Hybrid model performance can reach the most
advanced level because the model has a hybrid structure and
can extract more specific information from HSIs than to other
models.
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Fig. 5. Comparison of a confusion matrix for classification results on PU dataset. (a) 2-D-CNN. (b) 3-D-CNN. (c) HybridSN. (a) 3-D-2-D-CNN.

TABLE VII
CLASSIFICATION ACCURACY ON THE IP DATASET (10% SAMPLES FOR TRAINING)

We also make a visual comparison between different classi-
fication methods in the form of classification maps, as shown
in Figs. 7–9. In general, pixelwise classification models (e.g.,
SVM) result in salt and pepper noise in the classification maps.

As expected, the 3-D-2-D CNN method obtain smoother and
more detailed maps in comparison with other competitors,
mainly due to the effective combination of different features
that further enhance the HSI representation ability. It should be
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TABLE VIII
COMPARISON OF THE CLASSIFICATION ACCURACY OF SA DATASET WITH DIFFERENT TRAINING SAMPLES

Fig. 6. Comparison of a confusion matrix for classification results on IP dataset. (a) 2-D-CNN. (b) 3-D-CNN. (c) HybridSN. (a) 3-D-2-D-CNN.

noted, however, that the batchwise input in CNNs could lead
to losing some edge details to some extent (e.g., 2-D-CNN and
3-D-CNN).

B. Experiment 2: The Sensitivity of the Hybrid Model to the
Number of Training Samples

Experiments that increase the number of training samples
per every class of dataset. One of the critical factors in the
training of convolutional neural networks is the number of
training samples. It is generally clear that a well-known CNN
may not extract useful features unless there are many training
samples available. However, having a large number of training
samples for HSIs is not common, so building robust and efficient

networks for classification is very important. In this section,
the effect of the number of training samples on the accuracy
of the three datasets is also tested. Table VIII gives the results
obtained for the Salinas dataset, where the combined method
with the lowest number of training samples (50) works better
than SVM, 2-D-CNN, 3-D-CNN and HybridSN with 8.73, 3.11,
and 1.82 and 1.42%, respectively. According to Fig. 10(a) the
more training samples we provide to models, especially neural
networks, the better their accuracy. If we focus on the results
obtained for the Pavia dataset with 50 training samples (Table IX,
the hybrid model works 19.61% better than the SVM spectral
method, as well as the hybrid model of 2-D-CNN, 3-D-CNN,
and HybridSN spectral-spatial classification) In terms of OA, it
performs better by 5.07, 4.26 and 2.24%, respectively. To better
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Fig. 7. Classification maps results on SA dataset. (a) Ground truth. (b) Support vector machine. (c) 2-D CNN. (d) 3-D CNN. (e) HybridSN. (f) 3-D-2-D CNN.

Fig. 8. Classification maps results on PU dataset. (a) Ground truth. (b) Support vector machine. (c) 2-D CNN. (d) 3-D CNN. (e) HybridSN. (f) 3-D-2-D CNN.

Fig. 9. Classification maps results on IP dataset. (a) Ground truth. (b) Support vector machine. (c) 2-D CNN. (d) 3-D CNN. (e) HybridSN. (f) 3-D-2-D CNN.

TABLE IX
COMPARISON OF THE CLASSIFICATION ACCURACY OF PU DATASET WITH DIFFERENT TRAINING SAMPLES
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Fig. 10. (a) OA (%) with different training samples for Salinas dataset. (b) OA (%) with different samples of training for Salinas dataset. (c) Display OA (%)
with a percentage of noise added to 100 of the Salinas dataset training sample. (d) Display OA (%) with a percentage of noise added to 100 of the Pavia dataset
training sample.

TABLE X
COMPARISON OF THE CLASSIFICATION ACCURACY OF IP DATASET WITH DIFFERENT TRAINING SAMPLES

illustrate the accuracy of the model’s accuracy with different
training samples, it is given in Fig. 10(b). Table X gives that
if IP dataset more training samples are available, method 3-
D-2-D CNN can be 99% accurate. However, with 5% of the
training samples, the proposed method obtained an accuracy
of 93.27%, which is 0.94% higher than the second accuracy
(HybridSN).

According to Fig. 10(a) and (b) When the number of training
samples is small, the model cannot extract useful information
from the little data available and causes a higher error rate of
classes that are complex and similar, resulting in poor model
performance and classification accuracy decreases. Also, as the
number of training samples increases, the model’s ability to learn
from it improves, indicating that more training samples can give
more information to the models to extract better features. The
good performance of HybridSN with limited training samples
shows the importance of network optimization and the potential
of 3-D-2-D-CNN in hyperspectral classification. The hybrid
method obtained the best accuracy with a different number of
training samples in three datasets.

C. Experiment 3: Add Gaussian Noise to HSIs

Gaussian noise is applied to all available HSI bands with zero
mean and different variance on Salinas and Pavia datasets and
the results are given in Tables XI– XIII

PG (z) =
1

σ
√
2π

e−
(z−μ)2

2σ2 (20)

where z is the pixel intensity, σ is the variance andμ is the mean,
which is a random amount of noise with a normal distribution
N(0, σ2). To see the amount of noise added to the image, one of
the bands of the original image (25) from the Salinas and Pavia
datasets with noise applied with different variance on the same
image is shown in Figs. 11 and 12. As we increase the percentage
of noise added to the image, it makes the images appear dimmer
and blurry.

According to the results obtained in Tables XI and XII, the
3-D-2-D CNN method with a limited number of training samples
and a high-noise image has a much better performance than
other methods. In Table XI, the best accuracy is related to the
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TABLE XI
CLASSIFICATION ACCURACY (%) WITH A PERCENTAGE OF NOISE ADDED TO 100 OF THE SA DATASET TRAINING SAMPLE

TABLE XII
CLASSIFICATION ACCURACY (%) WITH A PERCENTAGE OF NOISE ADDED TO 100 OF THE PU DATASET TRAINING SAMPLE

TABLE XIII
CLASSIFICATION ACCURACY (%) WITH A PERCENTAGE OF NOISE ADDED TO %10 OF THE IP DATASET TRAINING SAMPLES

Fig. 11. Display one of the bands (25) of the HSI with the percentage of noise added to the Salinas dataset.

3-D-2-D CNN method with 88.35%, which is 2.46% better than
the second accuracy, associated with the HybridSN method.
As in the SA dataset, the 3-D-2-D CNN method has a high
performance against noise, in the PU and IP dataset, it performs
better with other methods. As shown in Fig. 10 (c) and (d) You
can see that the methods perform poorly with the increasing
percentage of noise. With the addition of noise to the image, the
image pixels in different bands practically change. The SVM

method, which relies only on spectral information of the image,
has a low accuracy of 50% against high noise. However, deep
learning models, due to their hierarchical structure, can reduce
noise to some extent and are resistant to the noise by extracting
high-level features. Although the 3-D CNN model extracts
spectral and spatial features, it is computationally complex.
The limited training samples of the 3-D CNN model are more
tendency to overfitting.
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Fig. 12. Display one of the bands (25) of the HSI with percentage of noise added in Pavia dataset.

TABLE XIV
CLASSIFICATION ACCURACY (%) AND NOISE ADDED WITH VARIANCE 6 ON A DIFFERENT NUMBER OF TRAINING SAMPLES OF SA DATASET

TABLE XV
CLASSIFICATION ACCURACY (%) AND NOISE ADDED WITH VARIANCE 6 ON A DIFFERENT NUMBER OF TRAINING SAMPLES OF PU DATASET

TABLE XVI
CLASSIFICATION ACCURACY (%) AND NOISE ADDED WITH VARIANCE 6 ON A DIFFERENT NUMBER OF TRAINING SAMPLES OF IP DATASET

D. Experiment 4: The Effect of the Number of Training
Samples on Image Noise

According to the results obtained in Tables XIV–XVI, it
shows that if more training samples are provided to neural net-
work models, they can classify noise images with high accuracy.
If the number of training samples is reduced, many trainable
parameters will not be adequately trained and the network will
have overfitting problems and the classification accuracy will
be significantly reduced. Because the hybrid model has fewer
trainable parameters and computational complexity than the 3-D
CNN model, it is less tendency to overfitting. On the other hand,

the model has a hybrid structure and can extract more specific
information than the 2-D CNN model. In Fig. 13 of the (a)–(c)
diagrams, in the worst-case scenario, when we see limitations
in training samples and a lot of noise is added to the image, all
models are overfitting. As can be seen in Fig. 13(b), the 3-D-
CNN model is overfitting in the early epochs of training, one of
the reasons being the high number of computational complexity
compared to other models tested. Fig. 13(c) shows diagrams a
and c as expected, and the 2-D-CNN and 3-D-2-D-CNN models
also have overfitting problems, but they have been trained in
more epochs than the 3-D-CNN model. Fig. 13 (d)–(f) diagrams
in the best possible case where there are a sufficient number of
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Fig. 13. (a)–(c) Error diagrams show the 2-D-CNN, 3-D-CNN, and 3-D-2-D-CNN models with a training sample of 100 and a variance of 8, respectively. (d)–(f)
Error diagrams show the 2-D-CNN, 3-D-CNN, and 3-D-2-D-CNN models with a training instance of 500, respectively.

training samples, the models are well trained and have a minimal
error, as a result of which the models offer high classification
accuracy.

E. Experiment 5: The Effect of the Spatial Size of the Input
Cube on the Classification Accuracy

The classification accuracy of CNN models depends on the
size of the entrance window. If the size of the input window
is too small, there is not enough information in the image to
extract the feature, as a result, some information is lost and the
ability to classify is reduced. If the size of the input window
is too large, it may contain pixels of different classes and
additional noise will enter the input window, resulting in reduced
classification accuracy. Therefore, the classification function has
been analyzed to find the optimal spatial size of the input cube.
According to Fig. 14, when the spatial window of the input is
15 × 15, the evaluation indicators reach the desired values in
the two datasets. Therefore, the spatial window of 15 × 15 is
considered the most appropriate spatial size of the input cube in
the conditions that the hardware platform allows.

F. Experiment 5: The Effect of Dimension Reduction on the
Classification Accuracy

In order to determine the number of principal components in
PCA, we test the classification accuracy on the three datasets
after the dimensionality reduction with different principal com-
ponents. Among them, due to the large spatial scale of PU and

Fig. 14. Effect of different input cube sizes on accuracy with 100 training
samples with PU, SA and IP datasets.

SA, only 10, 15, and 20 are considered, while seven cases from
10 to 40 are tested in IP. The classification accuracy with different
numbers of principal components among the three datasets is
shown in Fig. 15.

In Fig. 15, according to the final classification accuracy, we
set the number of reduced spectral bands to 15, 15 and 30 for
PU, SA and IP, respectively.

Tables XVII –XIX show a qualitative summary of the ex-
periments performed, which is the number of different training
samples per percentage of noise added to the methods. In these
tables, the accuracy is more than 90% green, the accuracy is
70–90% blue and the accuracy is less than 70% red. According
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Fig. 15. Effect of different input cube sizes on accuracy with 100 training
samples with PU, SA and IP datasets.

TABLE XVII
QUALITATIVE RESULTS OF THE NUMBER OF DIFFERENT TRAINING SAMPLES

AGAINST THE PERCENTAGE OF NOISE ADDED TO THE SA DATASET

TABLE XVIII
QUALITATIVE RESULTS OF THE NUMBER OF DIFFERENT TRAINING SAMPLES

AGAINST THE PERCENTAGE OF NOISE ADDED TO THE DATASET OF PU

TABLE XIX
QUALITATIVE RESULTS OF THE NUMBER OF DIFFERENT TRAINING SAMPLES

AGAINST THE PERCENTAGE OF NOISE ADDED TO THE DATASET OF IP

to the results of the traditional SVM method, it has a lower
performance against noise than other models of deep learning.
Besides, as we increase the number of training samples, unlike
deep learning models, the SVM method cannot extract features
from noise data, in practice, its performance does not have much
effect on classification accuracy by increasing training samples.
According to the qualitative results of the tables, two case can
be mentioned for deep learning models that have a significant
impact on the accuracy of classification.

1) Number of Training Samples: In all deep learning models,
the more training samples, the more we can increase the number
of network layers and deepen so that the network extracts useful

and practical spectral-spatial information from data and feature
maps. But as the number of trainable parameters increases, so
does the network training time and tendency to overfitting.

2) Computational Complexity: If the data is too noisy and we
have limited training samples, a model with less computational
complexity can provide better performance. According to Tables
XII and XIII, in the 3-D-CNN model, three datasets have poor
performance due to high noise percentage and limited train-
ing samples. The 2-D-CNN model outperforms the 3-D-CNN
because it can extract more distinctive information than other
models and has much less computational complexity than the
3-D-CNN model.

IV. CONCLUSION

The availability of HSIs is deficient and there is limited data.
One of the challenges in classifying HSIs is designing a model
that fits the situation. This report presents a hybrid model of 3-D
and 2-D convolution for HSI classification. Spatial and spectral
features can be used to increase classification performance. The
hybrid model combines spatial-spectral and spatial informa-
tion obtained from 3-D and 2-D convolution, respectively. The
combining of 3-D-CNN and 2-D-CNN reduces the number of
learning parameters and is computationally less complex than
using 3-D-CNN alone. Network optimization is better done
using Adam optimizer and reduces training time. To limit the
number of training samples and noise, the hybrid model has
the best performance compared to other models. When we have
a sufficient number of training samples, we can increase the
number of layers of the model and deepen the network. All
models offer high accuracy in case we have enough training
samples, still hybrid model has fewer parameters and its training
time is lower than using only the 3-D-CNN model and compared
to the 2-D-CNN model due to the hybrid structure that it can
make the most of all spectral and spatial information in HSI data.
It is therefore economical to use a hybrid model for classification
for HSIs. Experiments on three datasets were compared with
three classification methods, which confirms the superiority of
the proposed method in the case of limited training sample and
noise.
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