
7448 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Comprehensive Evaluation of Sentinel-2 Red Edge
and Shortwave-Infrared Bands to Estimate

Soil Moisture
Ying Liu , Jiaxin Qian , and Hui Yue

Abstract—This article aims to explore the applicability of SMMI
(soil moisture monitoring index), MSMMI (modified soil moisture
monitoring index), PDI (perpendicular drought index), and MPDI
(modified perpendicular drought index) in estimating soil moisture
(SM) in farmland. The random forest classifier was used to obtain
two-stage land cover types maps. The sensitivity of Sentinel-2 spec-
tral bands to the measured SM at a depth of 0–5 cm was optimized
by random forest regression. According to the sensitive bands,
SMMI and PDI from different feature spaces were constructed
to explore their feasibility for monitoring SM under different land
cover types. Second, fractional vegetation cover (FVC) in the study
area was estimated by nine kinds of FVC estimation models and
compared with the measured FVC. The effects of different FVC
methods on estimating SM by MSMMI and MPDI were evaluated.
The results show that red edge and short-wave infrared (SWIR)
bands of Sentinel-2 had irreplaceable effects on the land cover
classification. In terms of monitoring SM in bare soil areas, the
SM indices with SWIR bands had high correlations with measured
SM. For vegetation-covered areas, MSMMI from the FVCgr model
(dimidiate pixel model with red edge bands) and the Short wave
infrared1–Short wave infrared2 feature space had the highest cor-
relation with the measured 0–5 cm depth SM. Whether vegetation-
covered areas or bare soil areas, the combination of red edge and
SWIR bands can effectively improve the estimation accuracy of
SM. MSMMI can be used as the best SMMI in the study area.
Sentinel-2 images, with great potential, can effectively estimate SM
at a depth of 0–5 cm in farmland with complex environments.

Index Terms—Red edge, Sentinel-2, short-wave infrared
(SWIR), soil moisture (SM), Soil Moisture Active Passive Validation
Experiment, 2016 (SMAPVEX16), spectral feature space.

ABBREVIATIONS

SM Soil moisture
SMMI Soil moisture monitoring index
PDI Perpendicular drought index
MSMMI Modified soil moisture monitoring index
MPDI Modified perpendicular drought index
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FVC Fractional vegetation cover
FVCg FVCGutman and Ignatov

FVCgr FVCg with red edge bands
FVCb FVCBaret

FVCbr FVCb with red edge bands
FVCc FVCCarlson and Ripley

FVCcr FVCc with red edge bands
FVCd FVC with a scale-differential vegetation index
FVCdr FVCd with red edge bands

I. INTRODUCTION

SOIL moisture (SM) plays an important role in climate
change because it is a basic parameter in the process of

formation, transformation, and consumption of land and water
resources [1]. SM is also one of the basic conditions for crop
growth and development [2]–[6]. Insufficient water supply will
hinder the growth of crops, indirectly affecting yield. Excessive
water supply will lead to soil hypoxia, further hinder the respira-
tion of crop roots, resulting in reduced physiological functions
and even death. Real-time and accurate monitoring of SM is one
of the important links of agricultural water management and the
realization of modern precision agriculture [6]. Remote sensing
technology has become an efficient approach to monitoring SM
[1]. Currently, remote sensing methods for monitoring SM are as
follows: thermal inertia [2], vegetation water supply index [3],
temperature vegetation dryness index [4], anomaly vegetation
index [5], conditional vegetation index [6], vegetation temper-
ature condition index [7], microwave [8]–[10], and spectral
feature space method [11]–[15]. Methods derived from spectral
feature spaces are widely applied to assess SM because of being
simple and easy to operate.

Richardson and Wiegand [16] proposed the perpendicular
vegetation index (PVI) based on the soil line in NIR (near-
infrared)-Red space. PVI can eliminate the influence of soil
background and is less sensitive to the atmosphere than other
vegetation indices [16]. Fensholt and Proud [17] established
a short-wave infrared (SWIR) water stress index with SWIR
and NIR bands of MODIS, which provided a strong basis for
monitoring SM in semi-arid regions [17]. Ghulam et al. [18]
proposed the perpendicular drought index (PDI) in NIR-Red
space, which was better in drought monitoring than other in-
dices and suitable for drought monitoring in bare soil and low
vegetation-covered areas [18]. Ghulam et al. [19] proposed
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the modified perpendicular drought index (MPDI) considering
fractional vegetation cover (FVC), which had roughly the same
accuracy in monitoring SM in bare soil than PDI and was
better in vegetation-covered areas [19]. Zhu et al. [20] indicated
that PDI had a good negative correlation with SM which was
also suitable for drought monitoring with low spatial resolution
satellites in large areas [20]. Amani et al. [21] proposed the
triangle SM index and the improved triangle SM index in NIR-
Red space, which had higher accuracy than other SM models
[21]. Chen et al. [22] proposed a decomposition SM index in
NIR-Red space combining the normalized SM index and Soil
Moisture Active Passive (SMAP) data, which was suitable for
monitoring SM in a large area [22]. Rao et al. [23] noted that
MPDI could effectively monitor vegetation pressure and forest
decline on a macro scale [23]. Zormand et al. [24] indicated that
MPDI could replace standardized precipitation index to monitor
drought conditions in drought areas with little precipitation
[24]. Liu et al. [25] expressed that soil moisture monitoring
index (SMMI) was better than PDI in estimating SM, and both
of them were suitable for monitoring SM at a depth of 0–5
cm [25]. Liu et al. [26] proposed the modified soil moisture
monitoring index (MSMMI) based on SMMI and FVC, in
which monitoring accuracy was the same as MPDI in semi-arid
areas [26].

Previous studies of monitoring SM based on the spectral
feature space mainly used NIR-Red or NIR-SWIR spaces, and
rarely involving red-edge bands. However, these bands are
unique to capture the vegetation spectral characteristics and
more sensitive to the state of vegetative growth. Red edge
cannot only increase the accuracy of crop analysis and im-
prove the ability of crop identification but also improve the
diagnostic accuracy of crop growth status [27]–[31]. Currently,
many scholars have used red-edge bands to monitor vegetation
health conditions [27], estimate crop leaf area index (LAI)
[28], classify wetlands [29], and crops [30]–[31]. Few studies
are using red-edge bands of Sentinel-2 to improve the ability
to assess SM. Furthermore, FVC is a function of vegetation
canopy morphology, vegetation spatial distribution, solar inci-
dence angle, and observation angle, which can better represent
the spatial pattern between vegetation and bare soil areas [19],
[26]. Accurate estimation of FVC is the key point in revealing
SM through MSMMI and MPDI. Few studies have made a
qualitative assessment of the influence of FVC estimation on
estimating SM.

This article mainly focused on the following questions:
1) Which bands and derived vegetation indices of Sentinel-2

are more important for land cover classification in agri-
cultural areas? (Part A of Section IV)

2) For different land cover types, which bands of Sentinel-2
are more sensitive to the measured SM? Can red-edge
bands of Sentinel-2 improve the estimation accuracy of
SM? (Parts B and C of Section IV)

3) Which of the four SM indices (SMMI, PDI, MSMMI, and
MPDI) can better accurately estimate SM at the regional
scale? Which estimation model of FVC is more suitable
for monitoring SM by MSMMI and MPDI? (Parts D and
E of Section IV)

Fig. 1. Location of the study area and field measured SM probe distribution.
(a) SM points in bare soil areas. (b) SM points in vegetation-covered areas. (c)
Sentinel-2A imagery on June 10, 2016.

TABLE I
MEASURED DATA AND REMOTE SENSING DATA INFORMATION

USED IN THE STUDY

II. STUDY AREA AND DATA

The study area locates in Elm Creek and Carman, Manitoba,
and Canada (Fig. 1). It has a typical temperate continental
climate, with hot and sunny summer, and long and cold winter
but abundant sunshine. It is flat and open terrain, and mainly
grows cash crops such as barley, wheat, canola, and soybean.
The study area is about 27 × 45 km2.

The field measured data were derived from the SMAPVEX16
dataset (Soil Moisture Active Passive Validation Experiment,
2016) (Table I), which included meteorological data, land cover
type data, vegetation status data, field measured FVC data, field-
measured SM data, and soil texture (ST) data [32]–[36]. The
dataset was a part of an SM validation experiment in Canada. The
experiment was designed to calibrate and improve the accuracy
of NASA’s SMAP product.

A. Sentinel-2A Data

Sentinel-2A L1C data were derived from the Copernicus Open
Access Hub. The images were acquired on June 10, 13, and 20,
2016. The orbital number of the images is 55 and the identifica-
tions are 14UNA and 14UNV, respectively (Table I). L1C data
is an apparent reflectance product after orthographic correction
and geometric precision correction. Atmospheric correction is
required to obtain the land surface reflectance of each band.
Sentinel-2A data are mainly used for extracting land cover types,
constructing SM indices, and estimating FVC in the study area.
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B. Land Cover Type and Vegetation Status Data

The land cover type map was obtained from the Earth Obser-
vation Group of Agriculture and Agri-Food Canada based on op-
tical and radar satellite images (Landsat-8, Sentinel-2, Gaofen-1,
and Radarsat-2) using decision tree supervision classification.
The map with 30-m resolution included crops (food crops, oil
crops, and vegetable crops), woodland, water, bare soil land,
urban, and so on. The overall accuracy of the dataset is more
than 85%. The vegetation growth status data mainly included
various plant characteristics of the study area, such as biomass,
plant height, plant density, growth stage, etc.

C. Field Measured Fractional Vegetation Cover

The FVC data measured the ratio of the projected area of
vegetation coverage to the total projected area, which was de-
rived from digital photos of the sampling points and processed
by ViewNX-2 and Can-Eye 5.1 software. Digital photos were
taken by a Nikon camera with a fish-eye lens at least 50 cm
below the vegetation canopy. There were three sampling points
in each field, and at least ten photos were acquired from each
sampling point. In this article, the measured FVC data on June
13 and 20, 2016 in the study area were selected to validate the
estimated FVC by different models.

D. Field Measured Soil Moisture and Soil Texture

This article selected the SM probe data and the in-situ core
data as the measured SM data. The data measured soil real
dielectric constant (RDC) at a depth of 0–5 cm. Stevens Poke
and Go (POGO) was used to measure the top, middle, and
bottom of the 0–5 cm soil layer (perpendicular to the top,
middle, and bottom of the furrow, respectively). The RDC value
was converted into volume SM (cm3/cm3) using a field-specific
calibration equation, and its expression is as follows:

SM = A× RDC0.5 +B (1)

where A and B are constants, which can be obtained by linear
regression from in-situ core SM samples.

The soil samples were dried for at least 48 h in a 105 °C oven
at the Soil Science Laboratory of the University of Manitoba,
and the wet and dry weights were recorded. In this article, the
mean results of three different depth measurements were used
as the SM verification values. The POGO device collected SM
data from 50 farmland and two meteorological stations. Each
farmland has 16 collection points, each at a distance of at least
70 m [Fig. 1(a) and (b)]. All data had been quality-controlled and
any erroneous records had been deleted. Garmin GPS devices
with 3-m precision were used to locate the sampling points when
FVC and SM were collected.

There was approximately 12 mm precipitation in the study
area on June 12, 2016, and no rain around June 20, 2016. The
air temperature in the study area on the 13th and 14th ranged
from 15.5 °C to 27.5 °C, with a mean and standard deviation
of 20.5 °C and 3.5 ° C, respectively. Since SM data were not
collected on the 13th, the verification data on the 14th was used
instead. There were 277 measured SM samples in the study area

Fig. 2. Technical flow chart.

from 10:00 to 12:00 on June 14, 2016 (158 points were bare
soil and 119 points were crops). There were 106 measured SM
samples in the study area from 10:00 to 12:00 on June 20, 2016
(60 points were bare soil and 46 points were crops).

The soil content data contains ST and organic matter obser-
vations, including the percentage of soil contained in the sand
fraction, silt fraction, and clay fraction (%). The ST was divided
according to different content. The STs of measured SM sample
points included heavy clay (HC, account for about 45.4%), clay
(C, 9.1%), sandy loam (SL, 9.1%), loamy sand (LS, 18.2%),
and sand (S, 18.2%). The percentage of organic matter in the
soil was between 2.2% and 11.6%, and the mean and standard
deviation were 7.0% and 3.1%, respectively.

III. METHODS

The technical process of this article is as follows (Fig. 2):
First, Sentinel-2 L1C data were generated into L2A products

using Sen2cor 2.8.0. The Sentinel-2 toolbox of SNAP 7.0 (Sen-
tinel Application Platform) was invoked for resampling (10 to
20 m by mean aggregation method), mosaicking, and subset
to generate the surface reflectance images with 20-m spatial
resolution in three periods of the study area.

Second, Sentinel-2 images of June 10 and 20, 2016 were used
for classification by random forest classifier (RFC) (Part A of
Section IV).

Third, the sensitivity of each spectral band of Sentinel-2 to
measured SM under different land cover types was analyzed by
random forest regression (RFR) (Part B of Section IV). SMMI
and PDI from different feature spaces were constructed by the
bands with higher importance scores. The measured SM data
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in bare soil and vegetation-covered areas were compared with
SMMI and PDI to find out which feature space is more suitable
for monitoring SM at different surfaces (Part C of Section IV).

Fourth, nine empirical models were used to estimate the FVC
of the study area (Part D of Section IV). MSMMI and MPDI from
the selected feature space (Part C of Section IV) were calculated
under different FVC models to compare with measured SM in
bare soil and vegetation-covered areas (Part E of Section IV).

Finally, the optimal SM index was selected according to land
cover types, meteorological data, and measured SM data.

A. Classification of Land Cover Types

The land cover map of the SMAPVEX16 dataset reflected the
year-round surface cover in 2016. However, many crops in the
study period (in June 2016) had been harvested or just begun to
sow. Compared with the Sentinel-2 images on June 10 and 20,
canola and other crops developed rapidly in large areas. To better
reveal the influence of different land cover types on estimating
SM, land cover types needed to be re-evaluated.

In this article, spectral information, traditional vegetation
indices, water indices, chlorophyll vegetation indices, red-edge
vegetation indices, and texture features were selected to con-
struct the classification feature dataset. Spectral information
is relative to the Sentinel-2 bands of Blue, Green, Red, NIR,
nNIR (narrow NIR), Red edge1, Red edge2, Red edge3, SWIR1
(Short wave infrared1), and SWIR2 (Short wave infrared2);
Traditional vegetation indices contain DVI (difference vegeta-
tion index) [37], ratio vegetation index [38], NDVI (normalized
difference vegetation index) [39], green NDVI [40], enhanced
vegetation index [41], and modified soil adjust vegetation index
[42]; water indices contain NDWI (normalized difference wa-
ter index) [43], NDMI (normalized difference moisture index)
[44], and MNDWI (modified normalized difference water in-
dex) [45]; Chlorophyll vegetation indices contain ARI1/2 (An-
thocyanin reflectance index1/2) [46] and CRI1/2 (Carotenoid
reflectance index1/2) [47]; Red-edge vegetation indices contain
red edge normalized difference vegetation indices (NDre1/2/3,
NDVIre1/2/3, and NDVIre21/31/32), MRENDVI (modified red
edge normalized difference vegetation index) [48], MRESR
(modified red edge simple ratio) [49], REPI (red-edge position
index) [50], S2REP (Sentinel-2 REPI) [51], triangular vegeta-
tion index [52], novel inverted red-edge chlorophyll index [53],
terrestrial chlorophyll index [54], MCARI (modified chlorophyll
absorption ratio index) [55], MCARI2 [56], red-edge chloro-
phyll index [57], and TCARI (transformed chlorophyll absorp-
tion reflectance index) [58]. If the central wavelength used in the
above indices could not be obtained in Sentinel-2, the nearest
reflectance band was used instead.

The GLCM (gray level co-occurrence matrix) was employed
as the texture feature to improve classification accuracy [59],
[60]. In texture analysis, the mean, variance, homogeneity, con-
trast, dissimilarity, entropy, angular second moment, and corre-
lation were used for quantitative analysis. If texture features are
generated at each band of Sentinel-2, the classification efficiency
will be reduced due to data redundancy. Therefore, the first prin-
cipal component was selected through a principal component

analysis of the Sentinel-2 imagery to calculate texture features.
Generally, there are four directions for computing the GLCM.
The mean eigenvalues of these four directions were taken as the
final eigenvalue matrix.

The specific formulas for the vegetation indices and texture
features used for classification are displayed as supplementary
material of this article. There are altogether 51 spectral features.

B. Random Forest Algorithm

Random forest (RF) algorithm can predict the role of up to
thousands of explanatory variables very well, which is praised
as one of the best machine learning algorithms at present [61].
RF cannot only realize remote sensing image classification
(RFC) but also plays an important role in feature selection and
dimension reduction [62]. Out-of-bag (OOB) error of RF is
an unbiased estimate of prediction error, which can assess the
classification accuracy and calculate the importance of different
feature variables for feature selection. The regression problem
can also be handled by RFR. The prediction results of RFR
are obtained by averaging the prediction results of all internal
binary decision trees. In this article, the EnMAP-BOX tool
developed by the Environment Mapping and Analysis Program
of Germany was adopted to optimize features and extract land
use cover maps. The importance of 51 feature variables was
evaluated by RFC. The feature subset with the highest classifi-
cation accuracy was selected to generate a land cover map in the
study area. Ten independent experiments were conducted in the
importance evaluation process. The mean of the ten importance
scores was the final score result. There are two very important
parameters in the construction of RF, namely the number of
decision trees (N) and the number of features (m) extracted
in the process of node splitting. Through a large number of
experiments, the OOB errors gradually converged and tended to
be stable with the number of decision trees (N≥ 100). Therefore,
N was set to 100. The arithmetic square root was selected as
the number of features (m). In this article, the parameters for
regression and classification were similar.

C. Sample Selection and Accuracy Verification

Training samples and verification samples for classification
were selected from Sentinel-2A on June 10 and 20, 2016. There
were 14 types of land cover, namely water, urban, bare soil,
woodland, grassland, pasture, barley, oats, rye, triticale, winter
wheat, spring wheat, canola, and pea. At least 30 samples of
each category were evenly selected and randomly sampled, with
70% as training samples and the remaining 30% as verification
samples. Jeffries–Matusita (JM) distance was employed to quan-
titatively characterize the degree of separability among selected
samples [63]. The selection of samples was adjusted to ensure
the JM distance of every two samples greater than 1.90. The
overall accuracy, Kappa coefficient, producer accuracy (PA),
and user accuracy (UA) were adopted to evaluate the accuracy
of classification results.
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Fig. 3. Schematic diagram of SMMI and PDI.

D. Soil Moisture Indices Based on Spectral Feature Space

Ghulam et al. [18] put forward the PDI based on NIR-Red
feature space, which is simple and effective in monitoring SM
[18]. Fig. 3 shows that there is a fixed soil line in the triangular
NIR-Red feature space, which is affected by ST, fertility, and
other factors. To reduce the influence of the soil line, Liu et al.
(2017) proposed the SMMI which does not involve the soil line
[25]. SMMI works similarly to PDI, but with a slight difference.
The distance from any point in the feature space to the origin
O reflects the SM conditions. When the point locates at point B
(Fig. 3), it is close to the origin O, indicating the SM in this area
is wetter. When the point lies in point D (Fig. 3), indicating the
SM in the region is drier. When the point locates at the origin O,
the region is water or an extremely humid region. Therefore, the
smaller the distance is from any point to the origin, the higher
the SM is. The ratio of OB to OD is selected as the index of SM,
where the distance of OD is a fixed value (

√
2).

PDI and SMMI are formulated as follows:

PDI =
Rred +M ·RNIR√

M2 + 1
(2)

SMMI =
OB

OD
=

√
Rred

2 +RNIR
2

√
2

(3)

where Rred and RNIR represent the reflectance of red and NIR
bands, respectively. M is the slope of the soil line. The slopes
of the soil line in different phases were calculated by interac-
tive data language. The bands used in PDI and SMMI can be
determined according to the feature space used.

E. Soil Moisture Indices Involving FVC

The accuracy of monitoring SM by PDI is low under
vegetation-covered areas [18], [19]. Ghulam et al. [19] put
forward the MPDI by introducing vegetation coverage [19]. The
physical meaning of MPDI is that drought conditions at any point
in the NIR-Red feature space are decided by SM and FVC. The

farther the distance from the origin of coordinates is and the
higher the MPDI value is, the more severe the drought is. The
MSMMI was proposed through the introduction of vegetation
coverage based on SMMI [26]. The principles of MSMMI and
MPDI are also similar, but slightly different. The former does
not require a soil line.

MPDI and MSMMI are calculated as follows:

MPDI =

Rred +M ·RNIR − FV C × (Rv,red +M ·Rv,NIR)

(1− FV C) · √M2 + 1
(4)

MSMMI =√
(RNIR − FV C ·Rv,NIR)

2 + (Rred − FV C ·Rv,red)
2

√
2× (1− FVC)

(5)

where Rv, red and Rv, NIR are the reflectance of red and NIR
bands of vegetation, respectively, usually taking 0.05 and 0.5
[19], [26]. These two bands can be adjusted according to the
feature space used. If FVC approaches 1.0 (pure vegetation),
the value of MSMMI and MPDI will be infinite (namely SM
is extremely low). It is inconsistent with the actual situation.
Therefore, the maximum FVC was limited to 0.95. Besides, the
empirical reflectance values of pure vegetation also need to be
changed according to crop types. In this article, the pixels of
NDVI > 0.9 were considered as pure vegetation pixels. The
mean reflectance used in the feature space (such as Rv, red and
Rv, NIR) of these pixels was taken as the empirical reflectance
values of pure vegetation.

F. Methods for Estimating FVC

FVC can usually be determined by taking its relationship with
the vegetation index. NDVI is the most widely used to retrieve
the biophysical characteristics of vegetation canopy, such as
LAI, FVC, and biomass. Over the past two decades, NDVI
has been successfully used to monitor global vegetation cov-
erage change [64]–[66]. There are three typical semi-empirical
relationships between FVC and NDVI. Baret et al. [67] estab-
lished the general semi-empirical relationship between NDVI
and FVC. Carlson and Ripley [68] proposed the semi-empirical
relationship between NDVI and FVC based on the simple ra-
diation transmission model. Gutman and Ignatov [69] proposed
the semi-empirical formulas between FVC and NDVI based on
the dimidiate pixel model (DPM).

The expressions of these FVC models are as follows:

FVCBaret (FVCb) = 1−
(

NDVIv −NDVI

NDVIv −NDVIs

)0.6175

(6)

FVCCarlsonandRipley (FVCc) =

(
NDVI−NDVIs
NDVIv −NDVIs

)2

(7)

FVCGutmanandIgnatov (FVCg) =
NDVI−NDVIs
NDVIv −NDVIs

(8)

where NDVIv and NDVIs are NDVI values of pure vegetation
and pure bare soil pixels, respectively. They can be obtained
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from field-measured data or NDVI images. Generally, the values
corresponding to 1% and 99% of the cumulative frequency from
NDVI images are selected as NDVIs and NDVIv.

NDVI can help highlight vegetation information and even
distinguish healthy vegetation from unhealthy. However, NDVI
has obvious limitations. On the surface of dense vegetation,
NDVI mainly responds to the red band, but is relatively in-
sensitive to NIR changes, so it cannot correctly describe the
changes in canopy density [68], [70], [71]. There are many
opinions and differences in the relation between NDVI and FVC.
The principle of deriving FVC from NDVI is to correlate the
NDVI of the mixed pixel with the reference NDVI value, such
as the NDVI of dense vegetation and bare soil. It is assumed
that the NDVI of each component of the mixed pixel can be
represented by the reference NDVI. However, even if the mixed
pixels can be separated correctly and estimated as the reference
NDVI value, there is still uncertainty caused by the proportional
effect of NDVI. Zhang et al. (2006) proposed a scale-differential
vegetation index (SDVI) with DVI, which can be used for remote
sensing images to invert vegetation-covered areas, especially
surfaces under heterogeneous conditions [72]. DVI of shadowed
soil is usually very small, which is not sensitive to vegetation
coverage of shadowed soil. Its expression is as follows [72]:

FVCSDVI (FVCd) =
DVI−DVIs
DVIv −DVIs

(9)

DVI = RNIR −Rred (10)

where DVIs represent DVI of bare soil and DVIv is DVI of dense
vegetation.

Red-edge normalized difference vegetation index
(NDVIred edge) is a slight improvement over traditional
NDVI. NDVIred edge uses the edge zone with chlorophyll
absorption characteristics (such as 705 nm), which is more
sensitive to the health status of vegetation [73]. Replacing the
red and NIR bands of NDVI and DVI with the red-edge bands
to obtain NDVIred edge and DVIred edge (red-edge difference
vegetation index), whose expressions are as follows:

NDVIrededge =
Rrededge3 −Rrededge1

Rrededge3 +Rrededge1
(11)

DVIrededge = Rrededge3 −Rrededge1 (12)

where Rred edge1 and Rred edge3 represent the reflectance of the
Band5 and Band7 of Sentinel-2, respectively.

Formulas 6–9 can be adapted for considering the red-edge
bands as follows:

FVCbr = 1−
(

NDVIrededge,v −NDVIrededge
NDVIrededge,v −NDVIrededge,s

)0.6175

(13)

FVCcr =

(
NDVIrededge −NDVIrededge,s
NDVIrededge,v −NDVIrededge,s

)2

(14)

FVCgr =
NDVIrededge −NDVIrededge,s
NDVIrededge,v −NDVIrededge,s

(15)

FVCdr =
DVIrededge −DVIrededge,s
DVIrededge,v −DVIrededge,s

(16)

where the values corresponding to the NDVIred edge imagery
cumulative frequency confidence of 1% and 99% were se-
lected as the values of pure bare soil and pure vegetation
(namely NDVIred edge, s and NDVIred edge, v). DVIred edge, s

and DVIred edge, v work in the same way.
Finally, four traditional semi-empirical FVC estimation mod-

els (formulas 6–9) and four semi-empirical FVC estimation
models with red edge bands (formulas 13–16) were formed.

The L2A product of Sentinel-2 can generate LAI, fraction
of absorbed photosynthetically active radiation, canopy chloro-
phyll content, CWC (canopy water content), and FVC in a large
area by using the biophysical module in SNAP software. In this
module, the PROSPECT+SAIL radiation transmission model
and artificial neural network are used for estimation calculation.
The construction of the neural network model is composed of
11 explicit input layer parameters including Green (the central
wavelength is 560 nm), Red (665 nm), Red edge1 (705 nm), Red
edge2 (740 nm), Red edge3 (783 nm), nNIR (842 nm), SWIR1
(1610 nm), SWIR2 (2190 nm), the cosine of zenith angle, the
cosine of solar altitude angle, cosine of relative azimuth angle,
and five implicit neuron parameters with tangent S-shape curve
transfer function. This algorithm can calculate the relationship
between vegetation pixels and canopy reflectance to the greatest
extent, and ensure the optimal estimation simulation accuracy
through the model self-verification function. Data products with
10 or 20 m resolution can be generated through resampling. Its
accuracy is greatly improved compared with previous remote
sensing data such as Landsat, providing a powerful applica-
tion reference value for quantitative remote sensing analysis of
regional vegetation ecological environment [74], [75]. In this
article, the FVC estimated by the physical model of SNAP was
named FVCS2.

G. Accuracy Verification of Soil Moisture Estimation

The Pearson’s correlation coefficient (R) was applied to eval-
uate the accuracy of each SM estimation model [76], which can
be written as

R =
Cov (X,Y )√

Var (X)Var (Y )
(17)

where X is SM index, Y is field measured SM, Cov(X, Y) is the
covariance of X with Y, Var(X) is the variance of X, Var(Y) is the
variance of Y.

IV. RESULTS AND DISCUSSIONS

A. Analysis of Land Cover Type Classification

To present the feature variables of high importance more
intuitively and clearly, each feature was ranked according to
the importance score. Fig. 4(a) demonstrates that the impor-
tance scores of feature variables were significantly different.
MNDWI had the highest score (up to 15.132 ± 0.429, mean and
standard deviation). GLCM_correlation had the lowest score
which almost did not influence classification. On the whole,
the contributions of the feature variables for extracting land
cover were water indices > spectral information > chlorophyll
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Fig. 4. (a) Distribution of feature importance scores. (b) Mean importance
scores and the number of optimizing features. (c) Relationship between the
number of features and classification accuracy.

vegetation indices > red edge vegetation indices > traditional
vegetation indices> texture features. Fig. 4(c) demonstrates that
the classification accuracy increases from 41.15% to 86.11%
rapidly in the early stage with 10 feature variables. This was
mainly due to the high importance score of feature variables
that were included in the early stage. The classification accuracy
was improved gradually from 86.11% to 91.51% in the middle
stage with 11–41 features. The classification accuracy gradually
decreased in the later period with 42–51 features. This was due
to redundant features and irrelevant features that were involved.
Most texture features with 20-m spatial resolution will not
necessarily improve the classification accuracy.

Fig. 4(a) also indicates that the features with high important
scores are MNDWI, NDMI, SWIR1, TCARI, GLCM_mean,
SWIR2, Red, Green, Red edge1, and S2REP. When all features
in the classification, information redundancy may reduce the
overall accuracy. Only the feature variables that played a key
role in classification were retained. The 30 optimization features
were selected according to the highest classification accuracy
[Fig. 4(c)], including six spectral features (the mean of impor-
tance score is 7.292), two water indices (13.942), four chloro-
phyll vegetation indices (4.975), seventeen red edge vegetation
indices (5.232), and one texture feature (7.424), not including
traditional vegetation indices.

Fig. 5 shows that the spectral reflectance of different land
cover samples varies greatly. The reflectance of each band of
water is extremely lower than other ground objects. The spectral
curves of urban and bare soil are similar, which rise with the
increase of wavelength. The reflectance of all kinds of crops has
obvious spectral reflectance characteristic of vegetation, which
is different at Green, Red, Red edge1, SWIR1, and SWIR2

Fig. 5. Mean spectral reflectance of some typical feature samples.

bands. The NIR reflectance can effectively differentiate between
crops like canola and pasture. The NIR reflectance of canola and
peas is similar to each other which is difficult to distinguish them
effectively. However, the reflectance difference between them
in the red edge and SWIR bands is obvious. This also explains
why the importance score of the traditional vegetation index and
NIR band for land cover was low. Therefore, NDWI composed of
green and NIR had a lower importance score, while MNDWI and
NDMI participated by SWIR had higher scores. The importance
score of chlorophyll vegetation indices was also higher, mainly
because these indices used Blue, Green, and Red edge1 bands
which have remarkable spectral differences. The contribution of
red edge indices for land cover is significantly higher than that
of traditional vegetation indices. It indicates that red edge bands
can effectively identify complex land cover types. Only the
GLCM_mean feature had a higher contribution among texture
features, while other texture features contributed very little. It
indicated that texture features extracted from Sentinel-2 images
were only applicable to the land cover type with relatively simple
texture information.

This is consistent with previous research results. Thanh and
Kappas [77] evaluated the ability of Sentinel-2 data in August to
identify crop types and tree species. The results showed that red-
edge and SWIR bands had great value for vegetation mapping
[77]. Zhang et al. [78] used the multitemporal Sentinel-2 data to
classify land use types in the Yellow River Delta region of China.
The results showed that RF classification results with optimal
multitemporal features (up to 33) had the highest accuracy, with
an overall accuracy of 90.93% and a Kappa coefficient of 0.90.
Red edge, SWIR bands, and their respective indices were of great
importance to the classification, but most texture features did not
improve the final classification accuracy for Sentinel-2 data [78].
The growth status of crops in this study area was different. The
red-edge bands are the sensitive characteristic spectral band of
vegetation, and can effectively reflect the chlorophyll content,
phenological period, and category of vegetation [73]. The SWIR
bands are mainly affected by the content of water content, starch
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Fig. 6. Classification accuracy statistics of land cover types.

content, protein, oil, sugar, lignin, and cellulose in vegetation
leaves, which are conducive to the recognition of vegetation
[77], [78].

Fig. 4(c) shows that the overall accuracy and Kappa coeffi-
cient reach the maximum when the number of feature variables
reaches 30. Therefore, we adopted the top 30 features in the
feature importance score to classify [Fig. 4(a)]. Fig. 6 shows
that the PA and UA of water, bare soil, and urban construction
land are almost 100%, and the accuracy of woodland, grassland,
winter wheat, rape, and peas is also relatively high (PA and
UA > 95%). The accuracy of spring wheat, barley, oat, rye, and
other wheat crops ranges from 80% to 90%. The reason may
be that winter wheat was at the mature stage while other wheat
crops were at the growing stage. Therefore, the spectral curve of
winter wheat was different from other crops. The phenomenon
of the same spectrum with different objects in other wheat crops
was more serious.

The bare soil areas accounted for 59.01% on June 10, 2016.
Oats, canola, grassland, pasture, spring wheat, triticale, wood-
land, rye, barley, winter wheat, and peas accounted for 11.89%,
7.53%, 3.97%, 3.03%, 2.97%, 2.51%, 1.98%, 1.69%, 1.55%,
1.07%, and 0.62%, respectively. Urban was 1.98% and water
was 0.2%. Land cover types classification on June 20, 2016 was
obtained in the same way. Part of bare soil was changed into
canola on June 20, 2016, accounting for 4.18% of the total area.

B. Sensitivity Analysis Between Measured Soil Moisture and
Sentinel-2 Bands

RFR was used to assess the sensitivity between each band
of Sentinel-2 and field measured SM under different land cover
types. A total of 383 fields measured SM points were involved
in regression (165 were vegetation and 218 were bare soil).
Fig. 7 shows the importance scores of each band of Sentinel-2
to measured SM under different land cover types. Fig. 7(a)–(c)
contains all measured sample points, vegetation sample points,
and bare soil sample points, respectively. Fig. 7(a) indicates that
SWIR1 of Sentinel-2, SWIR2, NIR, and nNIR had relatively

Fig. 7. Importance scores between each band of Sentinel-2A and field-
measured soil moisture.

Fig. 8. Importance scores between each band of Sentinel-2A and field-
measured soil moisture.

high contributions to SM, of which SWIR1 had the highest
score (7.86), followed by SWIR2 (6.8) and NIR (6.79). Fig. 7(b)
expresses that Red edge1 had the highest contribution to SM in
vegetation-covered areas (2.13), followed by red edge2 (2.05),
red edge3 (2.01), and SWIR1 (1.88). Fig. 7(c) demonstrates that
SWIR1 had the highest contribution to SM in bare soil areas
(7.94), followed by NIR (6.5), nNIR (6.46), and SWIR2 (6.14).

We can see that the importance score of most bands in bare
soil areas is significantly higher than that in vegetation-covered
areas. This is because the reflectance spectrum of bare soil is
a direct reflection of ST and SM. The reflectance spectrum
in vegetation-covered areas reflects the characteristics of the
vegetation canopy. The composition of the spectrum is relatively
complex, which is affected by vegetation types, vegetation wa-
ter content, vegetation water-holding capacity, and vegetation
health. It can only indirectly reflect the SM on the underlying
surface [44]. However, Fig. 7(b) also shows that red edge and
SWIR bands are more sensitive to SM in vegetated areas com-
pared with VIS (visible light) and NIR bands. This indicates that
red edge bands could improve the accuracy of SM estimation in
vegetated areas.

Fig. 8 shows the spectral reflectance curve of wheat crops and
bare soil sample points from Sentinel-2A. The FVC of bare soil
sample points was around 0.05, which was almost unaffected by
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TABLE II
DIFFERENT COMBINATIONS OF SPECTRAL FEATURE SPACE

Fig. 9. Relationship was expressed by the correlation coefficient between soil
moisture indices and field measured SM under different land cover types on June
13, 2016.

vegetation. The changing trend of bare soil spectral curve with
different SM status was almost the same, which continued to
rise with increasing wavelength, reached a peak at SWIR1, and
decreased at SWIR2. The difference in the reflectance of dry bare
soil in VIS and NIR bands was small, while they were different
at SWIR bands. Therefore, the SWIR band can reflect the SM
distribution of bare soil better than other bands. The wheat crops
were in the leaf development stage (three-leaf expansion stage)
of the first major growth stage with a measured FVC around 0.8.
The increase of SM led to vegetation spectra remarkably increase
at red edge2, red edge3, and NIR, and a slight increase at red
edge1, SWIR1, and SWIR2. There was no obvious impact on
vegetation spectra at VIS bands. The geometric characteristics
of vegetation leaves, canopy structure, and water demand all
can affect the water content of vegetation. SM indirectly affects
vegetation CWC. The influence of vegetation water content on
vegetation canopy reflectance mainly includes red edge, NIR,
and SWIR bands [17], [44]. Therefore, these bands can better
reflect the distribution of SM in vegetated areas than other bands.

As shown above, Band4 (red), Band5 (red edge1), Band6 (red
edge2), Band7 (red edge3), Band8 (NIR), Band11 (SWIR1),
and Band12 (SWIR2) of Sentinel-2 is more sensitive to SM
than others, which can better reflect the spectral differences of
vegetation canopy and bare soil under different SM conditions.
Different spectral feature spaces were constructed to obtain
SMMI and PDI (Table II).

C. Analysis of SMMI and PDI From Different Feature Spaces

Fig. 9 indicates that the correlations between SM indices
and measured SM in bare soil were significantly higher than

Fig. 10. Scatter plots of soil moisture indices and measured 0–5 cm depth SM.
(a) SMMI from NIR-Red space. (b) SMMI from SWIR1–SWIR2 space. (c) PDI
from NIR-Red space. (d) PDI from SWIR1–SWIR2 space. (e) Spectral feature
space based on SWIR1–SWIR2.

that in vegetation-covered areas. For all measured SM sample
points, there was a significant negative correlation between each
index and measured SM (P < 0.01). The correlation between
SMMI from red edge1–SWIR1 space and measured SM was
the highest (R = −0.618), followed by PDI from red edge1–
SWIR1 space (R=−0.610), SMMI from SWIR1–SWIR2 space
(R = −0.569), and PDI from SWIR1–SWIR2 space (R =
−0.544). For measured SM in vegetation-covered areas, the
correlation between indices (from red–NIR, red edge1–NIR,
red edge2–NIR, red edge3–NIR, and NIR–SWIR1 spaces) and
measured SM did not pass the significance test, while the other
indices passed the significance test (P < 0.01). The correlation
between SMMI from SWIR1–SWIR2 space and measured SM
in vegetation-covered areas was the highest (R = −0.684),
followed by PDI from SWIR1–SWIR2 space (R = −0.608).
For measured SM in bare soil areas, indices (from Red–SWIR1,
NIR–SWIR1, SWIR1–SWIR2, Red edge1–SWIR1, Red edge2–
SWIR1, and Red edge3-SWIR1 spaces) with SWIR band par-
ticipation had high correlations with measured SM (R > 0.85).
SMMI from SWIR1–SWIR2 space had the highest correlation
(R = −0.868), followed by PDI from SWIR1–SWIR2 space (R
= −0.865), which were significantly higher than that of SMMI
from NIR-Red space (R = −0.734) and PDI from NIR-Red
space (R = −0.738).

Although Red edge1–SWIR1 space had the highest correla-
tion with all SM sample points, the correlations of vegetation
areas or bare soil areas were both slightly lower than SWIR1–
SWIR2 space. Therefore, in this article, only the SWIR1–
SWIR2 feature space was presented and compared with the NIR-
Red space. Fig. 10 shows that SM decreases with the increase
of SMMI and PDI. Scatter plots of SMMI from NIR-Red space
and SM in bare soil areas are evenly distributed on both sides
of the fitting trend line, while in vegetation-covered areas are
relatively scattered [Fig. 10(a)], so is the PDI from NIR-Red
space [Fig. 10(c)]. Scatter plots of SMMI from SWIR1–SWIR2
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space and SM are evenly distributed on both sides of the fit-
ting trend line [Fig. 10(b)], which are denser than PDI from
SWIR1–SWIR2 space [Fig. 10(d)]. Fig. 10(b) demonstrates that
although SMMI from SWIR1–SWIR2 space and measured SM
scatter are relatively concentrated under a single land cover type,
vegetation, and bare soil points are separated on the whole. This
may be due to the inconsistent response of different land cover to
SM [Fig. 10(e)]. Similarly, the SMMI and PDI from each feature
space on June 20, 2016, were calculated. The correlation analysis
was also conducted with field-measured SM. The results were
consistent with the above.

The above results indicate that NIR-Red feature space can
reflect the dry and wet conditions of bare soil, but cannot effec-
tively monitor the dry and wet conditions of vegetated areas. This
is consistent with the conclusion of Ghulam et al. [18] that PDI is
more suitable for monitoring SM in bare soil or areas with sparse
vegetation [18]. To address the weaknesses of PDI based on the
NIR-Red feature space, Ghulam et al. [79] proposed a new index
(shortwave infrared perpendicular water stress index) based on
the NIR–SWIR feature space and showed that this index has
potential in estimating vegetation water content and SM. Fen-
sholt and Proud [17] used NIR and SWIR bands from MODIS
data to establish short-wave infrared water stress index (SIWSI)
and showed that there was a strong correlation between SIWSI
and SM [16]. Ma et al. [80] used Sentinel-1 dual-polarized SAR
data to invert SM in the semi-arid region of China and compared
it with the SMMI based on Landsat images. The results show
that SMMI from NIR-SWIR2 space could effectively reflect
the surface dry and wet distribution in a semi-arid area, but
for the land with sandy type, there was an overestimation [80].
Koley and Jeganathan [81] employed Sentinel-2 and Landsat8
data to monitor SM changes in northeast India and found that
the accuracy of SM derived from the SWIR2 band was more
accurate than the thermal infrared band. It can be found that
although the band combinations of these SM indices are slightly
different (which is greatly related to the actual surface cover of
the study area), they all involve SWIR bands.

In this article, the correlations between the indices including
red-edge bands and SM in vegetated areas were much higher than
that from NIR-Red space but still lower than that from SWIR1–
SWIR2 space. As a strong absorptive band of water vapor, SWIR
bands can effectively reflect SM in bare soil and vegetated areas
[16], [79], [81]. Besides, the overall accuracy of SM by SMMI
was slightly higher than that of PDI, mainly because SMMI
did not consider the soil line, which was significantly different
under the influence of ST, soil fertility, vegetation cover types,
and other factors in the study area [18], [19], [25], [26].

D. Analysis of FVC Estimation Algorithms

As can be seen in Part C of Section IV, since vegetation cover
is not considered, SMMI and PDI have an obvious segmentation
phenomenon of SM between vegetation areas and bare soil areas.
FVC is an effective index to describe the difference between veg-
etation and bare soil areas. MSMMI and MPDI introduced FVC
to improve the performance of monitoring SM. In this article,
four semi-empirical models, four semi-empirical models with

Fig. 11. Frequency histograms of estimated FVC. (a) FVCb. (b) FVCbr. (c)
FVCc. (d) FVCcr. (e) FVCg. (f) FVCgr. (g) FVCd. (h) FVCdr. (i) FVCS2. (j)
Mean and variance of FVC in bare soil, vegetation-covered areas, and the whole
area.

red-edge bands, and one biophysical model specifically designed
for Sentinel-2 were employed to calculate the FVC. Fig. 10
shows that the frequency of FVCb (FVCBaret), FVCbr (FVCb
with red-edge bands), FVCc (FVCCarlson and Ripley), FVCcr
(FVCc with red-edge bands), FVCg (FVCGutman and Ignatov),
FVCgr (FVCg with red-edge bands), FVCd (FVCSDVI, FVC
with an SDVI), FVCdr (FVCd with red-edge bands), and FVCS2

(FVC obtained by Sentinel-2 and SNAP) is consistent and
present an obvious unimodal pattern. The field measured FVC<
0.45 was regarded as sample points with no vegetation coverage
and low vegetation coverage (a total of 40), and FVC ≥ 0.45
was regarded as sample points with medium and high vegetation
coverage (a total of 30) [83].

Fig. 11(j) demonstrates that, under the same FVC model, the
mean and standard deviation of FVC with red-edge bands in bare
soil areas were lower than those without red-edge bands, while
the standard deviation of vegetation areas was opposite. This
suggests that the FVC estimation model with red-edge bands
can effectively amplify vegetation canopy differences and better
describe the heterogeneity of bare soil and vegetation.

Fig. 12 indicates that the determination coefficients (R2) of
FVC obtained from each model and measured FVC are greater
than 0.9. The correlation between FVC with red-edge bands and
measured FVC was higher than that without red-edge bands,
which was especially obvious when FVC < 0.45. Besides, due
to the red-edge bands involved in FVCS2 extracted by SNAP,
the accuracy is satisfactory but not the highest. The above
results show that the FVC from the semi-empirical model with
red-edge bands can more accurately reflect the vegetation cov-
erage situation in the study area. This finding is consistent with
previous research. Verrelst et al. [84] assessed the applicability
of Sentinel-2 and Sentinel-3 bands in estimating biomass indices
using four machine learning algorithms in Spain, which showed
that the bands most relevant to FVC are concentrated red-edge
bands of Sentinel-2 which the most important band is near
740 nm. Cai et al. [85] applied Sentinel-2 to estimate FVC by
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Fig. 12. Scatter diagram of FVC was obtained by different estimation models
and measured FVC on June 13, 2016.

Fig. 13. Relationship was expressed by the correlation coefficient between soil
moisture indices from SWIR1–SWIR2 space and measured SM under different
land cover types on June 13, 2016.

object-based mixture analysis method in Changsha of China,
which indicated that the estimation accuracy of FVC can be
improved by red-edges bands, but not significantly. In our study,
NDVI or DVI of the FVC model was replaced by NDVIred edge

or DVIred edge, which had higher estimation accuracy and simple
operation.

E. Comparison of MSMMI and MPDI Under Different
FVC Models

We found that after introducing vegetation coverage into each
feature space (Part C of Section IV), the correlation between
SWIR1–SWIR2 feature space and measured SM was signif-
icantly higher than that of other feature spaces. Therefore, the
SWIR1–SWIR2 feature space was selected to calculate MSMMI
and MPDI in different FVC models. The NIR-Red feature space
was selected as a reference.

Fig. 13 expresses that there are distinct differences in the cor-
relations between SM indices under different FVC models and
measured SM. According to Part D of Section IV, although the

Fig. 14. Relationship was expressed by the correlation coefficient between
soil moisture indices from NIR-Red space and measured SM under different
land cover types on June 13, 2016.

correlation between the nine kinds of models and measured FVC
is high, the distribution of different FVC histograms is greatly
different. The inconsistency in the calculation method of FVC is
one of the important reasons for the difference in SM monitoring
by different models. The correlation between MSMMI from
SWIR1–SWIR2 space and measured SM in vegetation-covered
areas was significantly higher than that of MPDI from SWIR1–
SWIR2 space, and was slightly higher than MPDI in bare soil
areas. The correlation between SM indices and measured SM in
bare soil was higher than that of SM in vegetation-covered areas.
For all measured SM points, there was a significant negative
correlation between MSMMI and measured SM (P < 0.01).
MSMMI based on FVCgr model was the highest (R =−0.732),
followed by FVCbr model (R = −0.716). For vegetated SM
points, the correlation between MSMMI under the FVC model
with red-edge bands and measured SM was significantly higher
than that without red-edge bands. The highest correlation was
MSMMI under FVCgr model (R=−0.780), followed by FVCS2

(R = −0.733). The correlation between MPDI under each FVC
model and measured SM in vegetation-covered areas was low
(R < 0.25), indicating that MPDI from SWIR1–SWIR2 space
was suitable for monitoring SM in bare soil and not good for
vegetation-covered areas or mixed covered areas. In conclusion,
for SM in bare soil areas, the monitoring accuracy by SM indices
under FVC models with red-edge bands are equivalent to those
without red-edge bands, while for SM in vegetation-covered
areas, SM indices under FVC models with red-edge bands are
more accurate.

Fig. 14 shows that the correlation between MSMMI from
NIR-Red space and measured SM in bare soil was relatively
high (R > 0.65), which was significantly lower than that from
SWIR1–SWIR2 space (Fig. 13). There was a significant neg-
ative correlation between MSMMI from NIR-Red space and
measured SM in vegetation-covered areas (P < 0.01), but the
correlation was low (R < 0.35). This indicated that MSMMI
from NIR-Red space can also monitor SM conditions in bare
soil, but cannot accurately estimate SM in vegetated areas. The
correlation between MPDI from NIR-Red space under each
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FVC model and SM at all sample points was low (R < 0.16),
which was also low (R< 0.22) in vegetation-covered areas. This
showed that MPDI from NIR-Red space was only suitable for
monitoring SM in bare soil. Due to the crops in the study area
were in different growth stages, the NIR band’s responses which
characterize the vegetative state were varied. The accuracy of
monitoring SM in vegetation areas by NIR-Red feature space
introduced FVC is still insufficient [86].

MPDI was proposed by Ghulam et al. [19] to solve the
shortage of monitoring SM in vegetation areas by PDI. The
increase of SM and FVC will decrease the MPDI value, which
means the land surface is moist. MSMMI works similarly to
MPDI, which does not need a soil line. The correlation between
MSMMI and SM in bare soil is the same as that of SMMI,
and that in vegetation-covered areas is significantly higher than
that of SMMI (Section 4.3). Liu et al. [26] compared MSMMI
and MPDI using SPOT and Landsat8 images, which showed
that MSMMI and MPDI from NIR-Red space had similar SM
monitoring accuracy in the semi-arid region. Liu et al. [26]
employed MODIS data to construct NIR-Red feature space and
analyzed the effectiveness of SMMI, PDI, MSMMI, and MPDI
in drought monitoring in the Guanzhong Plain of China. The
results showed that there was a negative correlation between
these indices and SM at a depth of 10 cm, and the correlation of
SMMI was higher [87]. However, previous studies were only
verified in the semi-arid areas with low vegetation coverage
by medium–high resolution satellites, or the agricultural areas
by low-resolution satellites [26], [87]. No studies employed
Sentinel-2 to assess the accuracy of these indices in monitoring
SM in farmland with crops and bare soil areas.

In this article, crop types are abundant and vegetation cov-
erage includes low FVC to high FVC. Proved by practice, the
correlation between MPDI and SM in bare soil is slightly lower
than that of MSMMI, and that in vegetation-covered areas is
much lower than that of MSMMI. MPDI is still not accurate
enough for monitoring SM in vegetation-covered areas in the
complex surface cover environment. It is more suitable to rep-
resent the drought condition of vegetation under a certain stress
degree [23], [24]. This is mainly because MPDI requires a fixed
parameter (soil line slope), which is susceptible to be changed in
land cover types and leads to the decrease of monitoring effect
[24], [26]. Moreover, there will be a large number of outliers in
high vegetation-covered areas. MSMMI does not have the above
limitations.

The estimation accuracy and the stability of SM under dif-
ferent land cover types monitored by MSMMI (from SWIR1–
SWIR2 space) under FVCgr model were verified by using the
LOOCV method. As shown in Fig. 15, the scattered points of
MSMMI from SWIR1–SWIR2 space are evenly distributed on
both sides of the diagonal of 1: −1 compared with SMMI from
SWIR1–SWIR2 space [Fig. 10(b)]. The fitting line of sample
points is closer to the diagonal and parallel to it. The nRMSE
of all SM samples, vegetation samples and bare soil samples
were 0.027, 0.038, and 0.021 cm3/cm3, respectively. In the
same way, MSMMI and MPDI from SWIR1–SWIR2 spaces
under different FVC estimation models on June 20, 2016 were
calculated and analyzed with measured SM. The results showed

Fig. 15. Scatter plot of MSMMI from SWIR1–SWIR2 space and measured
SM on June 13, 2016.

that the correlations between MSMMI from SWIR1–SWIR2
space based on FVCgr model and measured SM was still the
highest (Rall = −0.745, Rveg = −0.707, and Rsoil = −0.897).

As can be seen from Fig. 15, for vegetation-covered ar-
eas which measured SM ranging from 0.15 cm3/cm3 to 0.4
cm3/cm3, there is a significant negative linear correlation be-
tween MSMMI from SWIR1–SWIR2 space and measured
SM. However, this index will significantly underestimate SM
in vegetation-covered areas which measured SM greater than
0.4 cm3/cm3. This may be because when the SM on the under-
lying surface of the crops is saturated, the leaf water content
will always remain within a certain range [86], [88]. Therefore,
optical SM index may underestimate surface SM when crop
growth is well developed (high FVC). In other words, SM on the
underlying surface has a great influence on the SWIR reflectance
of vegetation under low or medium FVC. This conclusion is
consistent with the earlier findings of scholars [88], [89]. But
MSMMI from SWIR1–SWIR2 space is still an effective index to
monitor and quantify crop water shortages or extreme drought.
It has great potential to be used to monitor timing irrigation
in water-saving agriculture, completely independent of auxil-
iary data, and completely derived from optical remote sensing
images.

As can be seen from Fig. 16, on the whole, there is no obvious
relationship between FVC and measured SM for one phase.
Although the FVC of most bare soil areas is less than 0.1, the
measured SM is ranging from 0.1 to 0.5 cm3/cm3. In addition,
the SM of most crop areas is greater than 0.3 cm3/cm3. Some
crop areas have higher FVC, but the measured SM is between 0.1
and 0.25 cm3/cm3. This may be because the FVC of crops can
remain at a high level for a period when the underlying surface is
suffering from a short-term water shortage [90], [91]. Therefore,
FVC obtained from a single temporal remote sensing image
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Fig. 16. Relationship between FVCgr measured SM and MSMMI.

Fig. 17. (a) Frequency histogram of estimated soil moisture. (b) Mean of
FVC and the mean of corresponding estimated soil moisture under different
FVC conditions. (c) Correlation between the mean of FVC and estimated SM
under different FVC conditions.

cannot be used directly and timely to evaluate SM distribution
in complex agricultural areas. MSMMI from SWIR1–SWIR2
space combined with FVC and SWIR bands which are sensitive
to leaf moisture content or SM can effectively monitor the actual
distribution of SM in both bare soil areas and vegetation-covered
areas.

Combined with the scatters of the value of MSMMI and the
corresponding measured SM (Fig. 15), SM levels of MSMMI
from SWIR1–SWIR2 space were graded into six groups: 0.0
< MSMMI ≤ 0.1 (extremely moist, ≥0.5cm3/cm3), 0.1 <
MSMMI ≤ 0.2 (moist, 0.4–0.5 cm3/cm3), 0.2 < MSMMI ≤
0.3 (normal, 0.3–0.4 cm3/cm3), 0.3 < MSMMI ≤ 0.4 (mild
drought, 0.2–0.3 cm3/cm3), 0.4 < MSMMI ≤ 0.5 (drought,
0.1–0.2 cm3/cm3), and MSMMI>0.5 (extremely drought, 0–0.1
cm3/cm3). The SM in the study area on June 13, 2016 was
estimated according to the linear fitting equation in Fig. 15. As
shown in Fig. 17(a), the estimated SM by MSMMI was normally
distributed on the whole, with the mean and standard deviation
of 0.33 and 0.05 cm3/cm3, respectively. The SM of most pixels
was between 0.3 and 0.4 cm3/cm3 and was in normal condition.
The estimated FVC by FVCgr model was graded according to
certain criteria [83], namely 0–0.3, 0.3–0.45, 0.45–0.6, 0.6–0.75,

Fig. 18. (a) Estimated soil moisture map by MSMMI in the study area on June
13, 2016. (b)–(d) Magnified views of images. (i) Column: soil moisture map.
(ii) Column: Sentinel-2A imagery. (iii) Column: FVCgr imagery.

Fig. 19. (a) Estimated soil moisture map by MSMMI in the study area on June
13, 2016. (b)–(d) Magnified views of images. (i) Column: soil moisture map.
(ii) Column: Sentinel-2A imagery. (iii) Column: FVCgr imagery.

and 0.75–1.0. The mean and standard deviation of corresponding
FVC were 0.13 ± 0.07, 0.37 ± 0.04, 0.53 ± 0.04, 0.68 ± 0.04,
and 0.85 ± 0.06, respectively. Fig. 17(b) and (c) shows that,
under different FVC conditions, the correlation between the
mean FVC and the corresponding mean SM is extremely high
(R2 > 0.95). The greater the FVC, the greater the estimated SM.
The mean and standard deviation of estimated SM under each
level FVC were 0.31 ± 0.05, 0.33 ± 0.04, 0.34 ± 0.04, 0.35 ±
0.03, and 0.38 ± 0.05 cm3/cm3, respectively. Fig. 18(a) shows
the estimated SM distribution by MSMMI from SWIR1–SWIR2
space. The extremely moist and moist areas were mainly located
in the pond [Fig. 18(c)], rivers, woodland along the rivers
[Fig. 18(d)], and part of crop areas. Drought and extremely
drought areas were mainly in the northwest and central bare
soil areas [Fig. 18(b)], which had been fallow for some time and
had a reduced ability to retain SM. The estimated SM of bare soil
areas in the northeast is relatively high. Fig. 19 shows that most
crops were in mild drought conditions and tended to be normal.
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TABLE III
EVALUATION OF SOIL MOISTURE MONITORING OF SOIL MOISTURE INDICES

The estimated SM of water was always high and changed very
little. Estimated SM of most crops showed a trend of rising
first and then decreasing, which was mainly influenced by the
precipitation of about 12 mm on June 12, 2016. Estimated SM of
the triticale and oats plots was always relatively high and was in
the normal region. SM of the winter wheat plots was always low,
mainly because the crops were in the ripening stage and the water
demand was relatively small. Therefore, combined with the
estimated SM images and the actual crop growth period, it can
accurately guide the irrigation of plots under soil water stress.
The above results indicate that MSMMI (from SWIR1–SWIR2
space) based on the FVCgr model can effectively monitor the
surface dry and wet conditions of different crops and can be used
as the best SM index in the study area. Once again, we emphasize
this SM index, whose calculation formulae are as follows: (18)
shown at the bottom of this page,

FVCgr =
NDVIred edge −NDVIs
NDVIv −NDVIs

(19)

NDVIred edge =
Rred edge3 −Rred edge1

Rred edge3 +Rred edge1
(20)

where RSWIR1 and RSWIR2 represent the SWIR1 and SWIR2
bands reflectance of Sentinel-2, respectively. Rv, SWIR1 and Rv,

SWIR2 represent empirical values of pure vegetation in SWIR1
and SWIR2 images, respectively. FVCgr represents FVC based
on the DPM with red-edge bands, NDVIred edge represents
red-edge normalized difference vegetation index. NDVIv and
NVDIs represent the value of pure vegetation and bare soil in
NDVIred edge imagery, respectively. The values can be obtained
from the cumulative confidence of the respective images at 1%
and 99%.

V. OUTLOOK AND LIMITATIONS

It can be seen from this article that red-edge bands (Band5
and Band7 of Sentinel-2) and SWIR bands (Band11 and Band12
of Sentinel-2) can effectively improve the estimation accuracy
of SM in farmland, which is especially obvious in vegetation-
covered areas. Table III shows a qualitative evaluation of SM
indices in monitoring SM according to the correlations with
measured SM under different land cover and operability. SMMI,
PDI, MSMMI, and MPDI can effectively monitor the dry and
wet conditions in bare soil areas. Therefore, SM in bare soil

areas can be retrieved by satellites carrying traditional four-band
(Blue, Green, Red, and NIR) through these four indices. But the
monitoring accuracy may not be as good as that of satellites
carrying SWIR bands. Compared with visible and NIR bands,
SWIR bands have longer wavelengths less affected by atmo-
spheric scattering, which can significantly improve the ability to
obtain surface SM and crop water content. MSMMI involving
red-edge and SWIR bands can accurately estimate SM both in
bare soil and vegetation-covered areas, which is suitable for
satellites carrying red-edge and SWIR bands at the same time.
However, at present, there are few satellites with these condi-
tions. Of these, Sentinel-2 is the only open-access satellite, and
Worldview-3 (the spatial resolution of multispectral and SWIR
bands was 1.24 and 3.70 m, respectively) is the main commercial
satellite [92]. China’s GaoFen-6 has two red-edge bands with
16-m spatial resolution, but it lacks SWIR bands, which limits
its application value to a certain extent [93]. Hyperspectral satel-
lite sensors, such as China’s ZiYuan-1 (ZY-1) 02D, GaoFen-5
(GF-5), and OuBiTe hyperspectral satellite-2/3 (OHS-2/3), have
more detailed bands and higher spatial resolution, which are also
effective data sources for monitoring SM in agricultural areas
[94], [95].

The shortcoming of the spectral feature space method in moni-
toring SM is that many factors are affecting the surface reflection
and emission spectra, such as atmospheric conditions, light
conditions, soil structure, ST, soil surface roughness, organic
matter content, etc., thus affecting the accuracy of the spectral
eigenspace method in estimating SM [88], [96]. Besides, the
response degree of different crops to underlying surface SM
will also affect the accuracy and consistency of the spectral
feature space method to estimate SM in vegetation-covered
areas. In the future, the spectral feature space of long time
series should be established according to measured SM data in
different regions, different crop types, and deeper soil layers
to further verify the reliability of the spectral feature space
method in monitoring SM. The performance and sensibility
of the spectral feature space method for monitoring crops or
natural vegetation suffering extreme drought conditions will
also need to be further validated. Moreover, SAR data has
a certain penetration ability and is more sensitive to SM in
vegetation-covered areas. It is also an interesting research di-
rection to estimate SM in farmland by combining Sentinel-1
C-band SAR data and Sentinel-2’s multispectral data [97]–[99].

MSMMI =

√
(RSWIR1 − FV Cgr ·Rv,SWIR1)

2 + (RSWIR2 − FV Cgr ·Rv,SWIR2)
2

√
2 · (1− FVCgr)

(18)
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Accurate monitoring of cultivated areas, species classification,
nutrients, moisture content, diseases, and insect pests of crops
are indispensable links for the modernization and intelligence
of agriculture, which are also inseparable from remote sensing
satellites. Compared with other fields, agricultural remote sens-
ing monitoring has more complexity and particularity. Medium-
and high-resolution remote sensing satellites with a red-edge
and SWIR bands are more suitable for agriculture. These bands
can effectively improve the diagnostic analysis accuracy of crop
growth state and realize the fine monitoring of crop growth
during the whole growth period. There will be an increasing
number of agricultural applications of Sentinel-2 soon. In this
article, we only employed the Pearson’s correlation coefficient
(R) to evaluate the performance of different indices, because
R can directly reflect the linear relationship between the two
variables, and can directly reflect the performance of different
indices through the heat map (Figs. 9, 13, and 14). However, it
cannot directly assess the accuracy of each SM estimation model
in monitoring SM. We will adopt mean absolute error, mean
relative error, root mean square error, and the leave-one-out
cross-validation method to assess the stability of the estimation
model in the next work.

VI. CONCLUSION

In this article, the potential of Sentinel-2 for crop extraction by
RFC was explored. Second, this article assessed the performance
of Sentinel-2 for estimating SM in bare soil areas and vegetation-
covered areas by spectral feature space methods, namely SMMI,
PDI, MSMMI, and MPDI.

The main conclusions are as follows:
1) For land cover classification, the red-edge and SWIR

bands of Sentinel-2 are helpful for the accurate classifi-
cation of complex land cover types. In the feature subset
with the highest precision classification, red edge, SWIR
bands, and their indices account for 87%. The spectral
and vegetation indices important to the classification of
land cover types mainly include the Sentinel-2 bands of
SWIR1, SWIR2, Red, Green, Red edge1, Blue, and the de-
rived vegetation indices such as MNDWI, NDMI, TCARI,
S2REP (Sentinel-2 REPI), REPI, MRENDVI, red-edge
vegetation index32, and MRESR. Only one texture fea-
ture (GLCM_mean) improves the classification accuracy,
while the rest texture features at 20-m spatial resolution
have little effect on the classification. Therefore, remote
sensing satellites with a red-edge and SWIR bands are
of greater application in the extraction of crop types in
complex agricultural areas.

2) For SM estimation in bare soil areas, the importance
score of the SWIR bands and measured SM is higher
in RFR. For SM estimation in vegetation-covered areas,
the red-edge bands scored higher. Both SMMI and PDI
involving SWIR bands have universality for accurately
monitoring SM in bare soil areas. The correlation between
SMMI, PDI involving red-edge bands, and measured SM
in vegetation-covered areas was significantly higher than
that from the NIR-Red feature space but lower than that
from the SWIR1–SWIR2 feature space. In general, SMMI

is more accurate than PDI in monitoring SM in both bare
soil and vegetated areas.

3) SMMI and PDI do not consider the impact of FVC,
while FVC can better reduce the inconsistent response
of different land cover to SM. Therefore, the accuracy
in monitoring SM in vegetated areas is slightly lower.
MSMMI and MPDI are the improvement of SMMI and
PDI, respectively. The estimation of FVC is one of the
important factors affecting the accuracy of SM estimation
for the former two. The comparison results of different
FVC models show that different FVC models can effec-
tively estimate the vegetation cover of the study area.
The correlation between FVC with red-edge bands and
measured FVC was higher than that without red edge
bands. FVC with red-edge bands can better enlarge the
FVC difference of vegetation areas and weaken the FVC
difference of bare soil areas. Also, the correlation between
MSMMI based on FVC with red-edge bands and measured
SM is higher. The improvement of the SM monitoring
effect by red-edge bands is not directly caused by itself, but
by introducing FVC with red-edge bands. The MSMMI
based on the SWIR1–SWIR2 feature space and the FVCgr
model (DPM involving red-edge bands) was the best SM
index to monitoring regional SM in farmland. Whether
vegetation-covered areas or bare soil areas or vegetation-
bare soil mixed areas, the correlation between MSMMI
with measured SM at a depth of 0–5 cm was the highest.
MPDI has the worst monitoring performance. MSMMI
has equivalent accuracy to SMMI and PDI in monitor-
ing SM in bare soil areas, and significantly superior in
vegetation-covered areas.

The upper soil is an area where crop growth and microbial
activity are relatively active. MSMMI independent of the soil
line can more accurately establish the general empirical model
of regional SM in farmland. Sentinel-2 satellites with a red-
edge and SWIR bands can map 0–5 cm depth SM at 10–20 m
spatial resolution and provide the basis for agricultural water
management with great potential.
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