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Deep-Learning-Based Multispectral Satellite Image
Segmentation for Water Body Detection

Kunhao Yuan , Xu Zhuang, Gerald Schaefer, Jianxin Feng , Lin Guan, and Hui Fang

Abstract—Automated water body detection from satellite im-
agery is a fundamental stage for urban hydrological studies. In
recent years, various deep convolutional neural network (DCNN)-
based methods have been proposed to segment remote sensing data
collected by conventional RGB or multispectral imagery for such
studies. However, how to effectively explore the wider spectrum
bands of multispectral sensors to achieve significantly better per-
formance compared to the use of only RGB bands has been left
underexplored. In this article, we propose a novel DCNN model—
multichannel water body detection network (MC-WBDN)—that
incorporates three innovative components, i.e., a multichannel fu-
sion module, an Enhanced Atrous Spatial Pyramid Pooling mod-
ule, and Space-to-Depth/Depth-to-Space operations, to outperform
state-of-the-art DCNN-based water body detection methods. Ex-
perimental results convincingly show that our MC-WBDN model
achieves remarkable water body detection performance, is more
robust to light and weather variations, and can better distinguish
tiny water bodies compared to other DCNN models.

Index Terms—Deep convolutional neural networks (DCNNs),
feature fusion, multispectral remote sensing, semantic
segmentation, water body detection.

I. INTRODUCTION

WATER body detection from remote sensing imagery is
of great importance for urban hydrological studies [1].

Urban hydrology has become an emerging research area that
allows us to improve and manage urban water systems for solv-
ing environmental issues caused by rapid urbanization. It also
facilitates timely flood protection planning and water quality
control for public safety and health [2]. To achieve an insightful
analysis of water systems in cities, automated accurate water
body detection is the first and fundamental stage to provide
pixel-level identification of water regions [3], [4].

Since its launch in 2015, the Sentinel-2 satellite has provided
publicly available multispectral imagery that has been widely
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employed in land-cover applications [5]–[7]. It offers one of
the most suitable data sources for timely urban hydrological
monitoring and analysis due to its near-daily update frequency
compared to higher resolution remote sensing data such as
very high spatial resolution (VHR) [8] and synthetic aperture
radar (SAR) [4]. Thus, in this article, we investigate the use
of 10-m-resolution multispectral data from Sentinel-2 due to
its potential for urban hydrological applications that require
frequently updated data in their analysis process.

Traditional water body detection methods design hand-
crafted statistical features extracted from multispectral im-
agery including near infrared (NIR) and short-wave infrared
(SWIR). Well-known features include the Normalized Differ-
ence Water Index (NDWI) [9], Normalized Difference Mois-
ture Index (NDMI) [10], modified Normalized Difference Wa-
ter Index (MNDWI) [11], Automated Water Extraction Index
(AWEI) [12], and Pixel Region Index (PRI) [13]. Despite
their relatively good performance on well-controlled datasets,
they are less useful for water body detection in real-world
conditions.

Deep convolutional neural network (DCNN) models have
become popular for water body detection in recent years [3], [4],
[14]–[16]. DCNN-based semantic segmentation networks em-
ployed for remote-sensed water detection in urban hydrological
applications include fully convolutional networks (FCNs) [17],
upsampling pyramid networks [4], and DenseNet [18]. The
advantage of these models is that they are able to extract more
distinctive feature representations compared to traditional water
index features, thus enabling improved water body detection.

Multispectral imagery should support further improved water
body segmentation compared to using only RGB channels due to
the additional information contained in the extra bands that cover
a wider part of the electromagnetic spectrum, while the resulting
higher dimensional data can be reduced through appropriate
methods [19]. However, in recent work [4], [20], the use of
multiple bands did not prove to be very effective. In the Kaggle
Satellite Imagery Feature Detection challenge [20], methods
using all of the available 20 channels [one panchromatic channel
with a pixel resolution of 0.31 m, RGB channels (0.31 m), eight
multispectral bands (1.24 m), and eight SWIR bands (7.5 m)]
achieved only insignificant improvements compared to those
employing RGB bands only. Since the different bands are of dif-
ferent resolutions, NIR and SWIR bands need to be upsampled
to the same resolution as the panchromatic/RGB bands, while
this interpolation process might compromise the information of
the original features.
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In this article, we propose a novel multichannel water body de-
tection network (MC-WBDN) that exploits the potential of mul-
tispectral imagery to improve the performance of state-of-the-art
DCNN models for water body segmentation. In our model,
we use Sentinel-2 RGB, NIR, and SWIR bands and design a
multichannel fusion module to deal with the different image
resolutions in order to eliminate the aforementioned upsampling
issue. In addition, we introduce a novel Enhanced Atrous Spatial
Pyramid Pooling (EASPP) module to extract multireceptive
feature representations and Space-to-Depth (S2D)/Depth-to-
Space (D2S) operations to replace the max pooling operation
and upsampling process in order to preserve the saliency of
the high-dimensional representations. Our experimental results
convincingly show that we achieve significant improvements
compared to state-of-the-art deep learning methods that employ
either RGB or multispectral data.

Our contributions in this article are as follows.
1) A multichannel fusion module is designed to fuse all bands

in an end-to-end manner avoiding upsampling operations,
so that the learned weights are more effective.

2) An EASPP module is designed to extract multireceptive
features from multiscale levels to obtain an enhanced
representation.

3) S2D/D2S operations are introduced to replace the max
pooling and upsampling stages in order to preserve more
features for segmentation.

4) A comprehensive set of experiments, including an ablation
study and a comparison to state-of-the-art methods, are
conducted to confirm the effectiveness of our proposed
method.

5) Our annotated dataset is made publicly available1 to the
research community to allow further work in this area and
to support the comparison of different approaches.

The remainder of this article is organized as follows. Related
work is discussed in Section II to provide some background of
our proposed model. Section III describes the employed dataset,
data augmentation, and data preprocessing steps. Section IV
explains our proposed MC-WBDN model in detail, while, in
Section V, experimental results, including an ablation study, are
presented to demonstrate its effectiveness. Finally, Section VI
concludes this article and identifies future work.

II. RELATED WORK

A. Traditional Index-Based Water Detection

Index-based water body detection has been studied exten-
sively since the commercialization of remote sensing satel-
lites [12], [21]. Various handcrafted features have been designed
considering water body characteristics to label pixels into water
or nonwater categories. McFeeters [9] proposes NDWI to extract
vegetation liquid water based on the green and NIR channels
from Landsat imagery, succeeding in suppressing background
soil and terrestrial vegetation features by delineating open water
features. In [11], the MNDWI replaces the green band with
the middle infrared (MIR) band to further suppress built-up

1https://github.com/SCoulY/Sentinel-2-Water-Segmentation

land noise and vegetation and soil noise, thus enhancing water
region segmentation performance. In [12], a dual-coefficient
index named AWEI is proposed to increase the contrast between
water and other dark surfaces, while, more recently, Zhang
et al. [13] introduce the PRI, a spatial feature index, to exploit
the smoothness characteristics of local areas to improve the
effectiveness of NDWI.

B. DCNNs for Semantic Segmentation

Semantic segmentation assigns a class label to each im-
age pixel to support a high-level semantic understanding of
the image [22]. Traditional machine learning applications rely
heavily on predefined feature descriptors to achieve pixelwise
classification [23], [24]. Since the introduction of the pioneering
DCNN model for this, the FCN [22] and many network architec-
tures, e.g., DenseNet [25] and ResNet [26], have been adopted,
proposing various innovations such as the reuse of features from
previous layers and mapping residuals in a deep model to yield
high segmentation accuracy. In [27] and [28], the DeepLabV3
and DeepLabV3+ methods propose a spatial pyramid pooling
module between the encoder and the decoder to take advantage
of multiscale features, while some of the latest methods, includ-
ing SharpMask [29], U-Net [30], and RefineNet [31], embed
hierarchical feature representations extracted from multiple lay-
ers of the encoders into their corresponding decoders for better
segmentation.

DCNN models have also been deployed in remote sens-
ing applications. Image segmentation of remotely sensed im-
agery is more challenging due to high intraclass variations and
low sensor resolution [32]. To tackle these challenges, several
strategies, including hierarchical feature representations [33],
multimodality [34], and fusion schemes [34]–[36], have been
adopted in recent applications. In [37], a hybrid architecture
based on SharpMask and RefineNet achieves the best perfor-
mance on a six-band multispectral imagery segmentation task
due to its diversified feature representation. In [38], three con-
volutional neural network models are ensembled using Monte
Carlo dropout uncertainty maps to outperform standard weight
averaging for land-cover mapping segmentation in urban areas.
Sun and Wang [39] employ a digital surface model to use
geometry information in order to improve the FCN network
segmentation results of VHR remote sensed images.

C. DCNNs for Water Body Detection

Various standard DCNN models have been adapted in water
body detection applications. Li et al. [17] use an FCN model
to extract the water body of Beijing’s metropolitan area from
VHR images collected by the GaoFen-2 satellite. In [16], a CRF-
refined U-Net is proposed to process VHR images collected from
both GaoFen-2 and WorldView-2 satellites. Additional elevation
information from SAR images is exploited in [4], and a focal
loss function is used to deal with the imbalanced categorical
distributions in order to improve the segmentation accuracy of
pixels located at boundaries.

https://github.com/SCoulY/Sentinel-2-Water-Segmentation
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TABLE I
MULTIBAND INFORMATION OF SENTINEL-2 DATA USED IN THIS ARTICLE

III. DATA AND DATA PREPARATION

A. Study Area and Data Source

Our research area is Chengdu City and its suburban region
(over 15 000 km2) in Sichuan Province, China (“Sichuan”
literally means “four rivers”). The motivation of our proposed
algorithm is to facilitate timely monitoring and protection of
the local water resource by analyzing its dynamics at short
intervals. Sentinel-2 satellite imagery of Chengdu City is col-
lected for training and testing the proposed model. Details on
the Sentinel-2 bands are given in Table I. According to [10]–[12],
the bands most sensitive to water reflection are green, NIR, and
MIR (SWIR in Sentinel-2). Consequently, we select bands 2–4
(RGB) together with bands 8 (NIR) and 12 (SWIR) for our
approach.

The employed multispectral imagery of Chengdu City com-
prises a 16-bit raster image of size 20 976 × 20 982 pixels for
R, G, B, and NIR bands (10-m resolution) and of size 10 488 ×
10 491 pixels for the SWIR band (20-m resolution). The data
used in this article were retrieved from Sentinel-2 in April 2018.
Additionally, we have downloaded two further batches of data,
captured in late 2018 and early 2019, respectively, of the same
area in order to be able to evaluate robustness to light and cloud
variations. Since Chengdu is located in the Sichuan Basin, cloud
cover is typically high. Thus, we merged images taken on sunny
days across an entire month to create a high-quality near-cloud-
free dataset. We also performed atmospheric correction on the
images using ArcGIS.

B. Data Preprocessing and Data Augmentation

Before model training, data preprocessing and data augmen-
tation steps are applied to enhance the model’s effectiveness and
speed up the computation. These include the following.

1) Image splitting: The raster imagery is split into man-
ageable image blocks in order to avoid large computa-
tional and memory requirements as well as to facilitate
parallel computation. The input size of our proposed
model is 512 × 512 pixels for NIR and RGB channels
and 256 × 256 pixels for the SWIR channel. Instead of
splitting the full multispectral image into patches of the
required size, we first split it into blocks of 1024 × 1024
(NIR,RGB)/512 × 512 (SWIR) pixels. This configuration
allows us to set different splitting strategies for training

and testing purposes. In the training stage, more samples
are required to tackle overfitting problems. Therefore, an
overlapping split of image blocks is introduced in order to
generate more training samples, as illustrated in Fig. 1. For
testing, patches from randomly sampled nonoverlapping
blocks are used as input to our proposed model.

2) Cloud filtering and color normalization: Based on a pre-
liminary analysis on spectral information for each band,
a heuristic threshold of 3000 is used for both NIR and
SWIR channels to filter out the remaining cloudy areas
with values above the threshold capped. As illustrated in
Fig. 2, the data distribution of each wavelength channel
generally approximates a Gaussian distribution. Thus, we
normalize the intensitiesXi in each channel by their mean
μ and standard deviation σ as

Xi =
Xi − μ(Xi)

σ(Xi)
. (1)

3) Image augmentation: In addition to the original patches
obtained from the splitting stage, we apply the following
methods during the training stage for data augmentation:
1) a random horizontal/vertical flip with probability 0.5;
2) a clockwise 90◦ rotation with probability 0.5; and 3)
a random HSV color shift within a small range with
probability 0.25.

IV. MC-WBDN MODEL

A. Model Architecture

The architecture of our proposed MC-WBDN model is il-
lustrated in Fig. 3. The RGB channels, NIR channel, and SWIR
channel form the three input images. These are processed by their
corresponding convolution kernels in the multichannel fusion
module. Feature maps of identical size are generated and con-
catenated in the fusion module and used as input to our backbone
encoder–decoder network for pixel-level labeling. The encoder
network is a ResNet-34 model pretrained on ImageNet [26]
and the fusion channel decoder is an enhanced DeepLabV3+
network that uses the fine-grained feature maps produced by
the EASPP and S2D/D2S modules. The detailed network con-
figuration is given in Table II, which lists the kernel width,
kernel height, and number of kernels in each convolutional layer,
together with the output sizes of the feature maps.

In a classical backbone encoder–decoder architecture, the
encoder consecutively downsamples and diversifies the feature
representations, while the decoder upsamples and maps them
to their correspondent labels. Compared to this, our proposed
model has two distinctive traits.

1) We replace all bilinear upsampling operations in our de-
coder with D2S operations. This allows for an improved
information exchange between channels, which proved
effective in SENet [40] and ShuffleNet [41]. Table II
highlights the two process pipelines, with and without
S2D/D2S operations, while a performance comparison of
the two structures is presented in our ablation study.



YUAN et al.: DEEP-LEARNING-BASED MULTISPECTRAL SATELLITE IMAGE SEGMENTATION FOR WATER BODY DETECTION 7425

Fig. 1. 1024 × 1024 image block (left) and the cropped patches extracted for training (right). The first and third values on each line segment denote the start and
end pixel locations in the original image block, while the middle value denotes the length of the line segment.

Fig. 2. Pixel intensity distributions of the used bands.

TABLE II
LAYER CONFIGURATION OF EMPLOYED NETWORK ARCHITECTURE

BN = Batch normalization.
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Fig. 3. Proposed MC-WBDN network architecture, which adopts the popular encoder–decoder structure for semantic segmentation with a fusion head and
works fully end-to-end. The baseline MC-WBDN model replaces S2D and D2S with corresponding pooling subsampling and bilinear upsampling. Residual
connections between each convolutional blocks are omitted. The number below each block denotes the channels of feature maps, whereas “stride2” indicates two
times downsampled resolution compared to original input. The output is a single-channel feature map of the same size as the input.

2) Two extra bypasses from lower layers in the encoder are
concatenated with dense feature maps given by an EASPP
module in order to preserve more fine-grained context.

To ensure numerical stability and nonlinear representation,
Swish activation functions [42], which are differentiable when
dealing with negative gradients and defined as f(x) = x ·
sigmoid(x), are used in both the fusion head and the decoder,
while ReLU activation functions (f(x) = max(0, x)) are em-
ployed in the encoder part. This preserves the representative
features transferred from the pretrained deep learning model. For
testing, a sliding window prediction mechanism is employed,
where the central area is kept as the result from sliding a window
along the satellite imagery.

In the following, we explain the main features and innovations
of our proposed model.

1) Multichannel Fusion Head: We fuse RGB channels with
NIR and SWIR channels at the very beginning of the processing
pipeline. For RGB and NIR channels, which are of the same
resolution, we apply 7 × 7 convolution kernels to enlarge the
receptive field and a stride of 2 to align the output size with
SWIR, while for the lower resolution SWIR band, we apply
1 × 1 convolution kernels to densify its feature maps. The three
outputs are then concatenated, followed by a 1 × 1 convolution
to yield the channel combination used by the context encoder.

2) EASPP Module: To extract distinctive features from mul-
tiple receptive fields, we introduce an enhancement to Atrous
Spatial Pyramid Pooling (ASPP) [36]. In our EASPP, we apply
1 × 1 convolution operations followed by a local max pooling
to the feature maps from the previous layers, thus avoiding
the upsampling stage in the original ASPP. Intuitively, this
modification adds a shortcut from previous layers and makes the

trainable weights more effective. Our proposed EASPP module
distils dense features from different scales of the input feature
maps [36] by individual dilated convolutions [35], [43], [44] at
different scales. These scales indicate the various region sizes
in the feature maps that can be activated. Benefitting from the
hierarchical structure of the receptive fields, the feature pyramid
aggregates rich context information from the input. The mul-
tiscale feature pyramid is concatenated and pruned by a 1 × 1
convolution to produce the output feature maps.

3) Space-to-Depth and Depth-to-Space: In a conventional
DCNN pipeline, feature maps are processed with pooling op-
erations in the encoder and upsampling operations in the de-
coder. These two operations, however, are suboptimal since
pooling operations discard detailed feature responses, while the
upsampling operations are nontrainable. Although transposed
convolution operations complement upsampling schemes, they
significantly increase the parameters in a DCNN [45].

The use of S2D and D2S operations can alleviate these prob-
lems [46], [47]. As illustrated in Fig. 4(a), S2D moves pixels
from spatial locations to channel dimensions, while D2S is the
inverse operation. With S2D operations, more local features
can be preserved for the decoder process. Moreover, the S2D
operation can be treated as an intramodel augmentation, as
shown in Fig. 4(b), and offers views of inputs with differ-
ent pixel shifts. In contrast, D2S is an alternative to trans-
posed convolutions for upsampling due with two advantages:
1) D2S is parameter-free while keeping all the responses from
previous layers and 2) it merges information across feature
map channels to allow effective feature exchange instead of
focusing on individual channels when applying transposed
convolutions.
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Fig. 4. (a) Visualization of S2D and D2S. (b) Role of S2D in a network.
Dashed arrows demonstrate the relationships between slices after S2D and the
original branch but do not actually take effect when processing.

B. Loss Functions

Our loss function comprises two terms: a pixelwise loss term
and a region-based loss term. For the pixelwise term, we use the
binary cross-entropy loss, calculated as

lossBCE = − 1

|Ω|
∑

i∈Ω
[yi log ŷi + (1− yi) log(1− ŷi)] (2)

where Ω denotes all pixels in the predicted map, yi is the label
of the ith pixel (0 or 1), and ŷ is the predicted probability of
pixel i.

In contrast to the pixelwise loss term, the region-based loss
term focuses on optimizing the smoothness of regions to improve
the mean Intersection over Union over all classes (mIoU). Com-
monly used region-based loss terms include the Dice coefficient
loss, Jaccard loss [48], and Lovász–Softmax loss [49]. The
former two are more suitable for imbalanced data training, and
we thus use only them. The Dice coefficient loss is defined as

lossDice = 1−
2
∣∣∣Ŷ ∩ Y

∣∣∣
∣∣∣Ŷ

∣∣∣+ |Y |
(3)

where Ŷ represents the predicted map and Y the label mask,
while the Jaccard loss is calculated as

lossJaccard = 1−

∣∣∣Ŷ ∩ Y
∣∣∣

∣∣∣Ŷ ∪ Y
∣∣∣
. (4)

The multitask loss is then calculated as

loss = α · lossBCE + (1− α) · lossDice (5)

and

loss = α · lossBCE + (1− α) · lossJaccard (6)

respectively, where α ∈ [0; 1] is a weight to balance the two
terms. A larger value of α will favor the binary cross-entropy

loss and, thus, improve detection of small water bodies (e.g.,
paddy fields and streams), while a lower weight will enhance
regional smoothness of the segmentation. The optimal setting
of α is assessed in our ablation study.

The end-to-end training of the model is performed by back-
propagation [50] through the loss function. After gradient cal-
culation, the parameter set of the network is updated as

θ = θ − εĝ (7)

where ε denotes the learning rate. We use Adam [51] as the
optimizer.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setup

Our data are split into disjoint training, validation, and test
sets. From the original satellite imagery, we first generate 441
blocks of size 1024 × 1024. After image splitting, which gener-
ates nine patches from each 1024 × 1024 block, we thus have a
total of 3969 image patches. A total of 300 1024 × 1024 blocks
are used to generate 2700 training patches, and we divide the
remaining 141 blocks into a validation set of 33 blocks and
297 patches and a test set of 108 blocks and 972 patches. We
further divide the training and validation sets into three folds
(each of 300 blocks training and 33 block validation) to test the
robustness of the proposed method. We report mIoU results in
terms of average and standard deviation on the test set when
trained using the three trained models.

We compare our proposed MC-WBDN model with com-
monly used RGB-based segmentation architectures and some of
the latest multiband methods. In particular, we use U-Net [30],2

D-LinkNet [52], vanilla Sharpmask [29], DeeplabV3+ [28], and
the method by Kemker at al. [37], which merges the encoder
structure of Sharpmask and the decoder structure of RefineNet,3

in our evaluation.
We train each deep learning model for a minimum of 100 and

a maximum of 300 epochs with an early-stopping mechanism
that terminates learning when performance on the validation set
does not improve for five consecutive epochs. We use an initial
learning rate of 1e-3, an end threshold of 1e-8, and a decay rate of
0.5 in our experiments. Training takes, depending on the model,
about 10–50 h to convergence using four NVIDIA GTX1080ti
GPUs with a batch size of 16. All the experiments were carried
using the PyTorch deep learning framework [53]. We note
that only Sharpmask, Kemker et al.’s, and our MC-WBDN
take multispectral images as input. In addition to deep learn-
ing models, we also evaluate some traditional index methods,
namely, NDWI, NDMI, and MNDWI, for which the established
thresholds of 0.34, 0.3, and 0.1, respectively, are used.

B. Experimental Results

We plot learning curves depicting accuracy over the first 50
training epochs in Fig. 5. From there, we can see that U-Net

2Our implementation of U-Net involves no pretraining.
3Our implementation uses the five bands mentioned, while the original method

uses six spectral bands.
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TABLE III
MIOU RESULTS ON THE TEST SET FOR ALL METHODS

Fig. 5. Learning curves of different models.

shows the lowest training and validation accuracy. Higher ac-
curacies are achieved by D-LinkNet and DeepLabV3+, but it is
clear that the multispectral models do better still, reaching both
higher accuracies on both training and validation sets and more
stable performance, indicating that RGB features are insufficient
to successfully learn a more general water representation. Our
proposed MC-WBDN approach outperforms all other models
and yields the highest training accuracy of 0.988 as well as the
highest validation accuracy of 0.984, while the training process
takes less than 20 h due to the simplicity and efficiency of our
network architecture.

mIoU results, in terms of average and standard deviation on
the test set, are given in Table III for all evaluated models.

From there, it is immediately apparent that the results for the
traditional water extraction indices are extremely inferior, even
when compared to the worst performing deep learning method.

While MNDWI improves upon NDWI and NDMI, the achieved
mIoU of just over 10% is far too low to be useful. Also, since
these models rely on (fixed) thresholds, they lack flexibility,
while the indices themselves exploit only linear relationships
between the selected bands.

In contrast, deep-learning-based approaches support nonlin-
ear representation ability and are able to learn useful features
from large parameter spaces, leading to significantly better
segmentation performance. Looking closer at the obtained re-
sults, we can see that generally approaches that use only the
RGB bands are inferior to those that also incorporate NIR and
SWIR bands to exploit the additional information contained
there. Of the RGB models, the best results are obtained using
DeepLabV3+, while U-Net and D-LinkNet yield relatively poor
performance.

Similar to our proposed MC-WBDN approach, Sharpmask
and Kemker et al.’s method also use multispectral input (the
identical bands in our experiments). The method by Kemker et
al. fails to generalize well and consequently yields lower perfor-
mance in comparison to Sharpmask. Our proposed MC-WBDN,
however, clearly outperforms Sharpmask and all other evaluated
methods, giving the best segmentation results with an mIoU
of 74.42%, based on an equal weighting of pixel and region
loss function terms and Jaccard loss for the latter. In addition,
MC-WBDN also yields the lowest standard deviation and, thus,
is the most robust of the evaluated DCNN models.

Table III also shows the number of trainable parameters per
band. Due to heavy usage of transposed convolutions in the
bottom-up phase, the number of parameters almost doubles
for U-Net and D-LinkNet in comparison to Sharpmask, which
has the lowest number of parameters per band. By far, most
parameters are used in the model by Kemker et al., while the
parameter space of our proposed MC-WBDN model is relatively
small and only somewhat larger than that of Sharpmask.

Fig. 6 shows several typical test patches together with their
ground truth segmentations and the outputs of the six deep
learning models, while Fig. 7 gives results for further, more
challenging, test patches under low lighting conditions.

As can be seen from these examples, the multispectral mod-
els such as Sharpmask, Kemker et al.’s, and our MC-WBDN
outperform RGB-only models (i.e., U-Net, D-LinkNet, and
DeepLabV3+). In particular, for areas that contain complex
urban scenarios (such as row 6 in Fig. 6), RGB-only models tend
to fail as they are unable to handle the wider range of color shifts.
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Fig. 6. Test results for different models on example patches.

Also, for patches containing both shallow and wide water bodies
(e.g., rows 3 and 5 in Fig. 6), our MC-WBDN is able to deliver
improved detection due to both the additional information in the
NIR and SWIR bands and the multiscale features leaned by the
EASPP module.

While the performance improvement of our MC-WBDN
model is relatively minor for the samples in Fig. 6, it becomes
more apparent for areas under low lighting conditions such as
the examples shown in Fig. 7. In particular, for the patch in the
second row, which requires consistent prediction of scattered
water ponds, we can notice a vast improvement.

C. Ablation Study

We perform a thorough ablation study, where we investigate
the effect of each introduced component. The results are given
in Table IV, which shows the obtained performances (based on
the models trained on the first partition of the dataset) when
employing multichannel fusion versus standard pan-sharpening,
employing our proposed EASPP module versus standard ASPP,
and using D2S/S2D versus standard bilinear interpolation.

TABLE IV
RESULTS OF ABLATION STUDY (BASED ON α = 0.1 AND

DICE REGION LOSS [54])

Default processing (the noes in the table) involves pan-
sharpening, ASPP, and bilinear interpolation.

As we can see from Table IV, the baseline results are rel-
atively modest with an mIoU of 67.82, while introduction of
each component (MC fusion, EASPP, D2S/S2D) on its own
is shown to lead to an improvement. It is, however, the three
working together in tandem that really boosts the water detection
performance, to an mIoU of 74.14, and does so by more than
the sum of the individual improvements, thus confirming the
effectiveness of our proposed model and its careful design.
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Fig. 7. Test results for different models on dark example patches.

TABLE V
RESULTS FOR DIFFERENT LOSS FUNCTION SETUPS

D. Loss Function Evaluation

As explained in Section IV-B, our loss function comprises a
pixel-based component and a region-based component, while
the latter is based on either Dice coefficient loss or Jaccard loss.
Tuning the α parameter that balances the two components, one
can thus put more emphasis on pixel- or region-based labeling.
We evaluate three different settings, namely, α = 0.1, α = 0.5,
and α = 0.9, together with the two region-based loss terms and
show the obtained results (again, based on models trained on the
first partition of the dataset) in Table V.

Looking at the obtained results, we notice that better per-
formance is achieved using the Jaccard loss compared to the

Dice coefficient loss, which is not surprising since the standard
performance measure of mIoU corresponds to the Jaccard index.
The best weighting between pixel and region (Jaccard) loss is
obtained by setting α to 0.5, which justifies the setup of our loss
function. A best test mIoU of 75.13% is obtained based on the
first training–validation partition. After repeating training on the
three partitions while using Jaccard region loss and α = 0.5, an
average mIoU of 74.42% on the test set is achieved, which is
also the result reported in Table III.

E. Robustness Against Light and Weather Variations

One of the challenges of automated remote sensing is that the
captured information of the same area can vary drastically due to
environmental changes such as differing lightning and weather
conditions. To evaluate robustness against varying conditions,
we measure the performance of the various models on image
patches of the same area as the original test samples but taken
at different times (in late 2018 and in early 2019).

Fig. 8 shows a collection of sample patches for all three times-
tamps together with the water areas detected by our MC-WBDN
model. As we can see, the variations in terms of color shifts
and cloud cover are quite apparent. In addition, we can notice
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Fig. 8. MC-WBDN water body detection result examples across different timestamps.

Fig. 9. Results on sample patch across three timestamps for all models.

some artifacts that come from the satellite built-in preprocessing
and lead to rather different appearances within the same patch
such as in the two middle patches for timestamp 3. Despite
these difficulties, the performance of MC-WBDN is relatively
consistent including for the very challenging patch at the top
right.

Fig. 9 shows the results obtained by all deep learning models
for the first area patch of Fig. 8. From there, we can observe that
RGB-only models are greatly affected when lightning condition
change and in particular fail completely for the cloudy scenario
for the third timestamp. In contrast, the multiband models exhibit

improved robustness due to their ability to incorporate informa-
tion from the NIR and SWIR bands also. MC-WBDN gives the
best results across the three timestamps, followed by Sharpmask.

Table VI gives the results over all test patches for all three
timestamps and for all deep learning models (based on the
models trained on the first partition of the dataset). From there,
it is clear that the RGB-only models fail to generalize well for
the other two timestamps. For example, for DeepLabV3+, the
mIoUs for timestamps 2 and 3 are almost 20 points lower than
for timestamp 1. Significantly better results are achieved by the
multiband methods of Sharpmask and Kemker et al., which
clearly outperform the RGB-only networks. The overall best
performance across the different timestamps, with an average
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TABLE VI
RESULTS, IN TERMS OF MIOU [%], ACROSS ALL TEST PATCHES FOR THE

THREE DIFFERENT TIMESTAMPS

mIoU of 73.56, is obtained by MC-WBDN, which, thus, con-
firms that our proposed model does not only outperform the
other ones but also allows for water body detection that is robust
with respect to light and weather conditions.

F. Discussion

In this article, we design a novel effective DCNN model for
water segmentation from satellite imagery, which can be trained
in an end-to-end fashion through backpropagation. Deep learn-
ing approaches allow for adaptive training on large and varied
datasets, in contrast to traditional index-based water extraction
methods that work only within a small range but largely fail in
open areas and complex scenes due to the difficulty in selecting
appropriate thresholds and inability to learn nonlinear feature
representations.

Instead of upsampling satellite bands captured at lower res-
olutions, our MC-WBDN approach directly fuses multiband
inside the network. This fusion head is then connected to an
elegant state-of-the-art semantic segmentation DeepLabV3-like
architecture, resulting in only a small increase of tunable param-
eters but yielding noticeable performance increases compared
to standard pan-sharpening, as reported in Table IV. Compared
with RGB-only data, inclusion of multispectral bands (in our
approach NIR and SWIR bands) provides additional useful in-
formation for water extraction, leading to more accurate segmen-
tation of water bodies, although further work to investigate the
contribution of the additional bands over RGB-only data should
prove useful in order to define a more detailed relationship
between the bands and object features for water detection.

The proposed EASPP module is better capable of integrating
representations from previous convolutional layers, leading to
a significant performance boost, as can be seen from Table IV.
In addition, we also introduce S2D/D2S operations to enhance
the reconstruction performance in the bottom-up phase of our
model. Benefitting from the ability to exchange arbitrary pixel
information from feature map channel dimensions to spatial
dimensions and vice versa, this supports improved detection, as
confirmed in Table IV, while the overall MC-WBDN provides
better generalization ability and excellent water body detection
performance, also in comparison to previous work, as shown
in Table III and illustrated by the examples in Figs. 6 and 7.
The impact of S2D/D2S can be seen as a combination of lower
resolution feature maps and a splitting of the high-resolution
feature map. Currently, this is only supported for image dimen-
sions that are a power of 2. With an arbitrary sampling rate,
such a reconstruction from dense feature maps using D2S could

potentially replace the 1 × 1 convolutions that are currently
dominant but require a higher memory allocation [46], [47].

Emphasis on pixelwise and region-based classification, re-
spectively, is possible through adjustment of the weight param-
eter α in the loss function. Overall, our MC-WBDN model
reaches the best performance by equally weighting the two
loss terms, as shown in Table V, thus paying equal attention
to pixelwise and region-based classification. Further work can
focus to identify if skeleton features are favorable for, e.g., rivers,
while fine-granularity features are beneficial for larger water
bodies such as lakes.

Consistent prediction on samples taken at different times-
tamps demonstrate the advantage of our MC-WBDN model,
as shown in Figs. 8 and 9 and Table VI. In contrast, other
models fail to provide consistently high detection ability across
timestamps, in particular when light and weather conditions vary
more dramatically.

As mentioned in Section II-C, traditional baseline methods,
e.g., FCN and U-Net along with refinement modules such as
CRF, have been previously used in water body detection re-
search. In addition, we also compare our proposed method with
other generic methods such as Sharpmask and Kemker et al.’s
work, since these methods have reported better performance
in various applications compared to FCN and U-Net. These
benchmarking methods also share their open-source code, thus
allowing for objective and reproducible performance compar-
ison. In future work, we plan to investigate more algorithms
including further methods that have been specifically developed
for water body detection.

VI. CONCLUSION

Motivated by the success of deep learning methods and their
applications to remote sensing, in this article, we have intro-
duced a novel approach to satellite-based water body extraction,
accomplished through an effective DCNN that incorporates
several contributions. While RGB, being the basis of both the
human visual system and common camera systems, has been
frequently used for remote sensed analysis, we demonstrate
that additional wavelength bands (NIR and SWIR) allow for
improved segmentation. Given Sentinel-2 satellite data, we ef-
fectively exploit its multispectral information to aid our network
model in successfully recognizing water areas. Information from
bands captured at different resolutions is appropriately fused
directly in the network avoiding the need for image interpolation
methods. We also incorporate S2D/D2S operations, which are
memory efficient and allow us to retain better features, while we
have presented an EASPP to appropriately extract multireceptive
features from multiple scales. Experimental results have demon-
strated excellent water detection capability of our MC-WBDN
model, outperforming other evaluated models including tradi-
tional water detection indices and state-of-the-art deep models
based on RGB and multispectral input, as well as showing
improved robustness against light and weather variations. In
future work, we aim to further use the proposed method in
applicable hydrological studies.
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