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Content Controlled Spectral Indices for Detection of
Hydrothermal Alteration Minerals Based on Machine
Learning and Lasso-Logistic Regression Analysis

Kyuhun Shim, Jaehyung Yu ", Lei Wang

Abstract—This article introduced the quantity controlled spec-
tral indices working at mineral contents higher than 5 wt.% for
detection of sericite, chlorite, and pyrophyllite, which are the rep-
resentative alteration minerals of phyllic, propylitic, and advanced
argillic hydrothermal alterations. The X-ray diffraction analysis
revealed that the samples are mostly pure with minor content of
quartz. The absorption features of target minerals showed sys-
tematic decrease in absorption depth with decrease in the mineral
content, and the changes varied by mineral types. A total of 1253
target mineral spectra and 605 nontarget mineral spectra were
classified by a random forest model, which achieved an overall
accuracy of 97 % with mineral content above 5 wt. %. Least absolute
shrinkage and selection operator logistic regressions employed
spectral variables of 82 bands for sericite, 132 bands for chlorite,
and 84 bands for pyrophyllite with minimal spectral overlap. The
overall accuracies were higher than 93.6% with R? values ranging
from 0.57 to 0.71. Because both target minerals and nontarget
minerals, these indices can reliably make mineral classification. To
be compatible with remote sensing images, the water-absorption
bands were excluded from the indices.

Index Terms—Chlorite, hydrothermal alteration minerals, least
absolute shrinkage and selection operator (LASSO) logistic
regression, pyrophyllite, quantity controlled indices, random forest
(RF), sericite, spectroscopy.

1. INTRODUCTION

YDROTHERMAL alteration zones have been considered
I I as main exploration targets of mineral resources due to
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their characteristic distribution surrounding the ore bodies espe-
cially for hydrothermal ore deposits [1]-[4]. The hydrothermal
alteration zone occurs around ore bodies manifested by zoning
of alteration minerals as a result of interaction between host
rock and hydrothermal fluid originated from magmatic activities
[3], [5]. Due to the characteristic interaction, the hydrothermal
alteration zones are distributed systematically around ore bodies,
and thus, the identification of specific alteration zone provides
critical information about the mineralized areas [6]-[9]. In
general, there are nine types of hydrothermal alterations used
for mineral resources exploration including argillic, advance
agillic, phyllic, propylitic, postassic, greisen, chloritization, sili-
cification, and carbonitization [10], [11]. Among hydrothermal
alterations types, phyllic, propylitic, and advanced argillic alter-
ations are main exploration targets because they occur for the
most of hydrothermal ore deposit and show systematic zoning
with ore bodies [12]-[15]. The phyllic alteration can be defined
by assemblages of altered minerals, such as sericite and pyrite
where sericite is the main indicator of the alteration [16], [17].
The propylitic alteration is defined by chlorite, epidote, albite,
calcite, actinolite, and pyrite, and chlorite and epidote are mostly
found in the alteration [6], [18]. Advanced argillic alteration
is composed of quartz, alunite, pyrophyllite, dickite, kaolinite,
diaspore, andalusite, and corrundum where pyrophyllite and
kaolinite are the representative minerals [19]. These alterations
zones show various spatial distribution up to kilometers around
volcanogenic massive sulfide (VMS), for iron-oxide-copper-
gold deposit, and porphyry copper deposits and high sulfidation
epithermal gold deposit [6], [20]-[26]. On the other hand, the
host rock of hydrothermal ore deposit shows large variations
because the hydrothermal deposit often occurs along the geo-
logical structures, such as faults and folds. However, the mineral
composition of granite includes the most commonly found rock
forming minerals in continental environment, such as quartz,
feldspar, and mica.

Since 1990s, remote sensing and spectroscopic approaches to
mapping hydrothermal alteration have been explored from var-
ious platforms such as satellites [26]-[30], airplanes [31]-[33],
unmanned aerial vehicle (UAV hereafter) [34], [35], and ground
based spectroscopy [36]-[40]. Among the works, ASTER and
Landsat-8 band ratios have been found useful for the alternation
detection. They were used to map argillic, phyllic, propylitic
alternations in epithermal deposit, porphyry copper deposit
developing alteration mineral indices including OH-bearing
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minerals index, pyrophyllite index, kaolinite index, alunite in-
dex, and calcite index [26], [29], [30], [41]-[43]. Machine
learning approaches using Hyperion imagery and field data on
alteration mapping were reported for Darrehzar porphyry copper
deposit for detecting propylitic, argillic, phyllic alteration zones,
where neural network (NN) and support vector machine (SVM)
classified the alteration zone with accuracies ranging from 78%
to 90% [27], [28].

Aerial hyperspectral images were also used to detect hy-
drothermal alteration zones. Molan et al. [32] mapped hy-
drothermal alteration minerals of Cu-Au porphyry system us-
ing the matched filtering algorithm on Hymap hyperspectral
images with 56% accuracy. Tripathi and Govil [33] employed
AVIRIS-NG hyperspectral images to map the distribution of clay
and iron oxide minerals based on spectral angle mapper (SAM)
and spectral feature fitting algorithms. Jakob et al. [34] used
VNIR hyperspectral images acquired from UAV to classifying
altered shale, gossan, vegetation, concrete, massive sulfide, and
river sediment at abandoned mines in Spain and Czech Re-
public. Kirsch et al. [35] used VNIR-SWIR-LIR UAV images
and ground truth data and classified host rocks and alteration
minerals including white mica, chlorite, kaolinite, and calcite
employing SAM classification.

Ground-based spectroscopic analyses for alteration mineral
identification were also reported. Taylor [37] detected hydrother-
mal alteration minerals including chlorite, actinolite, talc, micas,
kaolinite, dolomite, siderite, calcite, and goethite from drilling
core samples using commercial software with R? ranging from
0.01 t0 0.45. Calvin and Pace [39] classified aluminum phyllosil-
icates, Fe-Mg phyllosilicates, epidote, and silicate minerals from
drilling core samples using analytical spectral devices (ASD)
mineral identification software. Kruse [36] spectroscopically
analyzed kaolinite, illite, chlorite, and montmorillonite based on
SAM and linear spectral unmixing algorithms. Acosta et al. [40]
classified gypsum, muscovite, and chlorite in drilling cores for
mineralized area based on random forest (RF) and SVM using
mineralogical analysis and VNIR-SWIR hyperspectral data.

In a natural condition, the alteration minerals are mixed with
rock forming minerals at various quantities, and, thus, detection
of specific alteration minerals by spectrometers is dependent
on the spectral absorption by specific minerals under various
mixture conditions. However, the previous studies did not con-
sider spectral signals associated with mineral combination and
quantity of alteration minerals [27], [28], [32], [34], [35], [37],
[39], [40]. Moreover, most of the previous studies rely on the
spectral libraries regardless of the fact that the natural occur-
rence of mineral is beyond the scope of library collections [30],
[33], [36], [41]-[43]. This study introduces spectral indices for
hydrothermal mineral detection with consideration of mineral
combination at various amount for sericite, chlorite, pyrophyl-
lite, and granite, which are the representative alteration minerals
of phyllic, propylitic, advanced argillic hydrothermal alterations,
and rock forming minerals. The definition of sample minerals
and granite was analyzed by X-ray diffraction (XRD) analysis
of microscopic observation. The spectral variations of target
samples at various proportion of mineral mixture with granite
was analyzed. The spectral variables were selected by a RF
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model, and from which the indices were derived by least absolute
shrinkage and selection operator (LASSO) logistic regression
models. The RF classification and LASSO logistic regression
models were validated with both experimental samples and
spectral libraries for the assessment of real-world application.

II. MATERIALS AND METHODS
A. Sample Preparation and Preprocessing

To control the variations in spectral signals manifested by
variations in weight percent of alteration minerals including
sericite, chlorite, and pyrophyllite mixed with major felsic ig-
neous rock forming minerals, the representative samples of those
minerals and granite samples were powdered with Vibrating
Cup Mill Pulverisette 9. The powered samples were then sieved
with 200 mesh sieve to remove granulated particle effect [44].
The preprocessed samples were mixed at various weight percent
with powered granite samples (see Table I). The proportion of
an individual mineral and granite sample is controlled at 5%
interval from 0 to 100%. For the case of two or more combination
of the alteration minerals, the weight percent of granite was set
to 60 wt.% where the rest 40 wt.% was shared by alteration
minerals. The total number of samples used in this study was
105 including 61 for individual alteration mineral, 21 for two
alteration mineral combination, and 21 for the three alteration
mineral cases (see Table I).

B. Validation of Alteration Mineral and Granite Samples

The validation of alteration minerals used in this study was
conducted by X-ray diffraction analysis. XRD is commonly
used for mineral identification in geological applications [45].
The X-ray diffraction pattern of the alteration mineral samples
was acquired by Rigaku Ultima IV XRD with measurement
condition of Cu-Kal(1.5406 A), 30 mA, 40 kV at 0.02 interval.
The XRD pattern was analyzed by Match! Software (Crystal
Impact). A thin section was made from the granite sample and
microscopically observed. The microscopic analysis identified
major rock forming minerals and their proportion in the granite
sample, and the granite sample was validated based on mineral
proportion.

C. Spectroscopic Analysis

The spectral reflectance of samples was acquired by ASD Lab-
spec 5100 spectrometer. The spectrometer acquires reflectance
spectra ranging 350-2500 nm at 3—6 nm resolution. The 350-
2500 nm spectral bands are commonly used for characterization
of mineral properties such as color, chemical bonding, and
chemical component based on absorption features and spectral
patterns [38], [46]-[48]. The spectroscopic analysis has been
widely used for mineral exploration due to its advantages on
nondestructive and prompt acquisition of analysis [23], [39],
[47], [49].

The reflectance spectra of powered samples were measured at
the mug-light mode five times for each data and averaged. Then,
the spectra were smoothed by the Savitski—Golay algorithm
using Unscrambler X software to remove noise. The reflectance
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TABLE I

SAMPLE PROPORTION (WT. %) OF ALTERATION MINERALS AND GRANITE USED IN THIS ARTICLE

Case *Gra(wt.%) *Seri(wt.%) Case Gra(wt.%) *Chlo(wt.%) Case Gra(wt.%) *Pyro(wt.%)
1 100 0 22 100 0 43 100 0
2 95 5 23 95 5 44 95 5
3 90 10 24 90 10 45 90 10
4 85 15 25 85 15 46 85 15
5 80 20 26 80 20 47 80 20
6 75 25 27 75 25 48 75 25
7 70 30 28 70 30 49 70 30
8 65 35 29 65 35 50 65 35
9 60 40 30 60 40 51 60 40
10 55 45 31 55 45 52 55 45
11 50 50 32 50 50 53 50 50
12 45 55 33 45 55 54 45 55
13 40 60 34 40 60 55 40 60
14 35 65 35 35 65 56 35 65
15 30 70 36 30 70 57 30 70
16 25 75 37 25 75 58 25 75
17 20 80 38 20 80 59 20 80
18 15 85 39 15 85 60 15 85
19 10 90 40 10 90 61 10 90
20 5 95 41 5 95 62 5 95
21 0 100 42 0 100 63 0 100
Case Gra(wt.%) Seri(wt.%) Chlo(wt.%) Pyro(wt.%) Case Gra(wt.%) Seri(wt.%) Chlo(wt.%) Pyro(wt.%)
64 60 35 5 0 85 60 25 10 5
65 60 35 0 5 86 60 25 5 10
66 60 5 35 0 87 60 10 25 5
67 60 5 0 35 88 60 10 5 25
68 60 0 35 5 89 60 5 25 10
69 60 0 5 35 90 60 5 10 25
70 60 30 10 0 91 60 20 20 0
71 60 30 0 10 92 60 20 0 20
72 60 10 30 0 93 60 0 20 20
73 60 10 0 30 94 60 20 15 5
74 60 0 30 10 95 60 20 5 15
75 60 0 10 30 96 60 15 20 5
76 60 30 5 5 97 60 15 5 20
77 60 5 30 5 98 60 5 20 15
78 60 5 5 30 99 60 5 15 20
79 60 25 15 0 100 60 20 10 10
80 60 25 0 15 101 60 10 20 10
81 60 15 25 0 102 60 10 10 20
82 60 15 0 25 103 60 15 15 10
83 60 0 25 15 104 60 15 10 15
84 60 0 15 25 105 60 10 15 15

*Gra = Granite, Seri = Sericite, Chlo = Chlorite, Pyro = Pyrophyllite
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TABLE II
NUMBER OF SAMPLE AND LIBRARY SPECTRA USED FOR MODEL DEVELOPMENT AND VALIDATION
# of Sericite Spectra # of Chlorite Spectra # of Pyrophyllite Spectra
Sericite 5% 44 Chlorite 5% 44 Pyrophyllite 5% 44
Sericite 10% 39 Chlorite 10% 39 Pyrophyllite 10% 39
Sericite 15% 34 Chlorite 15% 34 Pyrophyllite 15% 34
Sericite 20% 29 Chlorite 20% 29 Pyrophyllite 20% 29
Sericite 25% 24 Chlorite 25% 24 Pyrophyllite 25% 24
Sericite 30% 19 Chlorite 30% 19 Pyrophyllite 30% 19
Sericite 35% 20 Chlorite 35% 20 Pyrophyllite 35% 20
Sericite 40% 20 Chlorite 40% 20 Pyrophyllite 40% 20
Sericite 45% 20 Chlorite 45% 20 Pyrophyllite 45% 20
Sericite 50% 20 Chlorite 50% 20 Pyrophyllite 50% 20
Sericite 55% 20 Chlorite 55% 20 Pyrophyllite 55% 20
Sericite 60% 20 Chlorite 60% 20 Pyrophyllite 60% 20
Sericite 65% 20 Chlorite 65% 20 Pyrophyllite 65% 20
Sericite 70% 20 Chlorite 70% 20 Pyrophyllite 70% 20
Sericite 75% 20 Chlorite 75% 20 Pyrophyllite 75% 20
Sericite 80% 20 Chlorite 80% 20 Pyrophyllite 80% 20
Sericite 85% 20 Chlorite 85% 20 Pyrophyllite 85% 20
Sericite 90% 20 Chlorite 90% 20 Pyrophyllite 90% 20
Sericite 95% 20 Chlorite 95% 20 Pyrophyllite 95% 20
Sericite 100% 20 Chlorite 100% 20 Pyrophyllite 100% 20
Sericite Library 63 Chlorite Library 81 Pyrophyllite Library 24
Total 532 Total 550 Total 493

spectra were transformed with Hull-Quotient correction to an-
alyze absorption features of samples [47], [50]. The spectral
analysis was performed by ENVI 4.8 and The Spectral Geologist
7.5(TSG 7.5) software with United States Geological Survey
(USGS) and Jet Propulsion Laboratory (JPL), NASA ASTER
spectral library.

D. Classification Model Development

1) Calibration and Validation Data Selection: A total of
1120 spectra at various proportion of minerals mixture were
used for spectral analysis and derivation of mineral index (see
Table IT). Moreover, 738 mineral spectra from JPL and USGS
spectral library were additionally employed for the model as-
sessment to rigorously test the index applicable for real cases
(see Table II) [51], [52]. The library mineral spectra include
rock forming minerals, hydrothermal alteration minerals, and
ore minerals, which are considered as most of possible min-
erals occur in a natural condition including alunite, bornite,
brucite, calcite, dolomite, chalcopyrite, chlorite, dickite, epi-
dote, fluorite, gypsum, illite, jarosite, kaolinite, montmorillonite,
muscovite, pyrophyllite, quartz, tourmaline, etc. The calibration

models were developed based on the 70% of sample spectra and
library spectra of target minerals, and the rest 30% of sample
spectra and library spectra of nontarget minerals were used for
validation.

2) Training Data Selection for Index Development by RF:
To assess detection efficiency of minimum mineral content for
hydrothermal alteration minerals including sericite, chlorite, and
pyrophyllite, this article classified 1858 mineral spectra based on
the RF algorithm with training set including various amount of
each mineral. Because the experimental spectra include mineral
samples with target mineral content ranging from 5 wt.% to 100
wt.% in addition to library spectra of various mineral, the 1858
spectra were classified into 20 RF models with training data at
an interval of 5 wt.% for each target mineral (see Table III).
Based on the accuracy assessment of the 20 RF models, the
optimal training set for target mineral detection was selected.
In the field condition, spectral signatures of minerals are often
affected by strong atmospheric absorption in some spectral
regions, which result in low signal-to-noise ratio in these regions
[53]. Therefore, this study excluded the major atmospheric
absorption bands for development of RF and LASSO-logistic
regression.



SHIM et al.: CONTENT CONTROLLED SPECTRAL INDICES FOR DETECTION OF HYDROTHERMAL ALTERATION MINERALS

TABLE III
ACCURACY ASSESSMENT OF RF CLASSIFICATION ON VARIOUS PROPORTION OF SERICITE, CHLORITE, AND PYROPHYLLITE

Sericite Model
Sericite data #: 532

Chlorite Model
Chlorite data #: 547

Pyrophyllite Model
Pyrophyllite data #: 493

Training Non-sericite data #: 1326 Non-chlorite data #: 1326 Non-prophyllite data #: 1365

Set

Overall Omission ~ Commission Overall Omission ~ Commission Overall Omission ~ Commission
Accuracy[%]  Error[%] Error[%] Accuracy[%]  Error[%] Error[%] Accuracy[%)]  Error[%] Error[%)]

5 wt.% 97.5 2.3 2.6 98.5 4.0 0.5 97.0 3.7 2.7
10 wt.% 95.5 9.8 2.3 95.2 10.4 2.5 95.6 11.2 1.9
15 wt.% 94.0 16.5 1.8 93.0 18.8 2.1 93.7 18.3 2.1
20 wt.% 91.6 25.9 1.4 91.7 24.5 1.6 90.7 28.2 2.4
25 wt.% 90.0 31.2 1.4 90.3 29.3 1.6 89.3 343 2.1
30 wt.% 88.3 353 2.3 88.8 33.6 1.9 88.4 38.3 2.0
35 wt.% 87.5 38.5 2.1 87.9 37.3 1.5 87.5 41.4 2.1
40 wt.% 86.7 41.5 2.0 86.6 40.6 2.1 86.7 45.8 1.6
45 wt.% 86.0 43.4 2.2 85.5 45.0 1.8 85.4 49.9 1.9
50 wt.% 85.3 48.7 1.1 84.2 47.7 24 84.6 52.9 1.9
55 wt.% 83.0 52.8 2.6 82.7 53.6 2.2 84.0 55.8 1.7
60 wt.% 82.8 57.0 1.3 82.4 55.8 1.7 83.0 59.0 1.8
65 wt.% 81.3 60.5 1.9 81.6 57.4 2.1 82.0 64.5 1.2
70 wt.% 80.5 63.5 1.9 80.1 62.5 2.1 81.4 68.2 0.7
75 wt.% 79.5 67.9 1.5 79.9 65.8 1.1 80.4 72.2 0.6
80 wt.% 78.5 72.9 0.8 78.4 70.6 1.2 79.3 76.7 0.4
85 wt.% 77.4 74.4 1.8 77.4 74.0 1.1 78.3 81.3 0.1
90 wt.% 76.5 78.6 1.4 75.9 78.4 1.4 77.1 85.4 0.3
95 wt.% 75.5 82.1 1.4 75.6 81.2 0.8 76.1 90.1 0.1
100

y 74.1 87.8 1.1 73.9 86.5 0.9 75.4 92.5 0.1
wt.%
Library 73.6 85.0 2.9 74.1 85.4 1.1 75.2 93.3 0.0

The RF algorithm is one of the most used machine learning
algorithms that are based on ensemble learning for classifi-
cation and regression analyses [54]-[56]. It provides variable
importance assessment by the Gini index and mean decrease
accuracy [57]. The Gini index, also called impurity index, is
used for testing how important a viable is in a decision tree.
The higher the Gini index, the more important the variable will
be in constructing decision trees. The mean decrease accuracy
evaluates the accuracy reduction by excluding a variable each
time, where the more decrease in accuracy indicates a more
important variable [58]. Tree ensembles are constructed based
on bootstrap, which uses random sampling on both samples and
variables [54]. The RF selects 2/3 of samples as training set
(known as “in-bag”) and the rest samples (known as “out-of-
bag”) as test set, and evaluates the classification accuracy by
cross-validation [54]. The randomly selected subset of variables
is constructed by user-defined number of features (“Mtry”), and
the model grows as user-defined number of trees (“Ntree”). The
final classification concludes based on the majority votes of
all trees. This study used 500 for Ntree and square root of the
number of input variables for Mtry [59], [60].

3) Logistic Regression With LASSO: Machine learning al-
gorithms often outperform other regression models. However,
the classifiers are not shared by different case studies. To de-
velop a more generalizable model, the training data selected
by RF model were used to build mineral indices from logistic
regression models. The models were then tested by the least
absolute shrinkage and selection operator. The most useful
mineral indices for target mineral detection were analyzed by
LASSO, and the logistic regression models using the selected
spectral variables for sericite, chlorite, and pyrophyllite were
derived [61]. LASSO is a popular penalized method that can
perform parameter estimation and variable selection simulta-
neously. LASSO produces a sparse model by shrinking some
coefficients and setting most other coefficients to zero. In other
words, the LASSO algorithm removes the irrelevant variables
(wavelengths in our application). Hence, LASSO produces an
interpretable model with only relevant variables, and it also
shows high prediction accuracy in many examples [62], [63].

We applied the LASSO method to the logistic regression
model for mineral classification. The LASSO regression coeffi-
cients in logistic regression can be obtained by minimizing the
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Fig. 1. XRD result of sericite, chlorite, pyrophyllite, and granite.
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high silicate solutions and quartz is the main gangue mineral,
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where the left term is the negative log-likelihood in logis-
tic regression and the right term is the LASSO penalty. The
lambda is the regularization parameter that controls the model
complexity, which is often called the tuning parameter to be
selected additionally. We select the tuning parameter lambda
by a ten-fold cross validation. We used the glmnet() package
in R for estimating LASSO logistic regression model. Like the
logistic regression, the mineral classification can be done by the
estimated probability from the LASSO logistic regression.

The spectral indices for detection of sericite, chlorite, and
pyrophyllite were derived by logistic regressions with LASSO
using training data selected by RF models based on 70% of sam-
ple spectra for each case. The derived indices were validated with
30% of sample spectra and spectral library, and the accuracy of
the index for each mineral content was analyzed for assessment
of efficiency of mineral detection.

III. RESULT AND DISCUSSION
A. Validation of Target Mineral and Granite Samples

The alteration mineral samples used in this article were
validated with the XRD analysis. The XRD analysis of the
sericite samples showed peaks of muscovite and quartz (see
Fig. 1). The sericite is a commonly used term for fined grained
white micas produced by hydrothermal alteration and made of
muscovite, illite, or paragonite [64]. The XRD peaks confirms

the sericite commonly occurs with quartz. The XRD peaks for
chlorite samples indicated pure chlorite samples (see Fig. 1).
Pyrophyllite sample showed XRD peaks of pyrophyllite as major
component with quartz as a minor. The XRD results found
plagioclase, alkali-feldspar, quartz, biotite, and muscovite for
granite sample, which are the major rock forming minerals of
granite (see Fig. 1).

The additional validation of granite sample based on mi-
croscopic observation confirmed the XRD result where QAP
diagram defined the sample as a granite with quartz 42%, alkali-
feldspar 62%, and plagioclase 38% ([65], Fig. S-1).

B. Spectral Characteristics of Target Mineral Samples

1) Spectral Characteristics of Granite: The granite sample
is composed of diverse rock forming minerals, such as feldspar,
plagioclase, quartz, biotite, and muscovite, which is common in
granite in general. The spectral characteristics of rock forming
minerals are featureless in the VNIR-SWIR region [see Fig. 2(a)
and (b)] other than muscovite. The spectra of the sample also
show featureless spectral characteristics with minimal overlap
with muscovite spectrum. It indicates the content of muscovite in
the granite sample is minimal. Therefore, the spectral signals of
hydrothermal alteration minerals can be easily distinguishable
from granite spectra [see Fig. 2(a) and (b)].

2) Spectral Characteristics of Sericite Samples: The spec-
tral characteristics associated various mineral content mixed
with granite samples were analyzed. The reflectance and
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Fig. 2. Reflectance (a), (c), (e), and (g) and Hull-Quotient corrected (b), (d), (f), and (h) spectrum of granite sample plotted with library spectra of major rock
forming minerals, and sericite, chlorite, and pyrophyllite at various weight percentage mixed with granite samples.

hull-quotient spectra of sericite samples with content 0 wt.%,
520 wt.%, 25-40 wt.%, 45-60 wt.%, 65-80 wt.%, 85-95
wt.%, and 100 wt.% showed systematic variations in absorption
features at 1410 nm of OH, 1910 nm of OH/H50, 2210 nm of
Al-OH, and doublet absorptions at 2342—2435 nm of white mica.

The sericite spectrum of 100% samples is identical with the
library spectrum confirming the mineral identity. As the sericite
content decreased, absorption depths at 1410 nm, 1910 nm, 2210
nm, and 2342-2435 nm decreased accordingly. Notably, the
absorption features at 5-15 wt.% sericite content still showed
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Hull-Quotient corrected spectra of granite and two types of hydrothermal alteration minerals mixed in various contents red for sericite and chlorite, green

for chlorite and pyrophyllite, blue for sericite and pyrophyllite, and black for library reference spectra.

absorption features of white mica and HoO compared to 0%
sample spectrum [see Fig. 2(c) and (d)].

3) Spectral Characteristics of Chlorite Samples: The re-
flectance and hull-quotient spectra of chlorite samples at 100
wt.% showed distinctive absorption features at 1395 nm of OH,
1990 nm of OH/H50, 2245 nm of Fe-OH, and 2325 nm of
Mg-OH [47], [66]. The chlorite sample spectrum and library
spectrum were identical, confirming the mineral identity in
addition to XRD data. As the mineral content decreased, the
absorption features weakened systematically. The absorption
features of OH/H2O disappeared at 5—15 wt.%, and the absorp-
tion features of OH, Fe-OH and Mg-OH were barely visible at
5-15 wt.% compared to 0 wt.% spectrum [see Fig. 2(e) and (f)].

4) Spectral Characteristics of Pyrophyllite Samples: The re-
flectance and hull-quotient spectra of pyrophyllite samples at
100 percent showed distinctive features at 1395 nm of OH, 1910
nm OH/H>0, 2165 nm of Al-OH, and 2319 nm of pyrophyllite
characteristic spectra [67]. The pyrophyllite sample spectrum
were identical to the USGS spectral library, which confirms
the XRD data. As the content of pyrophyllite decreased, the
absorption features weakened systematically. The absorption
features of OH/H,O disappeared at 5—-15 wt.%, and those of
OH, AI-OH and characteristic feature of pyrophyllite weakly
survived at 5-15 wt.% compared to 0 wt.% spectrum [see
Fig. 2(g) and (h)].

5) Spectral Characteristics of Granite Mixed With Two or
Three Types of Hydrothermal Alteration Minerals: The spec-
tral characteristics of mixtures of two or three hydrothermal
alteration minerals from 5% to 35% with granite samples were
analyzed. The mixtures of sericite and chlorite samples showed
systematic decrease of absorption features of the two minerals
as a decrease in weight percent (see Fig. 3). The absorption

features of sericite at 2210 and 2435 nm were strong at 35 wt.%
and barely visible at 5 wt.%. The absorption features of chlorite
were observed at 2245 and 2325 nm from 35 wt.% to 5 wt.%
(see Fig. 3). When both were at 20 wt.%, the absorption features
of both minerals were present at 2210, 2245, 2325, and 2435
nm. The mixtures of chlorite and pyrophyllite also showed
systematic decrease in absorption depth which survived at 5
wt.% at 2245 nm for chlorite and 2165 nm for pyrophyllite.
The mixtures of sericite and pyrophyllite also showed the same
pattern (see Fig. 3).

The mixtures of three alteration minerals also showed system-
atic changes in absorption features of the three minerals from 20
wt.% to 5 wt.% (see Fig. 4). There were distinctive differences
in absorption positions changing in absorption features with
their content. Minimum content of 5 wt.% is detectable by
the spectrometer. To summarize, based on the wavelengths of
the absorption features, this study tested these spectral bands
for classifying the mineral mixtures using RF classification
algorithm and propose mineral indices that are best for the
classification. Furthermore, these indices were included in a
LASSO-logistic regression analysis to detect the trace of the
three minerals with a minimum content of 5 wt.%.

C. Training Data Selection for Detection Models of
Hydrothermal Alteration Minerals

A classification model is commonly developed based on the
training data and, thus, the quality of the training data is the most
critical factor for target detection. Therefore, optimal selection
of the training data is required for model development. This
article tested the classification accuracy using training data from
library spectra for total of 21 training cases to select optimal
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Fig. 4.

Hull-Quotient corrected spectra of granite and all three types of target hydrothermal alterated minerals mixed in various contents. Red vertical line for

sericite absorption depth, green for chlorite absorption depth, blue for pyrophyllite absorption depth.

training data for detection of each mineral at 5 wt.% or more.
The classification results were assessed by detection accuracy
of each alteration mineral (omission error) and nonalteration
mineral from the library data (commission error). Finally, the
optimal training dataset was defined for the derivation of mineral
indices. The RF classification was based on 70% of each mineral
data, and the rest 30% and library data were used for validation.

The results showed that all classification model showed good
accuracy on detection of nontarget minerals with the commission
error less than 3%. It indicated that the model is good enough
for exclusion of other types of minerals in the library data. The
overall accuracy of the classification models was over 70% for
all cases (see Table IIT). However, this number was significantly
biased by low commission error. Omission error is misclassi-
fication of target mineral into nontarget mineral. Training data
strongly affect the omission error because if the model is trained
mostly with high mineral content, it tends to omit the low content
samples as they were weighted less in the model The omission
error was large when the training data was constructed with
the library data. The omission errors range from 85% to 93.3%
for all three minerals. It indicates that the model cannot detect
any real-world samples if the target mineral is mixed with other
minerals. The omission error was acceptable when the training
data were constructed from 25 wt.% or more, where the error was
31.2% for sericite, 29.3% for chlorite, and 34.3% for pyrophyl-
lite, respectively (see Table III). The best classification results
had an overall accuracy higher than 97% when the training data
was constructed from the samples with 5 wt.% or more including
the library data. The omission error for those models was 2.3%
for sericite, 4.0% for chlorite, and 3.7% for pyrophyllite. With

more mineral mixture, the omission error decreased slightly. An
explanation is the low mineral content is more easily omitted by
the model trained with high mineral content. Unless the model
is specifically trained with low mineral content, it will not detect
some minerals if their portion is lower than a certain threshold. It
concludes that the model trained by the data including all mineral
samples and library data would have the highest efficiency in
target mineral detection. Therefore, this article derived mineral
indices for target mineral detection using the training data with
mineral samples with 5 wt.% or more including the library data
based on LASSO-logistic regression model.

The contribution of the spectral bands at different wavelengths
to the classification was evaluated as Gini index. The higher the
index, the more important the variable is. From Fig. 5, we can
see the most important bands for pyrophyllite are the bands near
the absorption feature of Al-OH at 2158-2177 nm. The most
important bands for Sericite detection include the features of Al-
OH at 2158-2177 nm and 2196-2222 nm. The important bands
for chlorite are located at 2293-2336 nm by Mg-OH and 2196—
2222 nm by AI-OH. These absorption features have minimal
overlap each other where the absorption features are valid with
5 wt.% content.

D. Detection Index of the Hydrothermal Alteration Minerals
From LASSO Logistic Regression

The RF model had the best accuracy with training data at 5
wt.% mineral content. The mineral indices of sericite, chlorite,
and pyrophyllite with detection capabilities of 5 wt.% or more
mineral content were derived from LASSO-logistic regression
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TABLE IV
ACCURACY ASSESSMENT OF TRAINING AND VALIDATION DATA FOR INDICES DERIVED FROM LASSO-LOGISTIC REGRESSION MODEL

Target Minerals
Accuracy Assessment Sericite Chlorite Pyrophyllite
Validation Set Overall accuracy[%] 95.3 94.1 99.5
Validation Set Omission Error[%] 13.9 14.1 2.0
Validation Set Commission Error[%] 1.2 2.7 0.0
RMSE of Validation Set 0.28 0.30 0.24
R? of Validation Set 0.62 0.57 0.71

based on the training data with mineral content ranging from 5
wt.% to 100 wt.%. The model was constructed based on 70%
of the mineral spectra including the sample spectra of this study
and library spectra, and the rest 30% were used for validation
of the indices. To evaluate if the trained model can work with
real-world cases, the nontarget mineral spectra were used to
assess the performance of the models.

As a result, the detection indices were derived by employing
spectral variables of 82 bands for sericite, 132 bands for chlorite,
and 84 bands for pyrophyllite (see Table S-1). The spectral
variables of sericite index include Al-OH absorption bands from
2148 to 2248 nm and sericite absorption bands from 2339 to
2447 nm. Those of chlorite indices include Fe-OH absorption
bands from 2222 to 2282 nm and Mg-OH absorption bands
from 2295 to 2379 nm. Those of pyrophyllite indices include
Al-OH absorption bands from 2149 to 2195 and pyrophyllite

absorption from 2303 to 2344 nm. The overall accuracy of the
models for calibration data were from 93.6% for chlorite to
99.1% for pyrophyllite and the R? values were from 0.65 for
chlorite to 0.71 for pyrophyllite (see Table IV). The models
showed excellent accuracy on detection on nontarget minerals
with commission error from 0.0% to 3.1%, and the detection
error of target minerals were from 3.1% to 14.1%. All assessment
parameters of training data showed that the models performed
well in detection of target minerals with various weight content.

The models’ accuracy assessment on validation data also
showed an outstanding model performance with the overall
accuracy of 94.1% to 99.5%, which was even better than the
cross-validation in the training data. The detection error of
the models on nontarget minerals was 0.0% to 2.7% and that
on target minerals was 2.0% to 14.1%. The R? values of the
models on validation data were 0.57 to 0.71 (see Table IV).
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The models’ performance coincided well with the training data
showing excellent statistical significance.

This article introduced the quantity-controlled detection in-
dices of sericite, chlorite, and pyrophyllite, which are represen-
tative alteration minerals of phyllic, propylitic, and advanced
argillic hydrothermal alteration, respectively. While the previous
studies did not provide detection threshold in terms of weight
content [27], [28], [32], [34], [35], [37], [39], [40], this study
defined the detection threshold at 5 wt.% for each target min-
eral. The quantity-controlled indices provide higher reliability
on real-world applications as the models were both tested by
machine learning and LASSO-regression analysis with high
statistical significance. Moreover, the models were tested not
only for the target minerals, but also for the nontarget minerals
resulting higher applicability in the real-world cases. Given
the fact that the models were constructed with nonatmospheric
bands, it can be used not only for ground-based spectroscopic
analyses but also on the hyperspectral images acquired from
UAVs. We expect that these models will be widely adopted
in mineral exploration applications because of the association
of phyllic, propylitic, advanced argillic alteration zones with
high-value resources such as epithermal gold deposit, iron-
oxide-copper-gold deposit, volcanogenic massive sulphide, and
porphyry copper ore deposits.

IV. CONCLUSION

This article introduces spectral indices for hydrothermal min-
eral detection including sericite, chlorite, and pyrophyllite, the
representative alteration minerals of phyllic, propylitic, and ad-
vanced argillic hydrothermal alterations, with consideration of
mineral combination at various amount of mixture with granite,
the representative rock containing major rock forming minerals.
The XRD analysis and microscopic observation confirmed the
identity of mineral and granite samples where sample minerals
contain quartz as a minor mineral. The absorption depths of
target minerals systematically decreased with decrease in the
mineral content, while the decrease patterns varied by the min-
eral types. The absorption features of sericite at 2210 and 2435
nm are clearly detectable at 35 wt.% and barely diminished at
5 wt.%. The absorption features of chlorite were detectable at
2245 and 2325 nm from 35 wt.% to 5 wt.%. The absorption
features of pyrophyllite at 2165 nm survived at all levels of the
mineral content.

The RF model is used to select the most effective spectra for
the target mineral content detection ranging from 35% to 5%.
The results showed that the commission error of all classification
model was very low less than 3%. It indicated that the model
is good enough for exclusion of other types of minerals in the
library data. However, the omission error was enormously large
when the training data was constructed with the mineral samples
with higher than 30 wt.%. The best classification model for each
of the three minerals showed overall accuracy higher than 97%
when the training data were selected from the samples with
5 wt.% or more. It concludes that the training data using the
mineral samples with 5 wt.% or more would have the highest
efficiency in target mineral detection.
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The spectral indices for the target mineral detection were
derived by employing spectral variables of 82 bands for sericite,
132 bands for chlorite, and 84 bands for pyrophyllite. The
spectral variables of sericite indices include Al-OH absorption
bands from 2148 to 2248 nm and sericite absorption bands
from 2339 to 2447 nm. Those of chlorite indices include Fe-OH
absorption bands from 2222 to 2282 nm and Mg-OH absorption
bands from 2295 to 2379 nm. Those of pyrophyllite indices
include Al-OH absorption bands from 2149 to 2195 nm and
pyrophyllite absorption from 2303 to 2344 nm. The models’
performance was excellent showing the overall accuracy higher
than 93.6% with R* values ranging from 0.57 to 0.71.

This article introduced the quantity-controlled detection in-
dices of sericite, chlorite, and pyrophyllite working at a mineral
content higher than 5 wt.%. The quantity-controlled indices
provide higher reliability on real-world applications as they
were tested with the target minerals as well as the nontarget
minerals. Given the fact that the models were constructed with
nonatmospheric bands, it can be used not only for ground-based
spectroscopic analyses but also on the hyperspectral images
acquired from UAVs.
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