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Abstract—The unprecedented availability of remote sensing data
from different complementary Sentinel missions provides increas-
ing opportunities to alleviate the spatial limitations of Sentinel-3
(S3) from an intersensor perspective. Nonetheless, effectively ex-
ploiting such intersensor synergies still raises important challenges
for super-resolution (SR) algorithms in terms of operational data
availability, sensor alignment and substantial resolution changes,
among others. In this scenario, this article sets a new SR framework
for spatially enhancing S3 ocean and land color instrument (OLCI)
products by taking advantage of the higher spatial resolution of
the Sentinel-2 (S2) multispectral instrument (MSI). To achieve
this goal, we initially study some of the most important deep
learning-based approaches. Then, we define a novel Level-4 SR
framework which integrates a new convolutional neural network
specially designed for super-resolving OLCI data. In contrast to
other networks, the proposed SR architecture (termed as SRS3)
employs a dense multireceptive field together with a residual chan-
nel attention mechanism to relieve the particularly low spatial
resolution of OLCI while extracting more discriminating features
for the large spatial resolution differences with respect to MSI. The
experimental part of the work, conducted using ten coupled OLCI
and MSI operational data, reveals the suitability of the presented
Level-4 SR framework within the Copernicus programme context
as well as the advantages of the proposed architecture with re-
spect different state-of-the-art models when spatially enhancing
OLCI products. The related codes will be publicly available at
https://github.com/rufernan/SRS3.

Index Terms—Convolutional nural network (CNN), level-4 data
processing, ocean and land color instrument (OLCI), sentinel-3
(s3), super-resolution (SR).

I. INTRODUCTION

OVER the last decades, the technological evolution of
air-borne and space-borne image acquisition instruments

has allowed to considerably improve the spatial resolution of
multispectral (MS) sensors in order to face new challenges and
societal needs by means of remote sensing (RS) images [1].
From the limited spatial resolution of the moderate resolution
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imaging spectroradiometer (MODIS) [2] and the medium reso-
lution imaging spectrometer [3], to the expanded spatial resolu-
tion of Landsat [4] and Sentinel-2 [5] instruments, multiple types
of RS images with different spatio-spectral features have been
successfully used in many valuable applications, such as crop
and urban mapping [6]–[8], natural hazards discovery [9], [10],
environmental management [11], [12], and detailed land-cover
analyses [13]–[15]. With these and other important tasks in
mind, the spatial resolution of remotely sensed imagery is often
a key factor to achieve better performances since the higher the
level of spatial details the more visual information is logically
available for consideration [16].

In general, improving the spatial resolution of RS data has
always been one of the most important concerns within the RS
community. Nonetheless, the physical limitations on the incom-
ing radiation when decreasing the pixel size beyond an specific
limit [17] together with the high cost and complexity of such
technology often make that earth observation (EO) programmes
opt to include different specialized satellites to cover different
spatial and spectral needs. The Copernicus programme is not an
exception in this regard. Being one of the most important EO
programmes, Copernicus [18] is a joint initiative of the European
Commission, the European Space Agency (ESA), the European
Member States and Agencies in order to provide global mon-
itoring information from space useful for environmental and
security applications. In order to ensure its operational provision,
seven complementary Sentinel missions have been planned as
well as several additional contributing missions [19].

Among all the programme resources, Sentinel-2 (S2) and
Sentinel-3 (S3) missions share special synergies since both fam-
ilies of dedicated satellites are focused on the global monitoring
of the earth surface using for this purpose mid-resolution and
high-resolution MS imagery. On the one hand, S2 [5] includes
two identical satellites (S2A and S2B) that incorporate the
multispectral instrument (MSI), which provides a total of 13
spectral bands (B01-B12) covering the wavelength region from
443 to 2190 nm of the electromagnetic spectrum, with an spatial
resolution ranging from 10 to 60 m. On the other hand, S3 [20]
also comprises a pair of satellites (S3A and S3B) that carry the
ocean and land color instrument (OLCI), which captures the
earth surface using 21 bands (Oa01-Oa21) in the spectral range
between 390 and 1040 nm, and an spatial resolution of 300 m.
From a general perspective, S2 and S3 missions are able to
provide operational products of vegetation, soil, and water cover.
However, the existing spatial-spectral differences between both
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MS instruments make their corresponding data products more
effective for specific RS applications [21]. Whereas the OLCI
sensor is optimized to measure spectral features focused on
oceans, inland waterways, and coastal areas [22], the substan-
tially higher spatial resolution of MSI makes S2-derived prod-
ucts more suitable for land cover characterization tasks [23].

Despite the fundamental spatial differences between S2 and
S3 missions, the unprecedented availability of Sentinel data [24],
[25] together with the constant development of the digital im-
age processing technology provide widespread opportunities to
overcome the spatial limitations of the corresponding opera-
tional products from an image processing-based perspective.
Specifically, it is possible to distinguish between two general
paradigms when enhancing remotely sensed imagery [26]: pan-
sharpening and super-resolution (SR). Whereas pansharpening
algorithms [27] work for merging a given high-resolution (HR)
panchromatic (PAN) image and a low-resolution (LR) MS image
in order to generate a HR version of the input MS data, SR
techniques [28] provide a more general framework since the
spatial relationships between the HR and LR domains can be
explicitly specified into an imaging model or even learned from
the own data.

The increasing popularity of pan-sharpening and SR tech-
niques within the Copernicus programme context exemplify the
success of these two image enhancing paradigms for Sentinel
data. For instance, Vaiopoulos and Karantzalos evaluated in [29]
different pan-sharpening algorithms to spatially enhance the
red-edge, narrow-near-infrared and short-wave-infrared bands
of S2, using the HR information provided by the 10 m bands.
Park et al. [30] also proposed in some modifications over this
straightforward pan-sharpening scheme to optimize the syn-
thesis of a simulated PAN image from the 10 m bands of
S2. Notwithstanding the good performance of pan-sharpening
techniques, they have the important constraint of requiring a
real or simulated PAN image as input, which may be difficult
to obtain from the operational perspective of Sentinel ground-
segment units [31]. Hence, other authors suggest using image
enhancing techniques based on the SR paradigm instead. For
example, it is the case of Lanaras et al. [32] who presented in a
signal reconstruction SR approach for S2 data that recovers HR
spatial details using a two-fold regularization term based on the
correlation between spectral channels and the image gradients
learned from the 10 m bands. Based on this idea, Paris et al. [33]
also proposed in an extension that makes use of a patch-based
regularization to promote the self-similarities of S2 images.

From the most traditional signal reconstruction methods to
the most recent learning-based approaches, different SR mech-
anisms have been successfully applied to spatially enhance RS
optical data [28]. However, deep learning-based SR methods
certainly represent the most successful trend to super-resolve
RS imagery [34] and, in particular, Sentinel products [35]. This
is primarily due to the great potential of convolutional neural
networks (CNNs) to uncover high-level features from complex
visual data. As a result, several SR methods based on CNNs
have been presented and tested in the context of the Copernicus
programme. A clear example can be found in, where Lanaras
et al. [36] defined a CNN model to effectively up-sample S2

products. Specifically, the authors focus their efforts on de-
veloping, for the first time in the literature, a CNN-based SR
algorithm optimized for S2 in order to super-resolve all the
bands to 10 m. Gargiulo et al. [37] also presented in a CNN
architecture specially designed for super-resolving S2 data by
introducing additional convolutional layers and a revisited loss
function.

In these and other relevant works, CNN-based SR models are
mainly used to spatially enhance S2 products from a Level-2 (L2)
data processing perspective because the MSI sensor acquires
some spectral bands at a more reduced spatial resolution than
others. However, one can find that there is a serious lack of
research on other related instruments, such as the OLCI sen-
sor, which could be super-resolved using CNNs at higher data
processing levels. While regular L2 SR data products are con-
strained by the physical properties of the acquisition instrument,
Level-3 (L3) and Level-4 (L4) products are able to provide
more powerful results since they combine multitemporal and
multisensor information to produce enhanced remotely sensed
imagery [38]. In other words, the spatial limitations of an spe-
cific instrument could be potentially relieved, without additional
costs, by using other complementary satellites together with im-
age enhancement and fusion tools. Some authors in the literature
have shown the viability of this idea. It is the case of Pouliot
et al. [39] who were able to super-resolve Landsat data using a
CNN model and S2 data for training. In the particular context of
Sentinel, one of the most important constraints when considering
S3 data is related to the limited spatial resolution of the OLCI
sensor, which eventually confines the usage of the available L2
S3 products to coarse RS image analyses [21]. Precisely, this is
the reason why the research community and industry, with the
EU support, are interested in developing enhanced operational
Sentinel data to deal with current and future societal challenges
and needs [24].

The growing development of L3 and L4 Sentinel products
exemplify this emerging trend. For instance, it is the case of
Wang and Atkinson who presented in [40] an spatio-temporal
fusion approach for S2 MSI and S3 OLCI data, which aims at
improving the availability of S2 imagery by taking advantage
of the substantially shorter S3 revisit time. In addition, Wu
et al. proposed in [41] combining multitemporal biophysical
information extracted from MODIS and the MSI sensor to detect
cotton plant diseases. Fernandez-Beltran et al. [42] developed a
multimodal fusion framework, which merge synthetic aperture
radar (from Sentinel-1) and S2 data to effectively conduct an
unsupervised land-cover categorization. Additionally, Palsson
et al. designed in [43] an intrasensor fusion approach for S2
data, which pursues to improve the spatial resolution of the
lowest resolution MSI bands. Other recent works, such as [14],
[44], also show the advantages of considering an intersensor
scheme to refine the available data products offered by Sentinel’s
operational chain.

With all these considerations in mind, CNN-based SR models
can play a fundamental role in relieving OLCI’s spatial limitation
while enabling the generation of L4 S3 data products using
the MSI imagery as spatial reference. However, this important
question has not yet been addressed in the literature, which is
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precisely the gap that motivates this work. Inspired by [36] and
[39], this research work focuses on the study and development
of CNN-based SR techniques to generate spatially enhanced
L4 OLCI products exploiting the synergies between the S2 and
S3 missions from an operational perspective. In this regard, it is
important to highlight that we use the term operational to indicate
that the intersensor information is only accessible for training
purposes, unlike regular pan-sharpening approaches. That is,
the spatial reference of the MSI sensor is only available when
training the models and then the SR process can be conducted
under demand within the S3 operational chain using exclusively
OLCI data.

In more details, this article has a two-fold objective. On the
one hand, we intend to set an SR framework for spatially enhanc-
ing OLCI data in order to provide practical recommendations
for actual Sentinel production environments. Considering the
spatial reference provided by S2, our initial objective is based
on testing to which extent the OLCI sensor can be effectively
super-resolved using different CNN-based SR architectures and
scaling ratios while maintaining certain performance improve-
ments with respect to a baseline interpolation. In this way, a very
valuable contribution consists in analyzing whether it is worth
super-resolving OLCI beyond a particular limit, having in mind
the important spatial differences between the OLCI and MSI
sensors. Note that this kind of study has not yet been conducted in
the literature and some important questions, such as what are the
most suitable CNN models for OLCI or what are their practical
limitations on generating L4 products, remain still unclear in the
context of the Copernicus programme. In addition, we aim at
designing an end-to-end CNN-based SR architecture (termed as
SRS3) optimized for upscaling S3 data products with particular
focus on the following aspects:

1) spatial improvements with respect to different standard
CNN-based SR networks;

2) preservation of discriminating features considering the
low spatial resolution of OLCI;

3) general applicability for operational data by covering mul-
tiple scaling scenarios according to spatial reference given
by MSI.

To achieve this goal, the newly proposed architecture effec-
tively integrates a dense multireceptive field together with a
residual channel attention mechanism to relieve OLCI’s spatial
limitations as well as MSI’s vast spatial differences. In summary,
the main innovative contributions of this article can be compiled
as follows.

1) We investigate the suitability of generating super-resolved
OLCI products using the MSI sensor of S2 as spatial
reference.

2) We develop an SR framework to super-resolve operational
OLCI products from an L4 perspective in actual produc-
tion environments.

3) We analyze the performance of different CNN-based mod-
els in the task of super-resolving OLCI data when consid-
ering up-scaling ratios closer to MSI.

4) We propose a new SR network (termed as SRS3) specially
designed to deal with the particularly low spatial resolution
of the OLCI sensor.

The remainder of this article is organized as follows. Section II
discusses some related works and also describes the considered
CNN-based SR networks. Section III details the proposed frame-
work and SR architecture, which has been specially designed
to spatially enhance operational S3 OLCI products from an
L4 perspective. In Section IV, a comprehensive experimental
assessment of the proposed methodology (in comparison with
other state-of-the-art CNN models) is conducted over a newly
defined multimodal database including S2 MSI and S3 OLCI
data. Finally, Section V concludes this article.

II. BACKGROUND

A. SR in Remote Sensing

Within the RS field, the SR process can be understood as an
inverse problem, which pursues to recover the loss of spatial in-
formation generated by the acquisition instrument when captur-
ing an aerial scene. That is, the continuous signal of the radiation
reflected by the earth surface is converted by the imaging sensor
to a discrete output image according to the technical features
of the optical system. Specifically, the acquisition process can
be typically defined as the composition of three operators, i.e.,
blurring (B), decimation (D), and noise (N ), as

ILR = D( B( IHR)) +N (1)

where IHR represents the continuous image scene and ILR is
the resulting discrete image captured by the RS instrument after
applying theB,D, andN operators. In details,B symbolizes the
initial blurring factor introduced by the optical system in order
to filter those frequencies beyond the nominal resolution of the
sensor. D is in charge of subsampling the blurred continuous
space in order to integrate all the radiation coming from an
specific area of the earth surface in a single pixel. Finally,
N represents the unavoidable perturbation that the imaging
sensor introduces according to its own optical limitations. These
three operators are specified in the technical description of the
acquisition instrument where B and N are typically defined as
Gaussian-like functions.

The main challenge when super-resolving RS imagery is
based on the intrinsic ill-posed nature of the problem together
with the special complexity of air-borne and space-borne optical
data. On the one hand, the degradation process, described by
(1), causes an unavoidable signal information loss that makes
multiple HR images to generate the same LR image. As a result,
SR methods have to assume strong image priors to constrain
the inverse nature of the problem. On the other hand, remotely
sensed images are typically full-focused shots with plenty of
spatial details, which enlarges the amount of high-frequency
that are lost in the acquisition process with respect to standard
imagery. Considering all these factors, the most critical problem
when super-resolving RS data is often generated by the lack
of actual ground-truth spatial information. Note that the final
objective consists in improving the resolution of the aerial scenes
beyond the sensor limits whatsoever and then higher resolution
images cannot be provided by the acquisition instrument itself.

From straightforward interpolation kernels, through image
reconstruction models, to more elaborated hybrid techniques,
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different approaches have been tested within the RS field to
enhance aerial scenes from an intrasensor perspective [28].
For instance, one of the most representative reconstruction ap-
proaches is the single-image version of the iterative back projec-
tion (IBP) [45]. The main idea behind IBP is based on refining
an initial guess of the super-resolved image (ISR) throughout an
iterative process where the reconstruction error between the ILR
and a low-resolution version of ISR is minimized. In details, the
reconstruction error on the (i)th iteration can be computed as
follows:

E(i) = ILR −D(B(I(i−1)
SR )) (2)

where I(i−1)
SR represents the super-resolved image at the previous

iteration. With I0SR initialized to an interpolated version of ILR,
the reconstruction error, given by (2), is iteratively reprojected
onto the current estimation of the super-resolved image until
a convergence condition is reached, with a maximum number
of iterations or a global threshold in the error value. Another
representative approach that has been also used to super-resolve
RS imagery is the transformed self-exemplars (TSE) [46]. The
idea behind this hybrid method is based on exploiting the self-
similarity property across scales to learn a mapping between LR
and HR patches without external training data. Specifically, TSE
allows geometric variations among scales in order to increase the
number of matches and then the final size of the SR dictionary.

In general, these and other unsupervised SR approaches have
the advantage of not requiring any HR training data, which may
certainly be a valuable feature in RS. However, their resulting
performance highly relies on the nominal spatial resolution of
the sensor since they generally work at a lower scale where more
spatial details are logically lost [28]. Precisely, this aspect can
be a very important drawback when super-resolving S3 optical
data due to the low spatial resolution of the OLCI sensor [20]. As
a result, the possibility of generating L4 super-resolved OLCI
products by using supervised CNN-based SR methods and the
S2 MSI sensor as spatial reference for training [39] becomes
a very attractive but still unexplored option that this article
pretends to shed light on. In this regard, the following section
reviews some of the most important SR networks.

B. CNN-Based SR

CNNs represent one of the most important supervised
paradigms in SR due to their great potential to uncover high-level
features from optical images. Consequently, different CNN-
based methods have been successfully employed to super-
resolve RS data. A pioneering contribution is the SR convo-
lutional neural network (SRCNN) introduced by Dong et al.
[47]. In details, the SRCNN approach initially up-scales ILR
to the target resolution by a bicubic interpolation as ĨLR and
extracts 33× 33 image patches. Then, a three-layer CNN is used
to learn the mapping between the interpolated LR and ground-
truth HR domains. From a conceptual perspective, these three
layers represent the following operations: 1) patch extraction, 2)
nonlinear mapping, and 3) high-resolution generation. The first
two layers make use of the rectified linear unit (ReLU) on the
filter responses, i.e., max(0,W ∗X + b), where W and b are

the filters and biases, respectively, ∗ is the convolution operator
and X represent the patches of ĨLR. The third layer is a regular
convolutional layer with filter responses W ∗X + b. Finally,
the mean square error (MSE) loss is used to train the network
parameters.

Although the traditional SR scheme was oriented to super-
resolve grey scale images, Dong et al. [47] showed the pos-
sibility of extending the standard SRCNN procedure to MS
images. Representing B the number of input and output bands,
two different options can be considered in this regard. On the
one hand, it is possible to train the SRCNN network using
a two-dimensional (2-D) input and output kernel over all the
bands. That is, each image band can be considered as a 2-D
input image with B = 1. On the other hand, another possibility
is based on using a 3-D input and output kernel to cover the
complete spectral range by setting B to the total number of
bands. Despite the potential of 3-D kernels, the substantial
computational complexity increase of this kind of convolutions
together with the curse of dimensionality problem make the use
of 2-D filters typically preferred under operational scenarios. A
related model extension is also presented in [48] where Dong
et al. reformulated the network design in order to reduce the
computational burden by shrinking the input feature dimension.

In addition to these reference works, alternative CNN-based
SR models have been also proposed by other authors. For
instance, it is the case of Kim et al. [49] who define in the very
deep SR (VDSR) method. Specifically, this approach considers
a substantially deeper architecture, a data augmenting scheme
together with residual and multiscaling learning. In more de-
tails, the VDSR first interpolates the input image to the target
resolution as ĨLR and extracts 41× 41 patches. Then, a total
of 20 identical convolutional layers with the ReLU activation
function are used to map the up-scaled input to the ground-truth
HR domain. At this point, it is important to highlight that a final
residual connection is also considered in the network topology
to learn only those HR details not present in the interpolated
image by means of the MSE loss.

Despite the remarkable performance achieved by these meth-
ods, the high complexity of the air-borne and space-borne image
domain could still limit the resulting performance in those RS
applications, where the spatial precision is important [50]. As a
result, more advanced and accurate CNN-based SR models have
been also developed in the literature. Among all the conducted
research, one of the most positive results are provided by the SR
residual network (SRRN) presented by Ledig et al. [51]. Specif-
ically, this model takes advantage of multiple residual building
blocks to achieve the current state-of-the-art performance in
supervised SR. In details, the SRRN architecture starts from
the LR image (ILR) and extracts 24× 24 image patches. Then,
an initial convolutional layer together with 16 residual blocks
are used to uncover the corresponding residual feature maps.
Each residual block is made of the concatenation of six different
layers (Conv2D, BatchNorm, ReLU, Conv2D, BatchNorm, and
Add) as well as its corresponding skip connection. After all
these residual blocks, an additional convolutional layer with a
final skip connection is also considered. This network design
allows the model to extract more relevant features from the LR
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domain since both residual units and skip connections work
for uncovering spatial details on both local and global image
areas, which logically have a particular impact in RS. Finally,
an efficient pixel shuffle convolutional block is used to upscale
the feature maps according to the considered scaling ratio (R)
and a regular convolutional layer maps those feature maps onto
the final HR domain. Regarding the model optimization, the
MSE loss is also used in this case.

Following a similar design, Lim et al. [52] developed the
enhanced deep residual network (EDSR), which is an evolution
of SRRN that pursues to optimize the residual units by remov-
ing some layers while stabilizing the training process using a
residual scaling. More specifically, all BatchNorm layers are
eliminated from residual blocks to provide the network more
flexibility to adapt the functional range of the data. Additionally,
a constant scaling layer with a 0.1 factor is introduced after the
last convolution of each residual block to make the training of
the network more stable from a numerical perspective, especially
when considering a large number of convolutional filters. With
these modifications, EDRS has shown to provide some per-
formance advantages with respect to SRRN when considering
moderate scaling ratios, being successfully applied in different
domains [53].

Other successful approach is the deep recursive residual net-
work (DRRN) presented by Tai et al. [54]. Specifically, DRRN
starts by interpolating the input image to the target resolution as
ĨLR and extracting 31× 31 patches. Then, it applies an initial
convolution followed by 25 recursive residual blocks composed
of 5 concatenated layers (ReLU, Conv2D, ReLU, Conv2D, and
Add). Note that, unlike conventional residual units, all these
recursive residual blocks share the same weights and biases in
order to drastically reduce the number of model parameters while
allowing the use of a substantial network depth. At the end,
ReLU, Conv2D, and Add layers are used to generate the final
super-resolved output with a global skip connection.

An alternative CNN-based technology is also provided by the
residual dense network (RDN). In this case, Zhang et al. [55]
proposed a SR model that takes advantage of the so-called dense
blocks, which pursue to avoid learning redundant information
by densely connecting all the layers. Specifically, RDN starts
from the from the LR image (ILR) and extracts 32× 32 image
patches. At the beginning of the network, two convolutional
layers are used for feature extraction. Then, RDN employs 3
groups of blocks with the following structure: 18 dense blocks
made of 3 layers (Conv2D, ReLU, and Concat) together with a
final convolution and skip connection. After these components,
four more layers (Concat, Conv2D, Conv2D, and Add) are used
to create a final dense and global skip connection. Finally, a
pixel shuffle layer serves to implement an efficient subpixel
convolution with two more Conv2D layers.

In addition to all these architectures, other authors propose
exploiting attention mechanisms into deep neural networks. It is
the case of Zhang et al. [56], who presented the residual channel
attention network (RCAN) which employs 10 different groups
of residual blocks and a final up-sampling layer to produce the
final super-resolved output. In more details, each residual block
is made of three initial layers (Conv2D, ReLU, and Conv2D), a

Fig. 1. Proposed Level-4 SR framework for OLCI products.

channel attention block (AvgPool, ReLU, Conv2D, ReLU, and
Conv2D) and two final residual connections. With this configu-
ration, RCAN is able to perform two types of skips connections
(i.e., short-term and long-term) that allow the model to reach
a very large depth. Besides, the considered attention extends
the so-called squeeze-and-excitation mechanism [57] to model
channelwise relationships with the objective of focusing on the
high-frequency information along the SR process.

Notwithstanding the success of these and other relevant
models, the particularly low nominal resolution of the OLCI
sensor may certainly become an important limitation for super-
resolving S3 data from an L4 perspective. Many of the existing
CNN-based SR methods are designed assuming small up-scaling
ratios and fixed receptive fields where the spatial uncertainty
of the SR mapping can be compensated (to some degree) with
the spatial details available at the LR image domain. However,
unlike other higher resolution acquisition instruments, the lack
of high-frequency details in OLCI together with the huge spa-
tial differences with respect to MSI dramatically aggravate the
ill-posed nature of the SR problem, which eventually demands
an specific network design.

III. METHODOLOGY

This section presents the proposed CNN-based framework
specially designed to super-resolve operational S3 OLCI prod-
ucts from an L4 data processing perspective. The rationale
behind the proposed approach is based on taking advantage of
the higher resolution of the S2 MSI sensor to train a SR network,
which can be finally used under demand without the need of
having access to S2 MSI data (unlike regular pan-sharpening
algorithms). Specifically, the presented scheme consists of four
main steps (see Fig. 1): 1) Sentinel data processing, 2) L4 image
fusion, 3) CNN-based training, and 4) SR product generation. In
the following sections, each one of these parts is depicted in de-
tails, however, let us start by defining the notation used for Sen-
tinel data. LetX = {x(1), . . .,x(N)} andY = {y(1), . . .,y(N)}
identify two image collections of N S3 OLCI and S2 MSI
reflectance products, where each image pair represents the same
area on the earth surface. For the sake of simplicity, we assume
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that MSI bands have been resampled to an uniform spatial res-
olution of 20 m. In this scenario, x(i) contains (x1 × x2) pixels
defined over 21 spectral bands whereas the (y1 × y2) pixels of
y(i) include 13 bands. Logically, x1 << y1 (and x2 << y2) due
to the huge spatial resolution differences between OLCI and MSI
sensors, being such difference y1/x1 (or equivalently y2/x2).
LetR be the considered natural scaling factor for super-resolving
S3 OLCI products, which can range between 2 and �y1/x1�. Let
Ỹ = {ỹ(1), . . ., ỹ(N)} be a down-scaled version of Y (using
a bicubic kernel), such that ỹ(i) ∈ R(x1R×x2R×13). Addition-
ally, let X̃ = {x̃(1), . . ., x̃(N)} be the up-scaled version of X
with a bicubic kernel, where x̃(i) ∈ R(x1R×x2R×21). Finally, let
X̂ = {x̂(1), . . ., x̂(N)} be the super-resolved version of X and
Ŷ = {ŷ(1), . . ., ŷ(N)} its corresponding spatial ground-truth.

A. Sentinel Data Processing

Although the specific data considered in this article is detailed
in Section IV-A, these lines describe the general procedure
required to obtain adequate intersensor Sentinel products for
training purposes and all the required corrections. Note that
the proposed framework tackle the SR problem from an L4
perspective and, hence, it is first necessary to acquire coupled
S2 MSI and S3 OLCI training products from the Copernicus
Open Access Hub (OAH) at https://scihub.copernicus.eu/. In
other words, this initial data processing step aims at obtaining
S2 training images that cover the same area of the considered S3
products taking into account the important differences between
the OLCI and MSI sensors. Specifically, we propose using the
following processing chain for obtaining such intersensor data.

1) Data collection: This step consists in selecting and down-
loading from the OAH platform coupled MSI and OLCI
products of interest across the globe. Despite the fact that
conducting this task seems trivial, it is important to remark
some technical points and recommendations in order to
generate a robust intersensor training collection. First,
the considered areas of interest should include different
types of environments in order to consider a representa-
tive data diversity, such as natural parks, coastal areas,
mountain ranges, or cities. Second, the products covering
the selected regions should not contain clouds since these
atmospheric perturbations logically affect the availability
of spatial information and may also alter other necessary
corrections. In this regard, the OAH platform does not
allow filtering the OLCI products by percentage of cloud
coverage, hence we advocate doing this filtering process
over the MSI sensor. Considering the substantially wider
field of view in S3, we recommend considering MSI
products without clouds and then selecting the temporally
closest available OLCI product that includes that region.
Finally, we suggest downloading from the OAH platform
L1 data products in order to obtain both MSI and OLCI
optical images at the same processing level across the
globe.

2) Product corrections: Once the initial collection process
is completed, it is necessary to apply some additional
adjustments to represent both MSI and OLCI products as

Fig. 2. Differences between the S2 MSI (in purple) and the interpolated S3
OLCI (in green) images when considering the original OLCI product (a) and
the processed one (b).

corrected reflectance images. To this aim, we recommend
using the official sentinel application platform (SNAP)
software provided by the ESA. In the case of S2, MSI prod-
ucts can be atmospherically corrected using the Sen2Core
processor, which employs the Atmospheric/Topographic
Correction for Satellite Imagery algorithm [58]. In the
case of S3, such corrections are still not available for
OLCI land products, which makes necessary to use the
radiance to reflectance processor or even other alternative
algorithms [59].

3) Intersensor projection: The next step is based on pro-
jecting each intersensor product pair onto a common
coordinate system to effectively compute the intersection
between the MSI and OLCI products. To this extent, the
SNAP software is able to carry out this operation in a
batch processing mode. In details, the MSI data is initially
resampled to a 20 m spatial resolution to enable the use
of the projection functionality. Then, the corresponding
OLCI products are reprojected onto their corresponding
MSI counterparts to obtain the intersection between both
products as output. Note that the resulting intersection area
is given by the MSI sensor due to its higher spatial resolu-
tion. After this process, we obtain an specific OLCI prod-
uct (300 m) as x(i) ∈ R366×366×21 and its corresponding
MSI intersection (20 m) as y(i) ∈ R5490×5490×13.

4) Intersensor alignment: Since there are very important
spatial differences between the MSI and OLCI sensors, the
last step aims at applying some additional spatial correc-
tions to obtain a more consistent intersensor optical data.
In general, the multitemporal registration requirement for
operational Sentinel products is 0.3 pixels. However, even
a small spatial deviation in OLCI can produce a large
spatial displacement in MSI because geometric errors are
magnified by the important spatial resolution difference. In
this last step, we propose using the intersensor registration
technique described in [44] to geometrically refine the
OLCI data using the MSI sensor as spatial reference.
Fig. 2 shows an example of the differences between the
S2 MSI (in green color) and the interpolated S3 OLCI
(in purple color) products to highlight the effect of the
proposed data processing step. As it is possible to observe,
there are important differences between the MSI and the

https://scihub.copernicus.eu/
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original operational OLCI product that can be substan-
tially relieved when applying the proposed process.

B. Level-4 Image Fusion

Since the proposed framework aims at generating L4 super-
resolved OLCI products within the operational chain of S3, the
spatial reference provided by the MSI sensor can be only used
for training purposes. Precisely, the target of the previously
presented data processing step (see Section III-A) is based
on generating such intersensor product collection for training.
Nonetheless, it is important to highlight that the final objective of
the proposed methodology does not consist in generating MSI
data but spatially enhanced OLCI products, which eventually
means that the SR mapping cannot be directly learned over
MSI spectra. Although a reduced-reference learning protocol
could be considered to learn such mapping at a lower resolution
scale [28], the very low nominal resolution of the OLCI sensor
(with respect to MSI) makes this scheme unfeasible from a
practical perspective [14]. As a result, we define this second step
to produce a simulated HR version of the OLCI data by means
of an L4 image fusion approach. In other words, we make use
of a RS image fusion approach to generate ground-truth OLCI
data at MSI spatial resolution, i.e., Ŷ.

In the RS literature, multiple image fusion techniques have
been proposed based on different paradigms, e.g., component
substitution, multiresolution analysis, etc. However, Bayesian
fusion methods have shown particularly positive results with a
sufficient spectral overlap between the fused sensors [60]. In the
case of OLCI and MSI, the spectral range of the former sensor
(390–1040 nm) is considerably covered by the latter (443–
2190 nm), which makes the Bayesian approach based on lin-
ear subspace transformations a reasonable choice. Specifically,
we select the fast fusion based on Sylvester equation (FUSE)
method [61] due to its tradeoff between computational time and
qualitative performance according to the experimental results
reported in [60]. Nonetheless, it is important to note that any
other fusion method could be selected instead since the objective
of this second step is just based on generating valid ground-truth
imagery for super-resolving OLCI data. Representing X the
collection of OLCI products and Ỹ their corresponding down-
scaled MSI counterparts, we define the L4 spatial ground-truth
as Ŷ = {ŷ(1), . . ., ŷ(N)} where ŷ(i) = FUSE(x(i), ỹ(i)) [61].

C. CNN-Based SR Training

Once the spatial ground-truth has been generated via L4 image
fusion, the third step of the proposed methodology consists in
training a CNN architecture to map OLCI images (X) onto their
corresponding higher resolution counterparts (Ŷ). Although
any of the aforementioned CNN-based SR models could be
integrated within the proposed framework, the particular na-
ture of the OLCI sensor makes necessary to account for the
specific features of this kind of SR application. Specifically,
it is possible to identify two issues that play a key role when
generating spatially enhanced L4 OLCI products: coarse spatial
resolution and large up-scaling ratios. On the one hand, the
spatial resolution of the OLCI sensor may certainly become

an important constraint for many of the available CNN-based
SR networks. Unlike standard imagery from popular RS data
sources [62], OLCI’s spatial resolution is rather coarse (300 m),
which seriously limits the availability of spatial details in the
input data while aggravating the ill-posed nature of the SR
problem. In this sense, the probability of facing noninformative
patches when super-resolving OLCI products logically increases
(with respect other higher-resolution sensors), which eventually
demands an special SR model design. On the other hand, the
scaling ratios that can be considered for super-resolving OLCI
products depend on the spatial resolution of the ground-truth
data. Since we use the MSI sensor as spatial reference, OLCI
data could be potentially up-scaled to MSI’s spatial resolution,
which enables the possibility of dealing with huge scaling factors
and also studying whether it may be worthwhile. In this regard,
it is important to note that many of the existing CNN-based SR
methods have been designed assuming small up-scaling ratios
(e.g., 2×, 4×). Therefore, it also becomes necessary to account
for the adequate complexity and generality of the developed
network under different ratios.

To overcome these limitations, we propose a new SR architec-
ture, which has been specially developed for effectively dealing
with OLCI data when considering from small to large up-scaling
factors. Due to the huge spatial differences between OLCI and
MSI sensors, the first important point to take into consideration
is how to implement the up-scaling process within the proposed
architecture. Whereas adopting up-scaling layers inside the net-
work (e.g., transposed convolutions, pixel shuffling, etc.) has
shown to obtain positive results with standard SR settings [51],
[55], the possibility of considering very large scaling ratios to
cover the spatial gap between OLCI and MSI sensors strongly
constrains the effectiveness of this scheme in our context. Note
that the bigger the scaling ratio the more drastic the increase
on the number of parameters inside the network and, hence,
the more difficult its global convergence. Although the use of
more than one up-scaling layer may help, it also reduces the
capability of the network to work with certain scaling factors
(e.g., prime numbers), which eventually limits the generality of
the SR model. To relieve these effects, we opt for starting from
the interpolated version of the OLCI image, i.e., the proposed
network is focused on learning the mapping between X̃ and Ŷ.

Another important aspect is based on OLCI’s nominal res-
olution. As it was previously mentioned, the coarse spatial
resolution of the OLCI sensor may cause important issues in
learning the SR projection due to the lack of sufficient dis-
criminating details in the input domain. Besides, this problem
is exacerbated by the consideration of larger scaling factors to
reach spatial resolutions closer to MSI. In this scenario, it is
reasonable to think that increasing the network receptive field
can help to produce better HR estimates. However, the direct
application of wider convolutions does not guarantee a good SR
performance across all scaling ratios since the ideal receptive
field may logically vary among images and scales. In response,
we develop a new SR network, which pursues to adaptively
exploit multiple receptive fields with the objective of increasing
the contextual information of the OLCI sensor when required.
Fig. 3 shows a graphical visualization of the defined architecture,
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Fig. 3. Graphical representation of the proposed SR network, including (1) dense multireceptive field, (2) residual channel attention, and (3) HR projection.

which works with B@P × P input and output patches. In more
details, it is made of the following sequential components.

1) Dense multireceptive field: The initial part of the proposed
network aims at extracting multiple feature representa-
tions with different receptive fields and levels of abstrac-
tion in order to provide a complete data characterization
useful in a wider range of up-scaling settings. Specifically,
it is made of the following seven layers: 1) Conv2D, 2)
ReLU, 3) Conv2D, 4) ReLU, 5) Conv2D, 6) ReLU, and
7) Concat. As it is possible to see in Fig. 3, all three con-
volutional layers use 64 filters with an increasing kernel
size of 5× 5, 9× 9 and 13× 13, respectively. Besides,
they are densely connected via the last concatenation layer.
This configuration allows extracting feature maps related
to an initially small receptive field, which is hierarchically
expanded to provide multiple representations at different
abstraction levels. In this way, the obtained characteri-
zations are able to involve broader spatial contexts and
features in order to relieve the particularly low spatial
resolution of the OLCI sensor.

2) Residual channel attention: Once the corresponding fea-
ture maps have been extracted, the second part of the
proposed network pursues to automatically filter those
data characterizations that provide the most informative
features for the target super-resolution scale. That is, de-
pending on the input image and the desired up-scaling ratio
(R), this module adapts the size of the receptive field and
feature abstraction level since the coarse spatial resolution
of OLCI can easily make these settings rather volatile.
Note that 300 m is an spatial resolution that can often
produce image segments with little spatial details due to
the hard quantization of highly heterogeneous pixels. In
these circumstances, it becomes very adequate to expand
the receptive field as well as the abstraction level to
uncover more discriminating features that help to better
compute the projection onto the HR domain. To achieve
this goal, we define a new building block based on the
so-called squeeze-and-excitation weighting scheme [63].
As Fig. 3 shows, the defined residual channel attention
block contains the following seven layers: 1) AvgPool, 2)
Conv2D, 3) ReLU, 4) Conv2D, 5) Softmax, 6) Multiply,
and 7) Add. The rationale behind this structure is based on
initially averaging each feature channel. Then, an spectral
encoder–decoder architecture (with 64 and 192 kernels,

respectively) is adopted to generate the corresponding
channel weights after a softmax operation. Finally, these
normalized scalar values are used to weight the input chan-
nels and a final residual connection works for focusing the
attention on discriminating channel dependencies to avoid
overfitting.

3) HR projection: After generating the corresponding fea-
ture maps with recalibrated channels, the last part of the
proposed approach is targeted at projecting this highly
informative data volume onto the final HR space. Note
that we started from the interpolated OLCI space (given
by X̃) to relieve the problems of considering large scaling
ratios. Hence, there is no need to use any up-scaling layer at
this point of the network design. Specifically, we employ
the following layers: 1) Conv2D, 2) ReLU, 3) Conv2D,
and 4) ReLU, where the first layer employs 32 filters for
conducting an spectral convolution and the third layer
reconstructs the input data volume using a 5× 5 kernel
size.

Let us identify the proposed network as S(·; Θ), being Θ
the network parameters. Finally, S is trained to optimize the
following loss function, based on the MSE figure of merit, which
is minimized via the ADAM optimizer using a learning rate of
1e−4 for a total of 100 epochs as

L(Θ) =
1

N

N∑
i=1

(
ŷ(i) − S(x̃(i); Θ)

)2

. (3)

D. SR Product Generation

The last step of the proposed methodology is focused on
exploiting the trained CNN-based SR model under operational
conditions. In this sense, it is important to emphasize that MSI
data is not available from the operational processing chain of
S3, place where this article puts the focus in order to generate
L4 spatially enhanced OLCI products under demand. Being
x(tst) a test OLCI product and x̃(tst) its corresponding up-scaled
version by an R factor using a bicubic interpolation kernel, this
final step computes the super-resolved version of the product
as x̂(tst) = S(x̃(tst); Θ). Note that, similarly as training, test
images are processed in a patch-based fashion to generate the
corresponding results.
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TABLE I
DESCRIPTION OF THE CONSIDERED PRODUCTS

Fig. 4. S3 OLCI image scenes (a) and their S2 MSI counterparts (b).

IV. EXPERIMENTS

A. Datasets

In this article, we consider ten overlapped S2 MSI and S3
OLCI operational data products, which comprise five differ-
ent European areas of interest. Table I describes the selected
scenes where five image pairs have been employed for train-
ing and the other five pairs for testing. All the images are
cloud free operational Level-1 C data products, which have
been downloaded from the Copernicus OAH platform (https:
//scihub.copernicus.eu/) and processed using the SNAP software
with its standard settings. On the one hand, S2 MSI products have
been atmospherically corrected using the Sen2Cor processor
and resampled to 20 m spatial resolution. On the other hand,
S3 OLCI products have been corrected using the Radiance to
Reflectance processor and they have also been reprojected to
their associated S2 tiles in order to obtain the intersection area
between both images. After all these steps, the corresponding
spatial image sizes are 5490× 5490 pixels in S2 and 366× 366
in S3. Fig. 4 shows the S3 OLCI and S2 MSI data products used
in this article for bench-marking.

B. Experimental Settings

To validate the performance of the proposed network, we
make use of the presented methodology to conduct several
experiments using a broad range of scaling ratios and state-of-
the-art SR models. On the one hand, we test all the possible
up-scaling factors between the considered intersensor resolu-
tions, i.e., R = {2, 3, 4, . . . , 15}, with the objective of studying

TABLE II
PSNR (DB) ASSESSMENT FOR AN-TST

to which extent the 300 m spatial resolution of the OLCI sensor
can be satisfactorily super-resolved using the 20 m resolution
of MSI as operational reference. On the other hand, we assess
in the experimental comparison the performance of some of
the most relevant SR architectures available in the literature,
including SRCNN [47], VDSR [49], SRRN [51], EDSR [52],
DRRN [54], RDN [55], and RCAN [56]. In addition, we use the
bicubic interpolation kernel (BC) as up-scaling baseline.

Under these settings, we train all the considered SR networks
(including the proposed architecture named as SRS3) using the
same input data and training configurations. For each scaling
ratio R, we extract image patches from the training set using a
14R-pixel step in order to select over 5e4 patches for training
regardless the input size defined by each particular SR method.
In the proposed approach case, a 33× 33 patch size is used
(i.e., P = 33). Besides, each OLCI band is considered as an
input image (i.e., B = 1) to reduce the spatial complexity of all
the models taking into account the large scaling ratios tested
in this article. All the networks have been trained using the
ADAM optimizer for 100 epochs with a 1e−4 learning rate and
a 32 batch size. Regarding the evaluation protocol, two different
full-reference metrics are used to quantify the quality of the
results: the peak signal-to-noise ratio (PSNR) and the spectral
angle mapper (SAM). Whereas PSNR is focused on measuring
the reconstruction quality from the super-resolved and ground-
truth images, SAM calculates the angular deviations between
both spectra. Additionally, several visual results are also consid-
ered for a complementary qualitative evaluation of the obtained
results. The hardware and software environments used in this
article are the following: Intel(R) Core(TM) i7-6850 K, NVIDIA
GeForce GTX 1080 Ti, 64 Gb of DDR4 RAM, Ubuntu 20.04
×64, and Pytorch 1.6.0 with CUDA 10.1. The related codes will
be publicly available at https://github.com/rufernan/SRS3.

C. Results

Tables II–VI present the quantitative evaluation based on the
PSNR metric for the considered test datasets. Note that each
table includes the assessment of a different test scene (i.e.,
AN-tst, BR-tst, MA-tst, MI-tst, and UT-tst) and all the results
are expressed in dB. In more details, tables are organized with

https://scihub.copernicus.eu/
https://github.com/rufernan/SRS3
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TABLE III
PSNR (DB) ASSESSMENT FOR BR-TST

TABLE IV
PSNR (DB) ASSESSMENT FOR MA-TST

TABLE V
PSNR (DB) ASSESSMENT FOR MI-TST

the considered scaling ratios in rows and with the tested SR
methods in columns. Besides, the last row of each table provides
the corresponding average PSNR values and the best results are
highlighted in bold font. To complete the quantitative analysis,
Table VIII also details the average SAM results (in radians)
per scaling factor and method. For qualitative purposes, Fig. 5
displays the super-resolved OLCI products generated by the
considered methods over the MI-tst scene using a 2× up-scaling
ratio.

TABLE VI
PSNR (DB) ASSESSMENT FOR UT-TST

TABLE VII
AVERAGE PSNR (DB) ASSESSMENT FOR TST DATASETS

TABLE VIII
AVERAGE SAM (RAD) ASSESSMENT FOR TST DATASETS

According to the reported results, there are some important
aspects that deserve to be mentioned. Specifically, the first no-
ticeable point is related to the general performance of the tested
methods as the considered scaling ratio increases. Although
all the SR architectures logically show a global performance
decrease when applying higher scaling factors, it is possible to
appreciate significant differences between the models that use an
initial interpolation and the rest. Whereas SRCNN, VDSR, and
DRRN are able to produce consistent improvements with respect
to the bicubic baseline (BC), SRRN, EDSR, RDN, and RCAN
certainly suffer an important degradation for up-scaling ratios
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Fig. 5. Qualitative results for MI-tst with R = 2: (a) Ground-truth, (b) BC, (c) SRCNN, (d) VDSR, (e) SRRN, (f) EDSR, (g) DRRN, (h) RDN, (i) RCAN, and
(j) SRS3.

higher than 4×. As Tables II–VI show, SRRN, EDSR, RDN,
and RCAN are able to obtain some PSNR gains (over BC) when
usingR = {2, 3, 4}. However, the situation is rather different for
larger factors where the other tested methods (SRCNN, VDSR,
and DRRN) clearly generate better SR results. As an example,
we can see that SRCNN and RDN obtain in Table II the best and
third best performances when using 4×, however, their results
get dramatically worse from5× to15×. Note that SRRN, EDSR,
RDN, and RCAN employ a final up-scaling layer to generate the
super-resolved output but this strategy is unable to satisfactorily
manage huge ratios due to the dramatic increase on the number
of parameters at the end of the network. In contrast, SRCNN,
VDSR, and DRRN start from the interpolated original space
to keep the feature maps more stable along the network, which
eventually becomes more adequate for relieving the huge spatial
resolution difference between OLCI and MSI. Precisely, this is
the reason why the proposed approach introduces this initial
interpolation scheme to generate spatially enhanced L4 OLCI
products.

Focusing on the average PSNR results provided in Table VII,
we can make some additional observations regarding the per-
formance of the best performing competitors as well as the
proposed network. On the one hand, VDSR and DRRN show
a very reduced PSNR improvement with respect to the BC
when considering high scaling ratios. Despite the fact that
both methods are able to consistently outperform the baseline
(unlike SRRN, EDSR, RDN, and RCAN), their quantitative
gains are rather negligible for factors beyond 7×, which reveals
the ineffectiveness of these networks in the most challenging
scenarios. In more details, both architectures make use of a fix
small kernel size (3× 3) for substantially increasing the number
of convolutional layers and residual connections. Nonetheless,
the lack of sufficient high-frequency information with large up-
scaling ratios makes these small convolutions unable to extract
discriminating features from the interpolated original space.

On the other hand, SRCNN is certainly the best performing
competitor for super-resolving OLCI products since it is able
to provide more relevant PSNR improvements, which range
from +0.11 dB (2×) to +0.05 dB (10×) on average. The
expanded receptive field of SRCNN (9× 9) together with its
higher topological simplicity make this network to better exploit
the limited spatial information provided by the OLCI sensor.

Regarding the performance achieved by the proposed model,
Table VII clearly reveals that the newly defined architecture
provides the most accurate results, exhibiting average PSNR
gains from +0.33 dB (2×) to +0.10 dB (10×). Although these
values could initially seem slight improvements over the bicubic
baseline, they twice the average gains obtained by the best
performing competitors at each scaling ratio (i.e., SRRN at 2×
and SRCNN otherwise), which becomes particularly relevant
within the context of this article. Note that the limited resolution
of the OLCI sensor together with the huge spatial differences
with respect to MSI make this kind of intersensor SR problem
particularly challenging while constraining the absolute perfor-
mance of all the models. However, the proposed approach is the
only method that consistently provides competitive advantages
from small to large ratios since its topology has been specially
designed for enhancing OLCI products from an L4 perspective.
More specifically, this has been accomplished by integrating
three different components: initial interpolation, dense multi-
receptive field and residual channel attention. By the initial
interpolation, we avoid using any up-scaling layer that may
substantially degrade the results when considering large scaling
factors due to the drastic increase on the network parameters to a
reach spatial resolution closer to MSI. With the proposed dense
multireceptive field, the presented model works for extracting
features at different abstraction levels that hierarchically expand
the initial receptive field over the OLCI sensor. In this way,
smaller and larger kernel sizes can simultaneously be exploited
for smaller and larger up-scaling ratios, respectively. Finally,
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the incorporated residual channel attention allows the proposed
approach to adequately filter all these dense features in order
to focus on the most discriminating features across all the
considered scaling factors.

When accounting for the spectral fidelity of the super-resolved
results, Table VIII shows a similar general trend. In this case,
the best average SAM reduction (with respect to the baseline)
is certainly provided by the proposed approach (−0.0020 rad),
followed by SRCNN (−0.0014 rad), VDSR (−0.0002 rad), and
DRRN (−0.0001 rad). In contrast, SRRN, RDN, and RCAN
are not able to reduce the baseline spectral distortion because
their results rapidly get degraded with factors higher than 4×.
In the case of EDSR, it is able to better control the spectral
distortion due to the internal use of a constant scaling layer that
works for numerically stabilizing the training and the output
range. The qualitative results displayed in Fig. 5 also support
the conducted quantitative analysis. As it is possible to observe,
the ground-truth data for 2× [see Fig. 5(a)] lacks of many spatial
details, which indicates the very limited original resolution of
the OLCI sensor and the high complexity of this type of SR
problem. In general, the visual results show that each particular
model tends to highlight specific features on the super-resolved
output. On the one hand, SRRN, EDSR, RDN, and RCAN seem
to be slightly more robust to aliasing and moire effects due
to the absence of the initial up-scaling interpolation. However,
it is true that the very coarse spatial resolution of the OLCI
sensor makes these differences almost imperceptible from both
qualitative and quantitative perspectives. On the other hand,
SRCNN, VDSR, and DRRN appear to better enhance those land
cover textures that present a certain level of contrast in the scene
but, again, visual differences are very small owing to the lack
of high-frequency information in the original space. Regarding
the proposed approach qualitative performance, it is able to
recover more spatial details than others as the magnified image
region reveals. The deeper structure of the dense block together
with its multireceptive field scheme can effectively attenuate the
undesirable effects of the initial interpolation that also affects the
best performing competitors across all scales.

In general, the extensive experimental comparison conducted
in this work shows the high complexity of spatially enhancing
OLCI products via the MSI sensor. It is important to note that
SR architectures aim at learning the mapping between LR and
HR image domains. Hence, the serious lack of high-frequency
information in the input domain may logically aggravate the
ill-posed nature of the SR problem since it dramatically increases
the uncertainty when learning the corresponding projection.
In contrast to standard imagery and other higher resolution
instruments, OLCI has rather different spatial characteristics that
makes many of the state-of-the-art SR networks fail when trying
to achieve resolutions closer to MSI. For instance, although
one can see that SRRN, EDSR, RDN, and RCAN provide
prominent results in their corresponding papers, these results
are based on standard HR imagery using reduced scaling factors.
Hence, they cannot directly be extrapolated to our context. When
super-resolving OLCI data, the particularly coarse resolution
of the sensor together with the huge spatial differences with
respect to MSI make other simpler models (e.g., SRCNN)

more effective. However, this type of models have important
limitations on the fixed receptive field, which should ideally
be adapted within OLCI scenes and across scales. In response,
we develop a novel architecture (SRS3) specially designed for
super-resolving OLCI products, which tries to densely exploit
multiple receptive fields while focusing the attention on the most
discriminating features for each input patch and possible scaling
ratio. Precisely, these features allow the proposed approach to
better characterize LR land cover regions that need additional
computations to introduce HR details that cannot be recovered
from a global SR perspective where feature maps are equally
relevant.

V. CONCLUSION AND FUTURE WORK

This article provides a new CNN-based framework for gen-
erating spatially enhanced S3 OLCI products from an L4 data
processing perspective. Initially, an intersensor framework is
presented to super-resolve operational OLCI data by means
of the higher spatial resolution of the S2 instrument. Then, a
novel SR architecture, based on a dense multireceptive field and
residual channel attention, is proposed to alleviate the limited
spatial resolution of OLCI while uncovering more discriminat-
ing features across large scales. Finally, an extensive experi-
mental comparison is conducted to validate the suitability of
the presented intersensor framework and SR architecture with
respect to numerous state-of-the-art methods available in the
literature.

One of the main conclusions that arises from this article
is the high complexity of super-resolving OLCI data via the
MSI sensor up to scale factors to obtain MSI resolution. Unlike
other SR problems, OLCI has particularly low spatial resolution
that makes many state-of-the-art networks fail when trying
to reach resolutions closer to MSI. In this sense, adopting a
proper multireceptive field design in conjunction with a channel
attention mechanism has shown to play a fundamental role to
relieve the inherent limitations of standard SR networks, which
are unable to adapt the feature extraction process to each input
patch and up-scaling factor. Although results are encouraging,
further research is required for generating additional improve-
ments. Specifically, our future work will be directed towards the
following directions: 1) extending the proposed framework to
a sequential up-scaling scheme, 2) improving the loss function
by adding multiple cost terms, and 3) expanding this research to
other intersensor platforms.
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