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UMAG-Net: A New Unsupervised
Multiattention-Guided Network for Hyperspectral

and Multispectral Image Fusion
Shuaiqi Liu , Siyu Miao, Jian Su , Bing Li , Weiming Hu , and Yu-Dong Zhang

Abstract—To reconstruct images with high spatial resolution and
high spectral resolution, one of the most common methods is to fuse
a low-resolution hyperspectral image (HSI) with a high-resolution
(HR) multispectral image (MSI) of the same scene. Deep learning
has been widely applied in the field of HSI-MSI fusion, which is
limited with hardware. In order to break the limits, we construct
an unsupervised multiattention-guided network named UMAG-
Net without training data to better accomplish HSI-MSI fusion.
UMAG-Net first extracts deep multiscale features of MSI by using
a multiattention encoding network. Then, a loss function containing
a pair of HSI and MSI is used to iteratively update parameters of
UMAG-Net and learn prior knowledge of the fused image. Finally,
a multiscale feature-guided network is constructed to generate an
HR-HSI. The experimental results show the visual and quantitative
superiority of the proposed method compared to other methods.

Index Terms—Deep learning, hyperspectral images (HSIs),
image fusion, multispectral images (MSIs).

I. INTRODUCTION

R EMOTE sensing hyperspectral images (HSIs) are images
of high spectral dimensions consisting of hundreds or

even thousands of narrow bands [1]. Benefiting from the high
spectral resolution, they are more sensitive to subtle changes
in reflected energy and can be used for material identification.
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Images produced by hyperspectral sensors contain more infor-
mation than those produced by multispectral sensors that have
material identification properties. As a result, the formers are
widely used in environmental monitoring, military, industrial
and agricultural applications [2]–[10]. However, due to the
physical constraints of the imaging equipment, the radiant light
energy received by the hyperspectral imaging sensor is divided
among many bands, which results in a lower spatial resolution
for HSI than multispectral image (MSI). The low spatial resolu-
tion severely affects the use of HSI in computer vision-related
tasks [11]. In order to improve the spatial resolution of HSI,
we usually fuse high-resolution (HR) MSI and low-resolution
(LR) HSI to HR-HSI. This process is also known as HSI
super-resolution reconstruction. The reconstructed HR-HSI can
better perform computer vision tasks such as anomaly detection
[12] and change detection [13]. Generally, the HSI-MSI fusion
algorithms can be classified into four kinds, such as extensions
fusion method based on pansharpening, fusion methods based
on matrix factorization, fusion methods based on tensor repre-
sentation, and fusion methods based on deep learning.

Early methods to fusing spatial and spectral information,
which aimed to fuse LR-MSI with HR panchromatic (PAN)
images to enhance the spatial and spectral resolution of the fused
image, are known as pansharpening image fusion methods. Sub-
sequently, pansharpening image fusion algorithms have been
gradually extended to HSI-MSI fusion. For example, Aiazzi
et al. [14] proposed an HSI-MSI fusion method by using the
spectral response function (SRF). Zhang and He [15] proposed
an HSI-MSI fusion method through three-dimensional (3-D)
wavelet transform. Chen et al. [16] proposed a fusion framework
of HSI and MSI based on region chunking. Selva et al. [17]
applied HR MSI to construct high spatial resolution images of
each spectral band of HSI by linear regression, and then we can
get the final fused image by HSI and the synthesized images. In
general, extended fusion methods based on pansharpening are
simple and efficient, but the quality of the fusion needs to be
improved.

The degradation from high spatial resolution to low spatial
resolution can be regarded as the process of image element
blending, whereas image fusion is the inverse process, which
can be regarded as the process of unmixing. Therefore, a
matrix factorization-based approach can be used for MSI fu-
sion. In recent years, image fusion algorithms based on matrix
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factorization have been widely developed for their intuitive inter-
pretation of fusion results. For example, Yokoya et al. [18] gave
an HSI-MSI image fusion algorithm by coupled nonnegative
matrix decomposition. In this algorithm, they used the vertex
component analysis algorithm to extract the initial endmember
features in LR-HSI. The endmember matrix of LR-HSI and the
abundance matrix of HR-MSI were then iteratively derived by
using the sensor’s sensing model and the matrix decomposition
algorithm. The two matrices were multiplied together to obtain
an HR fusion result. Dong et al. [19] first used LR HSI to
learn overcomplete dictionaries and then proposed an image
fusion method by using nonlocal (NL) similarity and sparse
prior, which can effectively improve the spatial resolution of
the fused images. And in [20], He et al. gave an HSI-MSI
image fusion algorithm based on robust nonnegative matrix
factorization with sparse noise regularizers. Han et al. [21]
modeled the global similarity of HR-HSI by grouping similar
blocks and combined it with a constrained sparse representa-
tion for HSI super-resolution reconstruction. Wei et al. [22]
proposed a fast multiband HSI-MSI image fusion method. The
method constructed a closed-form solution of the corresponding
Sylvester equation by using a circular matrix and downsampling
matrix, which greatly saved the running time of this algorithm.
Furthermore, combined with the alternating iteration algorithm
and the block coordinate descent algorithm, it can be easily
extended to fusion methods based on Bayesian estimation, which
can lead to better fusion results.

In recent years, tensor analysis is widely used in the field of
HSI. Dian et al. [23] proposed an HSI super-resolution algorithm
based on NL sparse tensor decomposition. The algorithm treated
the HSI as a 3-D tensor. And the sparse Tucker factorization
was used to decompose the HSI into a 3-D core tensor and
a 2-D dictionary of three modes. Then, the input HR-MSI is
divided into several image blocks, and it is considered that
the set of image blocks belonging to the same class share
a common spatial and spectral dictionary based on the NL
self-similarity of images. The spectral dictionary is learned
from LR-HSI image block set, and spatial dictionary is learned
from HR-MSI image block set, whereas core tensor is extracted
from HR-MSI image block by tensor sparse coding. Finally, the
HSI fusion image is obtained by multiplying the core tensor and
the dictionary of the three modes. In [24], Li et al. proposed an
HSI and MSI image fusion method based on coupled sparse
tensor factorization. Dian et al. [25] factorized the HSI into
smaller full-band blocks, and the HSI-MSI fusion problem can
be turned to an optimization problem of a sparse core tensor and
three dictionaries estimating for each full-band block. Wang et
al. [26] proposed a pansharpening method based on sparse tensor
neighbor embedding. In this method, each tensor constructed
by MSI can be sparsely coded based on its neighbor tensor
and the joint sparse coding assumption was constructed on
bands. Finally, an HR multispectral tensor was obtained by
weighting the sparse tensor coefficients on the PAN image. Xu
et al. [27] proposed an HSI-MSI fusion method based on NL
tensor factorization. This method first constructed an NL similar
block tensor of HSI according to MSI. Then, HSI-MSI fusion
was performed by coupling tensor canonical polymorphism

decomposition, which achieved a good fusion effect. Dian and
Li [28] proposed an HSI-MSI fusion method base on low tensor
multi rank regularized, which also achieved a good fusion effect.

HSI-MSI fusion methods based on matrix factorization and
HSI-MSI fusion methods based on tensor factorization are col-
lectively referred to as image fusion methods based on fac-
torization. The representation of image fusion methods based
on factorization is consistent with the representation of the
imaging model and is an intuitive description of imaging. Image
fusion methods based on factorization typically assume that
the HR-HSI share the same endmember to the corresponding
LR-HSI scene. Therefore, the spectral properties of the fusion
image are extracted from the LR-HSI. Although LR-HSI and
HR-HSI in the same scene have the same spectral information in
a physical sense, in terms of realistic imaging processes, LR-HSI
is the spatial degradation result of HR-HSI in the same scene.
During the degradation process, HR-HSI loses some details and
produces a certain degree of distortion in the spectral domain.
So, there are differences between LR-HSI and HR-HSI in the
spectral domain, and it has some errors between the fusion
image based on factorization and the ground truth (GT) image.
In addition, image fusion methods based on factorization are
difficult to obtain stable and accurate fusion results because
they are usually sensitive to initial values. With the develop-
ment of deep learning [29], HSI-MSI fusion methods based
on deep learning come out on top, which have high recon-
struction accuracy and fast computational speed. For example,
Rao et al. [30] proposed an HSI-MSI fusion method based
on a residual convolutional neural network constructed by the
sparse residuals between multispectral and PAN images, which
is helpful to solve the spectral distortion problem of traditional
methods. Dian et al. [31] proposed a pansharpening method
based on deep learning. The final HR-HSI was reconstructed
by combining the trained network model and the image prior
information. Xie et al. [32] proposed an HSI-MSI fusion method
by combining model-based HSI-MSI fusion method and deep
learning. Experimental results show that the superiority of the
method.

The good performance of deep learning based methods often
needs a lot of paired training data. However, hyperspectral
datasets are often difficult to acquire due to imaging conditions
and hardware limitations [33]. As a result, synthetic data are
often used for network training, which reduces model flexibility
and affects the performance of the network. Therefore, HSI-MSI
image fusion methods based on deep learning without training
are a hot research issue. For example, Zhang et al. [34] proposed
an unsupervised HSI-MSI image fusion method that did not
require paired datasets. In this method, LR images were gen-
erated in an unsupervised manner via a generative adversarial
network. The generated images were then used for supervised
training of the HR fusion images. Uezato et al. [35] proposed a
guided deep decoder (GDD) network, which can be applied for
image denoising and image fusion without training. Although
HSI-MSI fusion image can be obtained based on the above
methods without needed supervised learning, the structure of
these networks does not make full use of the semantic features
and detailed information of the images.
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For fusing LR-HSI and HR-MSI, we proposed an unsu-
pervised multiattentive guidance network to get better HSI
super-resolution reconstruction. Specifically, a new network
is constructed as a regularizer. The network is initialized by
random noise and does not require any training, and the final
fusion HR-HSI can be gained by only a pair of MSIs. The
proposed network consists of two parts: multiattention encod-
ing (MAE) network and multiscale feature-guided (MSFG)
network. The semantic features of the MSI are extracted by
the MAE network in the proposed network. Then, in order to
guide the output of the MSFG network, multiscale features of
the image can be extracted by attention mechanisms and NL
similarity blocks in the MAE network. Our contributions are as
follows.

1) An unsupervised end-to-end network, namely UMAG-
Net, for HIS-MSI image fusion is proposed. UMAG-Net
can generate corresponding HR-HSI images by using only
one pair of images without any training data.

2) An MAE network is constructed. The NL block and spa-
tial cross attention (SCA) block in the encoding network
enable the full extraction of the semantic information and
image details of the HSI.

3) A novel network structure is proposed as a regularizer
for the unsupervised HSI-MSI fusion problem instead of
using a handcrafted regularizer. The Laplacian guide (LG)
block and upsampling guided (UG) block in the novel
network generate fuse images by exploiting the multiscale
semantic features of LR-MSI.

Experimental results show that the proposed UMAG-Net can
achieve superior performance on unsupervised HSI-MSI fusion
problems.

II. RELATED WORK

In recent years, deep learning based HSI and MSI fusion meth-
ods have made great progress [36]. These kinds of methods are
mainly based on learning the correspondence among LR-HSI,
HR-MSI, and the corresponding HR-HSI through multilayer
deep neural networks. The learned correspondences will be
used as a priori knowledge to construct the missing spatial and
spectral information in the new input sources images to complete
the target HSI-MSI fusion work. It is generally accepted that
such methods make use of not only the information carried by
the input sources images itself but also the mapping relationships
learned by relying on a library of training samples. Thus, better
performance can be obtained than with HSI-MSI fusion methods
based on manually defined prior information. However, Ulyanov
et al. [37] proposed the deep image prior (DIP) algorithm, which
argued that human-designed network structures are inherently
capable of capturing a large amount of low-level statistical prior
information about an image. Thus, targets like denoising and
super-resolution can be achieved by iteratively learning the
prior knowledge of an image. It is also believed that neural
networks with random initialization can be able to extract better
hand-designed prior distribution features. Gandelsman et al. [38]
proposed the double-DIP algorithm to segment an image into its
basic components by coupling multiple DIP networks, which

makes it suitable for various tasks. Sidorov and Hardeberg [39]
extended the DIP algorithm to the field of hyperspectral imaging.

Attention mechanisms enable networks to ignore irrelevant
features and focus on important features. Therefore, attention
mechanisms are widely used in various deep network construc-
tions. Wang et al. [40] proposed an NL attention mechanism
that can well capture the relational weights of any pixels in
an image with respect to the current pixel. Good results were
achieved in the fields of target detection, instance segmentation,
and key point detection. Gu et al. [41] proposed a channel atten-
tion module based on a local cross-channel interaction strategy
without dimensionality reduction, which effectively improves
the computational efficiency of the network. Yao et al. [42] first
introduced cross-attention to an HSI super-resolution task by
multiplying two original features (LR-HSI and HR-MSI) with
the attention map of another image, respectively, to transmit im-
portant information thus obtaining better image super-resolution
results.

Inspired by the above works, an unsupervised multiattention-
guided network (named UMAG-Net) is proposed in this article,
which consists of an MAE and an MSFG network, with random
noise and HR-MSI as inputs to iteratively learn a prior. Specif-
ically, two attention mechanisms in the encoder–decoder are
incorporated. NL blocks are used to better retain spectral and
spatial details of the image. Spatial cross-attention blocks are
utilized instead of traditional cascades to better achieve spatial-
spectral information transfer by highlighting useful information
in the image while suppressing irrelevant information in the
encoder–decoder network. An LG block is used to connect the
MAE network with the MSFG network to achieve better fusion
results while ensuring feature alignment.

III. PROPOSED METHOD

A. Fusion Model

The HSI-MSI fusion problem is actually a problem of estimat-
ing HR-HSI by using HR-MSI and LR-HSI. Let X ∈ RW×H×L

denote HR-HSI. Let W , H , and L denote the width, height,
and the count of bands, separately. HR-MSI is denoted by
Y ∈ RW×H×l. Z ∈ Rw×h×L denotes LR-HSI, where l is the
count of bands of Y (l � L), and w and h are the width and
height of X(m � M , n � N ).

In general, the HSI fusion problem based on deep neural
networks can be formulated as

min
X

L(X,Y, Z) +R(X) (1)

where L denotes the loss function and R is the handcrafted
regularizer.

Instead of using a handcrafted regularizer, a new convolu-
tional neural network was applied to estimate the generated
HR-HSI, which is shown as

X = gθ (N) (2)

where gθ denotes a mapping function with network parameters
of θ and N denotes the random noise of the input network. It
is worth noting that the size of N may vary when conducting
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Fig. 1. Structure of the UMAG-net.

experiments on different datasets. Its size needs to be consistent
with the size of Z.

Instead ofR(·), the prior distribution is obtained by the neural
network. In addition, X is represented by a neural network
mapping. Thus, manual errors are avoided and the flexibility
of the network has been increased. Formula (1) can be rewritten
as

min
θ

L (gθ (N) , Y, Z) . (3)

From formula (3), we use the implicit prior regularization X
of the neural network to generate HR-HSI with only LR-HSI
and HR-MSI, and the whole network does not need to be
trained. Specifically, the network is first randomly initialized.
Then, the network parameters are iteratively updated by using a
loss function that contains a pair of LR-HSI and HR-MSI. The
parameter update process is similar to the traditional neural net-
work training process. The number of iterations is set manually.
When the number of iterations reaches the set value, the iteration
stops and the fusion is completed. The structure of the proposed
network is described in the following.

B. Network Architecture

In this article, an UMAG-Net is proposed. Fig. 1 shows the
structure of UMAG-Net, which consists of an MAE network and
an MSFG network. As shown in Fig. 1, MAE incorporates two
attention mechanisms to the traditional encoder–decoder: NL at-
tention and spatial cross-attention, which can extract multiscale
image features of MSI well.

MSFG takes random noise as input for generating HR-HSI
images and uses LG blocks in the guided network to connect the
MAE network with the MSFG network to achieve better fusion
while ensuring feature alignment. The construction of MAE and
MSFG is described in the following, respectively.

1) Multiattention Encoder: The structure of the encoder in
UMAG-Net is like that of U-Net, as shown in the blue back-
ground section in Fig. 1. For UMAG-Net, the number of layers of
the encoder–decoder is determined by the downsampling factor.
With a downsampling factor of 32, the number of layers is 5
(log

2
32). U-Net [43], which is widely used in image processing,

consists of a downsampling section and an upsampling section.

The former is designed to gradually highlight background infor-
mation, whereas the upsampling process combines information
from the downsampling layers with input information from the
upsampling to recover image details and recover the image step
by step. MAE incorporates NL blocks between the downsam-
pling network and the upsampling network and uses SCA to fuse
features at the same scale. Thus, MAE can adequately exploit
the semantic features of the MSI and preserve details in each
band.

In Fig. 1, the orange frame section is the encoder. The first
convolutional layer of the encoder is a 3× 3 convolution with
a step size of 1. It is used for shallow feature extraction. The
remaining four convolution blocks are identical in structure, each
consisting of two convolution layers. The first convolution layer
has a convolution kernel of size 3× 3with stride 2. The second
convolution layer has a convolution kernel of size 3× 3 and a
step size of 1.

As can be seen from Fig. 1, the decoder of the MAE consists
of convolutional layers and spatial cross-attention modules. All
modules contain upsampling and batch normalization opera-
tions. Incorporating batch normalization between the convo-
lution and the rectified linear unit (ReLU) prevents gradient
disappearance and explosion while accelerating network conver-
gence. In the proposed UMAG-net, instead of using the encoder
and decoder features as the output directly to obtain HSI, the
different scale features are input to the guided network for
further processing to obtain a better HSI reconstruction. SCA
block is used to fuse all features of the encoder and decoder,
highlighting effective salient features that contribute to HSI-MSI
fusion while suppressing irrelevant information in the input
image. The structure of the SCA block is shown in Fig. 2.

The spatial attention (SA) block [41] is shown in the red
frame in Fig. 2. Let Xl denote the input encoder low-level
features and Xh denote the decoder high-level features. For
SA, the feature map size is assumed to be c× h× w, where
c is the number of input channels, and h and w are the width
and height of the feature map, respectively. SA first reduces the
dimensionality of X by using parallel point convolution ϕ, and
we can obtain the compressed featuresX ′

l andX ′
h of the encoder

and decoder. Then the compressed features are summed. After
that, the feature with a channel number of 1 is then obtained by
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Fig. 2. Cross-space attention blocks.

Fig. 3. NL blocks.

the ReLU function [denoted by ReLU(·)] followed by another
point convolution [denoted byϕ1(·)]. Finally, the pixel attention
weight Wp is obtained by the Sigmoid function, which is shown
as

Wp = σ (ϕ1 (ReLU (X ′
l +X ′

h))) . (4)

Recalibration of the encoder low-level features Xl by using
weight Wp, i.e.,

Xal = WpXl. (5)

Although SA blocks can effectively suppress irrelevant re-
gions in the input image and do a better job of highlighting
salient features that are useful for a particular task, their results
may contain noise. Therefore, SCA blocks are used for feature
enhancement of images. The SCA block consists of two SA
blocks, as shown in Fig. 2. Let outputs of the two SA blocks
be Xal and Xah, respectively. Cascade the two (the cascade is
denoted by ©) and obtain the feature with channel number 1 by
point convolution ϕ. Finally, we can obtain the final feature by
the ReLU function as follows:

Xlh = ReLU (ϕ (Wp1Xl©Wp2Xh)) . (6)

As can be seen from Fig. 1, the MAE constructed in this article
is different from other end-to-end encoder–decoder networks in
which its encoder features will also enter the guided network
through the upsampling block. Therefore, it is not appropriate
to use all encoder features as input of the decoder.

An NL block is incorporated between the encoder and de-
coder to capture the interaction information between all pixels,
which helps the network better extract the contextual semantic
information. Fig. 3 shows the structure of the NL block.

For the input feature map, let X denote the feature map with
a size of C × h× w, where C represents the count of channels,
and h and w denote the height and width of X , separately. The
feature enhancement block first uses point convolutionϕ onX to
produce featuresX1,X2, andX3 with a three-way channel count
halved and the size is c× h× w (c = 0.5C). The three-way
features can be reshaped into a 2-D matrix of size c× hw. The

Fig. 4. Structure of the UG block.

first two features are multiplied by the Softmax function to obtain
the weight of each pixel, which can be expressed as

W = σ(XT
1 X2) (7)

where W ∈ Rhw×hw, σ is the Softmax function, and T denotes
the transpose. The third way feature X3 is multiplied by the
weighting factor W to obtain the weighted feature Wa(Wa ∈
R0.5c×h×w). By applying the point convolution function and
batch normalization to the weighted feature Wa, we can recover
the number of channels to get a feature Fw of the same size
as the input features. Finally, the output features Xout are ob-
tained through jump connections that can facilitate information
dissemination and recovery, which is shown as follows:

Xout = ϕ(Wa) +X. (8)

The NL feature enhancement block enhances the feature map
representation by encoding a wider range of semantic informa-
tion into the local receptive field. It is worth noting that this
block has no restriction on the input size of the feature map and
is less computationally intensive.

2) Multiscale Guided Network: In image fusion, it will in-
evitably lose some of the effective information only by using
the coder and decoder result as the output. And a single coder-
decoder structure cannot retain both shallow and deep features
of the image. Therefore, an MSFG network combined with the
output of MAE is constructed for image fusion.

MSFG contains three structures: convolutional layers, UG
blocks, and LG blocks. In MSFG, the MAE encoder extracts
multiscale features of MSI as the input to the UG block, whereas
the MAE decoder features are used as the input to the LG block.
So that the MSFG can fully extract the multiscale features of
the MSI image to achieve the final image fusion to accurately
recover the HSI image detail information and finish the HSI-MSI
fusion.

Bilinear interpolation upsampling may result in an image too
smooth to effectively recover the boundaries and fine structures
of the image. Therefore, we use the same structure in [35] for
the upsampling operation with the upsampling module, whose
structure is shown in Fig. 4.

As shown in Fig. 4, the UG block consists of SA gates
and channel normalizations. The SA gate consists of point
convolutions, LReLU, and sigmoid function, which is effective
in ensuring the spatial localization of MSIs when processing
MSI features. Notably, the two input features of the upsampling
module have the same scale.

The Laplacian attention block consists of an adaptive mean
pooling layer, convolutional layers, activation functions, and a
cascade function, the structure of which is shown in Fig. 5.

Let the Average(·) function denote the adaptive average
pooling layer in the LG block, φk(·)(k = 3, 5, 7) denote the
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Fig. 5. LG block structure.

convolution kernel size of 3× 3, the convolution operation with
padding and dilation of k, respectively. And let σ(·) denote the
activation function. The features from the encoder are pooled
and then convolved by three convolutions, and we can obtain
multiscale features f3, f5, and f7, which is shown as⎧⎨

⎩
f3 = φ3(Average(En))
f5 = φ5(Average(En))
f7 = φ7(Average(En))

. (9)

Subsequently, the cascaded multiscale feature (f3©f5©f7) is
passed through a convolution layer and an activation function to
obtain the following features:

Dφn = σ(ϕ(f3©f5©f7)). (10)

Feature Nn in the guided network is obtained as feature
weights Wf through an attention gate, which consists of point
convolution, LReLU, and sigmoid functions. Wf can be ex-
pressed as

Wf = σ(LReLU(ϕ(Nn))). (11)

Laplacian attention ensures that the input features are aligned
with the features of the MSI while extracting image features at
multiple scales. The whole weighing process can be expressed
as follows:

Noutn = LReLU(Wf ⊗Dφn). (12)

C. Loss Function

Let X ∈ RW×H×L, Y ∈ RW×H×l, and Z ∈ RW×H×l de-
note HR-HSI, HR-MSI, and LR-HSI, respectively. If X̃ denotes
the estimated HR-HIS, the loss function can be defined as

L(X̃, Y, Z) =
∥∥∥RX̃ − Z

∥∥∥2
F
+ λ

∥∥∥X̃D − Y
∥∥∥2
F

(13)

where R is the SRF and D is the spatial downsampling function.
The first term measures the spectral similarity betweenX andZ,
and the second term measures the spatial similarity between X
and Y . λ is the balance term, which is used to adjust the balance
between the two, which is set to 0.1.

IV. EXPERIMENTAL RESULTS

A. Datasets

To test the effectiveness of UMAG-Net, two public datasets,
the Columbia Computer Vision Laboratory dataset (CAVE) [44]
and the Harvard database [45], are chosen for the experiments.

Fig. 6. Examples of RGB images from the CAVE dataset (first row) and the
Harvard dataset (second row). (a) Balloons. (b) Beer. (c) Toys. (d) Feathers. (e)
Flowers. (f) Img 1. (g) Img b2. (h) Img b6. (i) Img d9. (j) Img f2.

The first dataset contains 32 high-quality indoor HSI of size
512× 512captured by a universal classification pixel camera.
Each HSI in the CAVE dataset has 31 bands starting at 400 nm
and covering a wavelength range of 300 nm with 10 nm intervals.
The Harvard dataset contains 50 images of size 1024× 1024.
Each HSI has 31 bands covering the wavelength range from 420
to 720 nm at 10 nm intervals. Fig. 6 shows the RGB images from
CAVE and Harvard datasets.

B. Experimental Setup

1) Compare Methods: To verify the reliability and validity
of UMAG-Net, we compared our method with seven MSI-HSI
fusion algorithms. The first two methods among the seven
methods are deep learning based methods, whereas the last five
are traditional MSI-HSI fusion methods. Deep learning based
MSI-HSI fusion methods include: 1) MSI-HSI fusion method
based on MS/HS fusion networks (supervised deep learning
model, MHF) proposed in [32]; 2) MSI-HSI fusion method
based on GDD networks (unsupervised deep learning model,
GDD) proposed in [35]. Traditional MSI-HSI fusion methods
include the following.

1) MSI-HSI fusion method based on coupled nonnegative
matrix factorization (CNMF) proposed in [18].

2) MSI-HSI fusion method based on nonlocal sparse tensor
factor decomposition (NLSTF) proposed in [23].

3) Semiblind MSI-HSI fusion method based on nonlocal
sparse tensor factor factorization (NSTF) proposed in [25].

4) MSI-HSI fusion method based on local low-rank coupled
spectral factorization (LRCS) proposed in [46].

5) MSI-HSI fusion method based on low-rank tensor training
rank representation (LTTR) proposed in [47].

Only MHF needs to be trained in the traditional method. We
use the code published by the author in the corresponding paper
for the test data. Our method is implemented under Pytorch
1.5.1 framework running in the Windows 10 environment with
Intel(R) Xeon(R) Silver 4214R CPU @ 2.40 GHz and NVIDIA
GeForce RTX 2080 Ti GPU.

2) Evaluation Metrics: Together with evaluating the per-
formance of each fusion method by subjective visualization,
seven objective evaluation metrics are presented for better
evaluation The objective evaluation indicators adopted in this
article are: correlation coefficient (CC), the mean of absolute
error (MoAE), relative dimensionless global error in synthesis
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(ERGAS) [48], peak signal-to-noise ratio (PSNR), root-mean-
square error (RMSE), spectral angle mapper (SAM) [49], struc-
tural similarity (SSIM) [50], and universal image quality index
(UIQI) [51], which are described in the following.

The similarity of the content of an image is determined by the
score, CC is mainly used to score the similarity of the content
between two images, which is defined as

CC = ∑M
i=1

∑N
j=1 (X̃(i, j)− ¯̃X)(X(i, j)−X̄)√(∑M

i=1

∑N
j=1 (X̃(i, j)− ¯̃X)2

)(∑M
i=1

∑N
j=1 (X(i, j)−X̄)2

)
(14)

where X denotes the GT, X̃ denotes the estimated HSI, and
M ×N denotes the image size. CC in HSI fusion is calculated
as averaged over all bands. The larger the CC is, the nicer the
fusion image can be.

MoAE is the mean of the absolute error. And it is often used
to indicate the magnitude of the difference between two images.
The definition of MoAE is as follows:

MoAE =
1

MN

M∑
i=1

N∑
j=1

∣∣∣X (i, j)− X̃ (i, j)
∣∣∣ (15)

where X denotes GT, X̃ denotes the estimated HSI, and m
denotes the pixels number in data X . A smaller MoAE indicates
that the error between the fused image and the GT is smaller.

RMSE is often used to indicate the similarity between two
images. The smaller its value is, the better the image is. Let the
size of X and X̃ be M ×N . The mean square error is defined
as

RMSE =

√√√√ 1

MN

M∑
i=1

N∑
j=1

∣∣∣X (i, j)− X̃ (i, j)
∣∣∣2 (16)

where X(i, j) indicates the pixel value of image X at position
(i, j) and X̃(i, j) indicates the pixel value of image X̃ at position
(i, j).

PSNR is a full reference image quality evaluation metric,
which is often a representation of the degree of difference
between two images. It is often defined through the mean squared
error and can be expressed as

PSNR = 10log10

(
MAX

RMSE

)2

= 20log10

(
MAX

RMSE

)
(17)

where MAX denotes the maximum value of the image color.
PSNR of HSI is defined as the average of all bands. A higher
PSNR value indicates that the difference between the fused
image and the original image is less, and more detail is preserved.

ERGAS is expressed as a synthetic error for all bands, i.e.,

ERGAS(X, X̃) =
100

d

√√√√ 1

S

S∑
i=1

(
RMSE(Xi, X̃i)

μ(X̃ii)

)2

(18)

where d is the spatial subsampling factor, μ denotes the mean
value of the image, and S denotes the band number. A smaller

ERGAS indicates a higher spectral agreement between the two
images.

As an indispensable index for evaluating spectral distortion,
SAM is defined as

SAM(X, X̃) =
1

M

M∑
j=1

arccos
〈X, X̃〉

‖Xj‖2
∥∥∥X̃j

∥∥∥
2

(19)

where M is the number of spectral pixels, and 〈〉 is the inner
product of the two vectors. Smaller SAM indicates less spectral
distortion.

SSIM measures the similarity of two images. The value of
SSIM would be 1 when the two images are identical. As an
implementation of structural similarity theory, SSIM defines
information about the structure in terms of image composition
as a property that reflects the structure of objects in a scene,
irrelevant of luminance and contrast. Distortion is expressed as
a combination of structure, luminance and contrast. The mean
is used as an estimate of brightness, the standard deviation as an
estimate of contrast, and the SSIM is measured by covariance

SSIM =
(2μXμX̃ + c1) (σXX̃ + c2)(

μ2
X + μ2

X̃
+ c1

)(
σ2
X + σ2

X̃
+ c2

) (20)

where μX and μX̃ represent the mean ofX and X̃ , respectively,
σX and σ

X̃
represent the variance of them, respectively, and

σXX̃ denotes the covariance of them. To maintain stability,
constants c1 = (pD)2 and c2 = (qD)2 are employed, where
p = 0.01 and q = 0.03. The dynamic range of the pixel values,
denoted byD , is usually set to 255. The smaller the gap between
SSIM and 1, the better the fusion result will be.

UIQI evaluates the effect of the fusion image by measuring
the correlation loss, brightness distortion, and contrast distortion
between the fusion image and the source image. The UIQI of
two images X and X̃ is defined as

UIQI(X, X̃) =
σ
X,X̃

σXσ
X̃

2X̄ ¯̃X

X̄2 + ¯̃X
2

2σXσ
X̃

σ2
X + σ2

X̃

(21)

where σ and μ represent the variance and mean, separately. The
CC of X and X̃ , given in the first term, is a measure of the linear
correlation between the two images and has an optimum value
of 1. Linear correlation does not suggest that there is no relative
distortion between images. Thus, the second and third terms are
used to assess the relative distortion. The second term is used
to measure the proximity of the average brightness between the
two images, which obtains the best value of 1 when the average
brightness is equal. σX and σ

X̃
can be regarded as the contrast

estimation of X and X̃ . The third term can measure the degree
of contrast similarity between images. When and only when σX

is equal to σ
X̃

, the third term obtains the optimum value of 1. A
larger UIQI value indicates a better effect of image fusion.

C. Experimental Results

1) Experiments Based on CAVE Dataset: When these meth-
ods are tested on the CAVE dataset, the HR-HSI is given 32-
fold downsampling to obtain the LR-HSI. The HR-HSI is then
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TABLE I
OBJECTIVE EVALUATION METRICS FOR EACH FUSED IMAGE ON THE CAVE DATASET

Fig. 7. RGB image of each fusion algorithm for the flower image. (a) GT. (b) GDD. (c) LTTR. (d) MHF. (e) NLSTF. (f) NSTF. (g) LRCS. (h) CNMF. (i) Our.

spectrally downsampled with the Nikon D700 SRF to generate
an HR-MSI. Although the proposed method does not require
training data, there are deep learning methods that need to
be trained in the comparison algorithm. The CAVE dataset is
divided into a training set and a test set. 12 images are selected
for testing and the remaining 12 images are utilized for model
training of the comparison methods.

12 randomly selected images on the CAVE dataset are tested
and the objective evaluation metrics obtained from 12 images
are averaged to obtain the final objective evaluation metrics of
each fusion method. Table I presents the test results. In Table I, ↓
indicates that a smaller value for an objective indicator is better
and ↑ indicates that a larger value for an objective indicator is
better. The best results of the objective indicator are bolded,
whereas the second best results are underlined.

In Table I, obviously, the objective evaluation metrics of
UMAG-Net and MHF are far superior to other methods. How-
ever, MHF needs 20 images for model training in advance,
whereas the proposed method can obtain better image fusion
results without training data. Notably, compared to MHF, the
SAM value of the proposed algorithm is reduced by 8.7%,
which shows that the spectral distortion of the HSI fusion image
obtained by UMAG-Net is much smaller than MHF. Although
the overall performance of GDD is not as good as MHF and the
proposed method, it still yields better results than NLSTF and
LTTR in terms of detail preservation and spectrum preservation.

NSTF has the most serious spectral distortion because of its
semiblind fusion. CNMF and LRCS have a relatively large
spectral distortion due to the consideration of coupling and
unmixing mechanisms.

To intuitively observe the performance of each method, a set
of test images is randomly selected to show. Fig. 7 shows RGB
images generated from the fused image obtained by each image
fusion method. The petal areas with rich features (green box and
red box) are selected to enlarge. Fig. 7 shows that GDD, MHF,
and UMAG-Net can better restore image details, and the color
fidelity is better. The color of CNMF is distorted in some areas
and the image details cannot be recovered well. LRCS, LTTR,
NLSTF, and NSTF have problems such as blurring and loss of
fine structures at the petal boundaries.

To provide a visual representation of the effect of each image
fusion method, the error maps of the fusion results and the GT
at each band are plotted. Fig. 8 shows the error map for the 10th
band of the flower image in the CAVE dataset, with Reference
indicating the HSI in the 10th band, whereas Fig. 9 shows the
error map for the 28th band of the flower image in the CAVE
dataset, with Reference indicating the HSI in the 28th band.

From the results in Fig. 8, it is noticeable that the errors pro-
duced by UMAG-Net and NLSTF are smaller, but UMAG-Net
has a better fusion effect at the left rear flower. GDD and LTTR
have obvious errors at the lower left square. MHF with excellent
quantitative performance has a serious error at the center of the
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Fig. 8. Error map for the 10th band of each fusion algorithm for the flower image. (a) Reference. (b) GT. (c) GDD. (d) LTTR. (e) MHF. (f) NLSTF. (g) NSTF.
(h) LRCS. (i) CNMF. (j) Our.

Fig. 9. Error map for the 28th band of each fusion algorithm for the flower image. (a) Reference. (b) GT. (c) GDD. (d) LTTR. (e) MHF. (f) NLSTF. (g) NSTF.
(h) LRCS. (i) CNMF. (j) Our.

image. LRCS has more errors at the pistil. NSTF has more errors
at the rear leaf. And CNMF has obvious error in a large area and
performs the worst.

In Fig. 9, UMAG-Net still maintains a good fusion effect in
the 28th band. In contrast, the fused images of the remaining
two deep learning methods (GDD and MHF) have severe loss
of detail at the edges of the flowers and the fused image of MHF
even has bad artificial texture in the background. The fusion
results of the traditional methods generally performed poorly in
the bands at the back. NLSTF, which performs better in band 10,
shows significant block errors in band 28. And the fused images
of LTTR, NSTF, LRCS, and CNMF show significant errors at
the petals and leaves.

2) Experiments Based on Harvard Dataset: The HSI in the
Harvard dataset is cropped into blocks of size 1024× 1024.
Downsampling by a factor of 32 used HR-HSI to obtain LR-HSI.
And HR-MSI is obtained by down-sampling HR-HSI spectrum
using the Nikon D700 SRF. Since MHF requires training data,
the Harvard dataset is divided into a training set and a test set.
In total, 20 images are selected as test images, whereas the
remaining 30 HSIs are used for training.

In all, 20 randomly selected images on the Harvard dataset
are tested and then the objective evaluation metrics obtained
by each method on the 20 images are averaged to obtain the
final objective evaluation metrics for each fusion algorithm, as
presented in Table II. In Table II, ↓ indicates that a smaller
value for an objective metric is better and ↑ indicates that a
larger value for an objective metric is better. The best results for
objective metrics are bolded, whereas the second best results are
underlined.

In Table II, all the metrics of the UMAG-Net are opti-
mal except for the UIQI metric on the Harvard dataset. Even
on the UIQI metric, a very small gap of 0.0061 appears
between UMAG-Net and the optimal value, which fully il-
lustrates the advantage of the proposed method in HSI-MSI
fusion.

Compared to the CAVE dataset, fusion of HSIs on the Harvard
dataset is relatively less difficult. In order to visualize the effect
of fusion of each method, a random set of images from the
Harvard dataset is selected to show the fused images of each
algorithm. Fig. 10 shows the RGB images obtained by spectral
downsampling of the fused images from Imgf2. Two regions,
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TABLE II
OBJECTIVE EVALUATION METRICS FOR EACH FUSED IMAGE ON THE HARVARD DATASET

Fig. 10. Imgf2 image of each fusion algorithm RGB image. (a) GT. (b) GDD. (c) LTTR. (d) MHF. (e) NLSTF. (f) NSTF. (g) LRCS. (h) CNMF. (i) Our.

Fig. 11. Error map for band 12 of the Harvard dataset Imgf2. (a) Reference. (b) GT. (c) GDD. (d) LTTR. (e) MHF. (f) NLSTF. (g) NSTF. (h) LRCS. (i) CNMF.
(j) Our.

the window edge (green box) and the tree trunk (red box), are
selected for magnification.

For an intuitive understanding of the effectiveness of each
image fusion method, the error maps of the fused image and the
GT in each band are plotted. Fig. 11 shows the error map for
the 12th band of the Imgf2 image in the Harvard dataset, with
Reference indicating the HSI in the 12th band, whereas Fig. 12
shows the error map for the 26th band of the Imgf2 image in the

Harvard dataset, with Reference indicating the HSI in the 26th
band.

Fig. 11 shows that the visual effect of the fusion results
from the proposed method, GDD, and the traditional method
LTTR (which relies on complex a priori knowledge) is better.
Compared to GDD, the reconstruction error of our method is
smaller at the light pole and window of the house on the left. The
reconstruction error of our method at the tree trunk on the left
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Fig. 12. Error map for band 26 of the Harvard dataset Imgf2. (a) Reference. (b) GT. (c) GDD. (d) LTTR. (e) MHF. (f) NLSTF. (g) NSTF. (h) LRCS. (i) CNMF.
(j) Our.

Fig. 13. RGB images generated from the fusion results of each model. (a) GT. (b) w/o–SCA. (c) w/o–LG. (d). w/o–NL. (e) UMAG.

side is smaller compared to LTTR. Other methods have obvious
local errors, such as the left border of the chimney in the fusion
image of MHF, the chimney and street light in the fusion image
of CNMF and the right rear house in NLSTF, NSTF, and LRCS
fusion results.

Fig. 12 shows the error map for band 26 of the Harvard dataset.
In band 26, deep learning methods that do not require pre-
trained models (GDD and the proposed method) still maintain
good reconstructions, whereas fused images from deep learning
methods that require training (MHF) and traditional algorithms
(CNMF, NLSTF, NSTF, LRCS, and LTTR) have obvious local
reconstruction errors.

D. Ablation Experiments

To better illustrate the validity of the proposed model, the
role of each part of the proposed network structure is analyzed.
Table III gives the effects of the three components (the spatial
cross-attention block, the LG block, and the NL block) on the
fusion results of CAVE dataset. w/o-SCA denotes the network
model of UMAG-Net without the spatial cross-attention block,
w/o-LG denotes the network model of UMAG-Net without the
LG block, and w/o-NL denotes the network model of UMAG-
Net without the NL block.

In Table III, UMAG shows the best performance. And by
reducing anyone block, the network performance will be de-
graded to some extent. After removing the SCA block, the
indicators become significantly worse. Among them, the SAM

TABLE III
COMPARISON OF THE RESULTS OF THE REMOVAL OF A MODULE WITH THE

UMAG RESULTS

value is reduced by 0.6053 and the PSNR value is reduced by
0.9934, which indicates that the SCA block can better recover
the spatial details and maintain the spectral properties compared
with the traditional cascade method. After removing the NL
or LG blocks, there are different degrees of deterioration in
the indicators. For example, the PSNR values of w/o-NL and
w/o-LG are reduced by 0.9247 and 0.4841, respectively, which
indicates that the NL and LG blocks can better extract MSI
features and thus are more conducive to the retention of image
details.

For an intuitive view of the fusion effect of each algorithm,
a set of randomly selected images from the CAVE dataset is
shown to display the RGB images generated by the fused images
of each method, as shown in Fig. 13. The top right corner of
the white feather (red box) and the bottom right corner of the
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Fig. 14. Ablation experiment error map. (a) Reference. (b) GT. (c) w/o–SCA.
(d) w/o–LG. (e) w/o–NL. (f) UMAG.

yellow feather (green box) are zoomed in. In Fig. 13, the fused
images from w/o-SCA, w/o-LG, and w/o-NL are presented. The
white feather in the red box has blurred edges and artifacts
in the background, the yellow feather in the green box has
incorrect texture recovery at the notch, whereas the fused image
obtained by UMAG-Net has clearer and more accurate feather
boundaries.

Similarly, an error map of the fused image and the GT image
at band 28 is presented in Fig. 14.

In Fig. 14, Reference denotes the 28th band HSI image. It
can be clearly seen that w/o-SCA is poorly fused at the feather
border, losing a lot of detailed texture, whereas w/o-LG and
w/o-NL are poorly fused in the lower part of the green feather,
losing a lot of detailed texture; UMAG-Net maintains the feather
edge detail and the edges between the squares at the top of the
picture.

V. CONCLUSION

In this article, an UMAG-Net without training data is proposed
for the HSI-MSI fusion. In the proposed UMAG-Net, the MAE
network is used for deep extraction of multiscale image features
from MSIs and the UG block is used to generate HR-HSIs.
Features at different scales in encoder and decoder are injected
into the upsampling attention network via LG blocks, and the
network takes random noise as input. Spatial detail and spectral
features of HSI and MSI are fully leveraged by UMAG-Net.
Compared with other HSI-MSI fusion methods, the proposed
method achieves optimum image fusion results.
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