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Abstract—Synthetic aperture radar (SAR) images are inherently
degraded by the speckle noise due to the coherent imaging, which
may affect the performance of subsequent image analysis task.
To address this problem, a weighted sparse representation-based
method is proposed in this article for SAR image despeckling. The
homomorphic transformation is first adopted to convert multiplica-
tive noise into additive one. Second, similar patches are grouped
together to learn the adaptive dictionaries and sparse coefficients
based on nonlocal self-similarity constraint. Moreover, weighted
regularizations are adopted for coefficients to boost the perfor-
mance. Finally, despeckling images are obtained via exponential
transformation. Experimental results on synthetic and real-world
SAR images demonstrate that our proposed method outperforms
several state-of-the-art methods in terms of both quantitative mea-
surements and visual quality.

Index Terms—Despeckling, dictionary learning, nonlocal self-
similarity, sparse representation, synthetic aperture radar (SAR).

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) imaging has been widely
used in the field of remote sensing owing to its all-day and

all-weather acquisition capability. However, SAR images are
inherently degraded by the speckle noise due to the coherent
nature of the scattering phenomena. The speckle noise may
hamper the performance of subsequent image analysis tasks
such as terrain classification and target detection [1], [2]. Thus,
SAR image despeckling is essential to improve the quality of the
image, and it is usually apreprocessing operator for subsequent
tasks.

In the past few decades, lots of despeckling methods
have been proposed to recover noise-free SAR images from
the degraded ones. The earlier proposed spatial-domain filters
were Lee filter [3], Frost filter [4], and Kuan filter [5]. In these
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methods, the SAR speckle noise is treated as a multiplicative
one. Based on the local image statistics, despeckling is car-
ried out according to the minimum-mean-square-error (MMSE)
criterion or the maximum-a-posteriori (MAP) criterion. The
despeckling performance is highly dependent on the parameters
of the local window. Moreover, despeckling methods in the
wavelet domain are also proposed. The homomorphic filtering
is first adopted to convert multiplicative noise into additive one,
then the speckle noise is removed based on the normal inverse
Gaussian model [6]. The undecimated wavelet transform and
the MAP criterion are combined, and the distribution of speckle
noise in wavelet domain is approximated as a Laplacian and
a Gaussian function [7]. Except for wavelet domain, similar
image patches are denoised by the linear minimum mean-square
error (LMMSE) filtering in principal component analysis (PCA)
domain [8], [9]. These transform-domain-based methods are su-
perior to the spatial-domain filters in terms of edge preservation,
but they tend to generate artifacts [10].

In addition, nonlocal mean (NLM)-based denoising strategy
is adopted in the field of SAR image despeckling, and the
representative methods are the probabilistic patch-based (PPB)
algorithm [11] and synthetic aperture radar block matching 3D
(SARBM3D) [12]. This NLM-based approach utilizes the simi-
larity between the targeted and its surrounding patches to obtain
the weight for pixel averaging in a nonlocal region. In [13], the
NLM-based methods are summarized with three steps: defining
patch similarities, estimation of radar properties, and reprojec-
tion to image space. For the PPB [11], the statistical similarity
criterion is proposed to select the most similar patches for a
target patch, leading to better despeckling results than using the
Euclidean distance measurement. Ferraioli et al. [14] propose
a ratio-patch-based similarity criterion to select similar pixels.
The ratio patch is defined between the patch containing the pixel
to be restored and that containing a candidate similar pixel.
Inspired by block matching 3D (BM3D, designed for Gaussian-
distributed noise removing) [15], Parrilli et al. [12] propose the
SARBM3D, aiming to remove the speckle noise in SAR images.
In SARBM3D [12], the local linear MMSE estimation criterion
and undecimated wavelet are adopted to boost the despeckling
performance. Although SARBM3D [12] provides an excellent
performance for SAR image despeckling, it is time consuming
and unsuited to time-critical applications. A fast adaptive non-
local SAR despeckling (FANS) [16] is proposed to reduce the
execution time. The strategy of variable-size searching area and
probabilistic early termination is adopted to speed up the block
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matching. Besides, the distance is calculated through lookup
tables to accelerate this algorithm. The variational model-based
methods provide another available way to remove the speckle
noise, such as in [17] and [18], in which despeckling problems
are transformed to minimize some energy functions.

In recent years, machine learning-based methods are proposed
and show promising results in the field of SAR image despeck-
ling [19]–[25]. These methods mainly include: low-rank repre-
sentation [19], [20], sparse representation [21], [22], and deep
convolutional neural network (CNN) [23]–[25]. In [19], similar
patches are grouped and low-rank constraint is used to remove
the speckle noise. Moreover, a boosting recursive method is
adopted to boost the performance. For sparse representation-
based model patch ordering and transform domain filtering
(POTDF) [22], image patches are ordered and processed by
two-stage filtering. The overcomplete dictionary is learned by
the K singular value decomposition (KSVD) method [26] in
the first stage, and then, 2-D wavelet is used for refined fil-
tering. The overcomplete dictionary is not optimal to encode
the whole image, and despeckling results are oversmooth (see
experimental results). Since deep learning has been success-
fully adopted in the field of image restoration, Chierchia et
al. [23] first propose the SAR-CNN for SAR image despeckling.
This network is designed to recover additional noise by using
logarithmic operation to input images. The network comprises
17 full convolutional layers, and the residual learning is used.
Instead of using homomorphic transformation, an end-to-end
despeckling network image despeckling CNN [24] is proposed.
This network is trained using Euclidean measurement and to-
tal variation constraint as loss function. Moreover, the guided
filtering is integrated into the CNN [25] to remove the speckle
noise. All these deep learning-based methods do outperform
the conventional methods on simulated data. However, these
networks are learned in a supervised way and it is difficult to
simulate all the noise conditions, yielding nonideal despeckling
results for unknown noise in real applications.

In this article, a weighted sparse representation-based method
is proposed for SAR image despeckling. As same as the most
despeckling methods [19], [22], [23], the homomorphic trans-
formation is first adopted to convert multiplicative noise into
additive one. The similar patches are grouped together to learn
the adaptive dictionaries. The nonlocal self-similarity constraint
is adopted in the stage of dictionary learning. Moreover, for a tar-
get patch, weighted regularizations are adopted for coefficients
to learn its sparse coefficients. Finally, despeckling images are
obtained via exponential transformation and patch averaging.
Experimental results on synthetic and real-world SAR images
demonstrate that our proposed method outperforms several
state-of-the-art methods in terms of quantitative measurements
and visual quality. Our main contributions can be summarized
as follows:

1) a weighted sparse representation model is proposed to
address SAR image despeckling, which is different with
the conventional model;

2) the local and compact dictionaries are learned instead of
learning overcompleted ones, which is more suitable to
encode different image structures.

II. SAR IMAGE DESPECKLING BASED ON WEIGHTED

SPARSE REPRESENTATION

SAR image despeckling aims to recover a noise-free image
x from the degraded data y, and the speckle noise n is usually
treated as multiplicative one [27]. The relationship between y
and x can be formulated as

y = x� n (1)

where � denotes Hadamard product. As established in [27], the
intensity of the speckle noise obeys the Gamma distribution.
Thus, the probability density function of each element in noise
can be defined as

p(n) =
LLnL−1

Γ(L)
exp (−nL), n ≥ 0 (2)

where L and Γ() are the equivalent number of looks (ENL) and
the Gamma function, respectively. The ENL parameter can be
estimated by the method in [28], which is a lookup-table-based
one, so it is known for this task. To convert multiplicative noise
into additive one, the logarithmic transformation is carried out
to (1), and the model is rewritten as

ln (y) = ln (x) + ln (n). (3)

Since the mean of ln(n) is nonzero, a bias correction [22] is
used to (3). The corrected image yc can be formulated as

yc = ln (y)− ψ(0)(L) + ln(L) = xc + nc (4)

where ψ(r)(·) is the polygamma function with the order of r.
xc and nc are the bias-corrected versions of ln(x) and ln(n),
respectively. The distribution of bias-corrected noise tends to
become Gaussian with the increase of ENL [22], thus nc can be
treated as Gaussian-distributed noise to be removed. According
to the sparse representation theory [29], [30], the SAR image
despeckling question can be transformed to minimize the fol-
lowing problem:

{Φ∗,α∗} = argmin
Φ,α

{
‖yc −Φα‖22 + λ‖α‖1

}
(5)

where λ is regularization parameter, and Φ and α represent
dictionary and sparse coefficients, respectively. After obtaining
dictionary Φ∗ and sparse coefficients α∗, the noise-free image
can be recovered as x = exp(Φ∗α∗).

Instead of directly learning the dictionary and sparse coeffi-
cients [formulated in (5)] on the whole image, the commonly
used strategy of patch processing is adopted. For a p× p patch,
it is extracted from xc ∈ RMN and denoted by xi = Ri(xc) ∈
Rp2

, where Ri(·) is the extracting operator and Ri(xc) denotes
that the ith patch is extracted from xc; and M and N represent
the number of row and column, respectively. Correspondingly,
the ith patch ofyc can be denoted byyi. Equation (5) is modified
as follows:

min
Φi,αi

{
‖yi −Φiαi‖22 + λi‖αi‖1

}
, i = 1, 2, 3, . . . ,K (6)

where K is the number of extracted patches, and K =
(�M − p�/s+ 1) ∗ (�N − p�/s+ 1)with the stride of s. Thus,
SAR image despeckling problem is transformed to learn dictio-
nary and sparse coefficients for each patch.
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TABLE I
PSNR RESULTS ON THE TEN TESTING IMAGES UNDER SIMULATED SPECKLE NOISE

Best results are in bold font.

Fig. 1. Ten testing images. From left to right and top to bottom: Monarch,
Barbara, Boat, Cameraman, Couple, Hill, House, Man, Peppers, and Straw.

Fig. 2. Despeckling results under different noise levels on the Monarch testing
image. From the second row to bottom, despeckling results are obtained by using
Ours_nw and ours.

A. Dictionary Learning

The local and compact dictionary learning [29]–[31] is com-
monly used in the field of image restoration and it shows promis-
ing results. To better encode the local structure of SAR images,
a local and compact dictionary learning is adopted instead of
learning a globally overcomplete dictionary.

For a patch xi, its nonlocal self-similar patches can be ob-
tained in a large enough window according to the distance with
xi. The statistical similarity criterion is proposed to select the
most similar patches for a target patch, leading to better despeck-
ling results than using the Euclidean distance measurement [11].
Thus, the distance between xi and xj can be formulated as

d (xi,xj) =

p2∑
k=1

ln

[√
xi(k)

xj(k)
+

√
xj(k)

xi(k)

]
. (7)

A patch xik is selected as a similar patch to xi if the distance
d is not greater than a preset threshold. In fact, the first m
most similar patches are selected, and they are grouped to-
gether, denoted by Xi = [xi1,xi2, . . . ,xim] ∈ Rp2×m. Thus,
the adaptive dictionary Φi of xi can be obtained using singular
value decomposition as

Xi = V ΛV T = ΦiΛV T (8)

where Φi is an orthonormal matrix composed by the eigen-
vectors, and Λ is the diagonal matrix of eigenvalues. Since the
eigenvectors represent the structural variations and are used to
encode the image patches [32], the dictionary is learned based
on (8).

B. Sparse Coefficients Updating

Based on the learned dictionary, the sparse coefficients of
xi can be obtained according to (6). However, the larger the
eigenvalue is, the more important the corresponding eigenvector
in Φi is. Thus, the sparse coefficient over the eigenvector should
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TABLE II
SSIM RESULTS ON THE TEN TESTING IMAGES UNDER SIMULATED SPECKLE NOISE

Best results are in bold font.

be less sparse. The weighted sparse representation model can be
formulated as

min
αi

{
‖yi −Φiαi‖22 +

∥∥wT
i αi

∥∥
1

}
, i = 1, 2, 3, . . . ,K (9)

where wi is the weighted vector and it is related to the eigen-
values. Moreover, wi can be determined in the perspective of
MAP estimation

α∗
i = argmax

αi

{ln (P (yi|αi)) + ln (P (αi))} . (10)

The first term ln(P (yi|αi)) corresponds to the likelihood, and
it can be characterized by the distribution of noise. Hence, we
have

P (yi|αi) =
1√
2πσi

exp

(
−‖yi −Φiαi‖22

2σ2
i

)
(11)

where σ2
i = ψ(1)(L) is the standard deviation of noise [33]. The

prior termP (αi) is assumed to follow the Laplacian distribution,
and all elements are independent and identically distributed.
Thus

P (αi) =

p2∏
k=1

(
c√
2λk

exp

(
−c

√
2 |αi(k)|
λk

))
(12)

where λk =
√

diag(Λk) and c is a constant. Substituting (11)
and (12) into (10), we have

min
αi

⎧⎨
⎩‖yi −Φiαi‖22 +

p2∑
k=1

c ∗ 2√2σ2
i

λk
|αi(k)|

⎫⎬
⎭ . (13)

Compared with (9), the weighted vector wi is estimated as

wi(k) =
(
c ∗ 2

√
2σ2

i

)
λk. (14)

Algorithm 1: Despeckling via weighted sparse
representation.

Input: Noisy image y
Bias correction: According to (4)
Initialization: iterator t = 0, maximum iteration number
T = 8 and set:

(1) x(0)
i = yi, y

(0)
i = yi.

(2) parameters: p = 6, s = 3, m = 60 and c = 1/
√
2.

Main Iteration: Increase t by 1 and perform the following
steps:

1. Learning dictionary {Φi}Ki=1 by (8).
2. Updating sparse coefficients {αi}Ki=1 by (15).

3. Updating x
(t+1)
i by (16) and y

(t+1)
i = x

(t+1)
i .

4. Updating σ(t+1)
i = (σ2

i − ||yi − y
(t+1)
i ||22)1/2.

5. Stopping rule: if t > T , stop. Otherwise, do another
iteration.

Output: Noise-free image x.

Thus, the sparse coefficients of xi can be updated by using
the iterative shrinkage method [34]

αi = soft
(
ΦT

i yi,wi2
)

(15)

where soft(a, b) = max(|a| − b, 0) · sgn(a). After obtaining
the dictionary and sparse coefficients, the noise-free image can
be reconstructed by

x = exp

⎛
⎝( K∑

i=1

RT
i Ri

)−1( K∑
i=1

RT
i Φiαi

)⎞⎠ . (16)

The despeckling algorithm is summarized in Algorithm 1. The
number of selected similar patch m is set to 60 experimentally,
and m is generally greater than p2 = 36. The parameter c is set
to 1/

√
2 for simplifying calculation.
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TABLE III
FOM RESULTS ON THE TEN TESTING IMAGES UNDER SIMULATED SPECKLE NOISE

Best results are in bold font.

Fig. 3. Despeckling results under different noise levels on the Monarch testing
image. From the second row to bottom, despeckling results are obtained by using
the patch size p = 3, p = 6, and p = 9.

TABLE IV
RESULTS OF RUNNING TIME FOR DIFFERENT METHODS

III. EXPERIMENTAL RESULTS

In this section, both synthetic and real-world SAR images are
used to test the performance of the proposed method. Moreover,
an ablation experiment is carried out to verify the advantage of
weighted sparse representation. For synthetic SAR images, ten
testing images are used, as shown in Fig. 1. The synthetic SAR
images are obtained by multiplying optical images by simulated
white speckle in amplitude format, which is as same as that
used in [12], and the ENL are set 1, 4, and 16. Real-world SAR
data (OurSAR) are captured by sensors mounted on an airplane
(3GHz, sliding spotlight mode, X band, resolution: 0.05 m ×
0.05 m), and images are obtained by using the autofocus method
in [35]–[37]. Besides, the AIRSAR image (taken over Flevoland
in Netherlands, used in [22]) and TerraSAR image (X band, HH
polarization, resolution: 5 m×5 m, used in [18]) are also adopted
to evaluate the performance.

The proposed method is compared with four state-of-the-art
methods, such as POTDF [22], PPB [11], SARBM3D [12],
and FANS [16]. The codes of all these methods are provided
by the original authors. Since FANS [16] and SARBM3D [12]
produce comparable results (see quantitative results), only the
despeckling results of SARBM3D are displayed for visual com-
parison. Moreover, for simulated SAR images, the peak signal
to noise ratio (PSNR), structural similarity (SSIM) [38], and
Pratt’s figure of merit (FOM) [39] are used as the objective
indexes to evaluate the performance. The β-ratio index [40] is
also used to evaluate the despeckling performance for real data.
The code of our proposed method can be downloaded from https:
//github.com/Junchao2018/SAR-Image-Despeckling-WSC.

A. Ablation Experiment

The ablation experiment is designed to verify that weighted
regularization is beneficial to the despeckling performance.
The despeckling results without weighted regularization are
denoted by “Ours_nw,” i.e., the sparse coefficients are updated

https://github.com/Junchao2018/SAR-Image-Despeckling-WSC
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Fig. 4. Despeckling results of different methods under different noise levels on the Monarch testing image. From the second row to bottom and left to right,
despeckling results are obtained by using POTDF, PPB, SARBM3D, and ours.

using (6). The experimental results are shown in Fig. 2, we
can see that weighted regularization does boost the speckling
performance. The larger the eigenvalue is, the more impor-
tant the corresponding eigenvector is. Thus, the sparse coeffi-
cient over the eigenvector should be less sparse. The weights
are designed to control the sparsity of coefficients, producing
better despeckling results. The quantitative comparisons are
listed in Tables I–III. Based on the PSNR and SSIM val-
ues, one can see that the indexes are highly improved after
adopting weighted regularization, and the FOM results are
comparable.

The influence of a patch size on the despeckling performance
is also analyzed. Three patch sizes (p = 3, p = 6, and p = 9)
are used to evaluate the performance. The despeckling results
on Monarch are shown in Fig. 3, and the noisy images are
displayed in the first row. From the second row to bottom,
despeckling results are obtained by using the patch size p = 3,
p = 6, and p = 9, respectively. Meanwhile, the values of quan-
titative indexes (PSNR, SSIM, and FOM) are inserted at the
top-right region of an image. One can see that the despeckling
results are noisy at smaller patch size. A smaller patch size
is corresponding to a smaller dictionary, which is not enough
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Fig. 5. Despeckling results of different methods under different noise levels on the Barbara testing image. From the second row to bottom and left to right,
despeckling results are obtained by using POTDF, PPB, SARBM3D, and ours.

to encode different structures. The performances are compara-
ble for p = 6 and p = 9, and larger patch size consume more
computing resources. Thus, the patch size is set to 6 in our
experiment.

B. Experimental Results on Simulated Data

Despeckling results of different methods on the Monarch test-
ing image are shown in Fig. 4. The noisy images are generated
with different values of ENL, and they are presented in the first
row. The despeckling results of different methods are displayed
from left to right. From the second row to the bottom, the results

are corresponding toL = 1,L = 4, andL = 16. The left-bottom
regions are the enlarged views of the red dotted rectangles.
The POTDF method [22] produces oversmooth results and the
performance is bad for L = 1 case. A globally overcomplete
dictionary is learned in the POTDF method [22], and it is not
optimal to encode all structures, yielding oversmooth results.
The NLM-based method PPB [11] produce better results than
POTDF. However, it generates false artifacts at edges. The de-
speckling performance is improved by SARBM3D [12], which
is because of adopting local linear MMSE estimation criterion
and undecimated wavelet filtering. The despeckling results of
ours are presented in the last column. One can see that the
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Fig. 6. Despeckling results of different methods under different noise levels on the House testing image. From the second row to bottom and left to right,
despeckling results are obtained by using POTDF, PPB, SARBM3D, and ours.

recovered images of our method are clean while persevering
image details (such as the enlarged regions) under larger ENL
number. Although the result of our method is smoother than
that of SARBM3D under heavy noise (L = 1), the most image
details are recovered using our method. Moreover, the recovered
images of SARBM3D are a little noisy at edges. Despeckling
results on the Barbara and House testing images are shown in
Figs. 5 and 6, respectively. The experimental results on these
two testing images also demonstrate that our proposed method
is superior to others.

Besides, the quantitative indexes are used to evaluate the
despeckling performance, and the results are calculated on ten
testing images. Table I presents the PSNR values of different
methods under different ENL values, and the SSIM and FOM
results are shown in Tables II and III, respectively. The larger
the index is, the better the result is. The best result has been in

bold in the table. One can see that the PSNR and SSIM values of
POTDF [22] are much smaller than that of other methods. The
SARBM3D [12] achieves the highest PSNR and FOM values
underL = 1, and our methods is the best atL = 4 andL = 16 in
terms of PSNR and SSIM, which demonstrates that our method
outperforms others at larger ENL number. For FOM index at
larger ENL number, the SARBM3D [12], FANS [16], and our
proposed method are comparable.

Moreover, the running time is evaluated on a machine
with 3.6 GHz Intel Core i9-9900 K CPU (64 G RAM). For
POTDF [22], PPB [11], SARBM3D [12], and FANS [16], the
codes have been optimized by Mex compiling. Our code is
implemented based on pure MATLAB language. For images
with size of 256× 256, the averaged execution times are listed
in Table IV. One can see that FANS is the fastest and accelerates
the speed of SARBM3D by a large margin. Our method is more
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Fig. 7. Despeckling results (first row) and ratio images (second row) of different methods on OurSAR images. From left to right: Noisy images, despeckling
results obtained by using POTDF, PPB, SARBM3D, and ours.

Fig. 8. Despeckling results (first row) and ratio images (second row) of different methods on AIRSAR images. From left to right: Noisy images, despeckling
results obtained by using POTDF, PPB, SARBM3D, and ours.

Fig. 9. Despeckling results (first row) and ratio images (second row) of different methods on TerraSAR images. From left to right: Noisy images, despeckling
results obtained by using POTDF, PPB, SARBM3D, and ours.
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time consuming than others without any code optimizing, while
the codes of other methods are optimized. In the same way, code
optimization, parallel computation, and GPU acceleration can
be adopted to accelerate our method in the future.

C. Experimental Results on Real Data

Real-world SAR images are also used to test the performance.
The despeckling results on three real scenes are shown in
Figs. 7–9, respectively. The noisy images are presented in the
first column, and despeckling results by POTDF [22], PPB [11],
SARBM3D [12], and ours are displayed from the second column
to right. The ratio images (defined as the ratio between the
noisy image and the filtered one) are listed at the second row.
Moreover, the β-ratio index is inserted at the left-bottom of ratio
images. The smaller the β-ratio index is, the better the result is.
For the OurSAR image shown in Fig. 7, the POTDF method [22]
produces oversmooth results. The speckle noise is effectively
removed by the PPB algorithm [11], but it generates distorted
details at edges. The distorted edges are mitigated in the results
produced by the SARBM3D approach [12] and ours. The ratio
image acquired by a good filter should be a pure random noise
process. On the contrary, the ratio image obtained by an inferior
filter contains structural information, especially at urban areas
and edges [22]. In the perspective of ratio images, our proposed
method produces the best results. The despeckling results (as
shown Figs. 8 and 9) on other two real-world SAR images also
demonstrate that our method outperforms others.

IV. CONCLUSION

In this article, we propose a sparse representation-based model
to remove speckle noise for SAR images. This model is learned
in an unsupervised way, and it does not need abundant samples
to be trained, which makes our method more practical. For
multiplicative speckle noise, the homomorphic transformation
is adopted to convert it into additive one. Based on nonlocal
self-similarity constraint, similar patches are grouped together to
learn the adaptively compact dictionaries and sparse coefficients,
instead of learning globally overcomplete dictionaries. More-
over, weighted regularizations are adopted for coefficients to
boost the performance. Finally, despeckling images are obtained
via exponential transformation. Experimental results on syn-
thetic and real-world SAR images demonstrate that our proposed
method outperforms several state-of-the-art methods in terms of
both quantitative measurements and visual quality.

Most deep learning-based despeckling networks are trained
in a supervised way, and it is difficult to simulate all the noise
conditions in the training stage. In the future, we will integrate
the data-driven network into sparse representation model, inves-
tigating another available way for speckle noise removing.
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