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Abstract—An exponential function model was developed based
on the red band from Landsat and in situ data. The model per-
formed well, the calibration determination coefficient (R2) was
0.82 and validation metrics root-mean-square error, mean absolute
percent error, and bias was 8.23 mg/L, 30% and −2.35 mg/L,
respectively. Then, the time series of total suspended matter (TSM)
concentrations for the lakes across Inner Mongolia were presented
using the Landsat data from 1984–2019. The results showed that
the number of the lakes with TSM decrease was slightly more than
that with TSM increase (57% versus 43%). A total of 70.72% of
those lakes had a changing rate less than 1 mg/L/yr in TSM, while
the other 29.28% had a changing rate more than 1 mg/L/yr. In
some lakes (24.2%), the coefficient of variation was greater than
102% indicating significant spatial variation. The TSM less than
20 mg/L mainly appeared in the reservoirs. Based on different
environmental backgrounds, this study showed comprehensive esti-
mates (increasing and decreasing regions) of TSM concentrations.
Finally, the relative roles of several factors to the TSM changes
were quantified and examined at different scales. The responses of
TSM changes to NDVI representing vegetation coverage indicated
that vegetation played an important role for most lakes. Whilst
wind speed and precipitation significantly affected a few lakes. For
most lakes, the TSM were affected by multiple factors, where a
single factor could not be highlighted. Nevertheless, a comprehen-
sive analysis of the factors surrounding a lake remains relevant
for determining the possible trend (better or worse) of its TSM
variation.
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I. INTRODUCTION

THE major inland water resources, such as lakes, reservoirs
and rivers, are important to support domestic, industrial

and agricultural consumptions [1]. However, these inland lakes
(lakes include 324 reservoirs and 267 natural lakes in this study)
are under pressure due to human interference and climate change
[2], [3]. Driven by concerns about water scarcity challenges
in the future, the study of water quality is becoming more
important in many countries [4], [5]. It is imperative to prevent
and manage water pollution, and collect reliable water quality
data. The total suspended matter (TSM) is an important water
quality parameter which is commonly used for water quality
evaluation, especially for inland lakes. It determines the trans-
parency of water, and ultimately reflects the primary productivity
of water [6]. High TSM concentration is generally expected
to cause habitat deterioration for the benthic zone [7]. In this
sense, it is essential to monitor TSM concentration in order to
understand the physical, chemical, biological and environmental
processes and their interrelationships in aquatic systems [8]. It
is co-determined by various environmental variables in the lakes
and catchment [9].

The application of remote sensing techniques can facilitate
the dynamic monitoring of TSM concentration to better interpret
the water quality status. Since the late 1970s, a wide variety of
operational ocean color satellite sensors and algorithms have
been developed and optimized continuously for the inland lakes
and the ocean [10], [11]. Meanwhile, some satellite missions
were designed for land applications, they also sparked a new
interest from the water quality remote sensing community for
high resolution imagery [12], [13], especially the Landsat satel-
lite series [14], [15]. With much higher spatial and temporal
coverages than the conventional sampling methods, these remote
sensing sensors combined with corresponding algorithms have
been applied for tracking several environmental processes [16],
and for estimating some water quality parameters including
water clarity and TSM [17]–[19]. From the long-term satellite
data, the expected behavior and the natural variability of the
investigated signal can be identified at pixel level [20]. Neverthe-
less, due to the complex optical characteristics of turbid inland
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lakes, limitations of the algorithms used with the multispectral
ocean color sensors are still present in existing studies [10],
[19]. It is a technical challenge to address the severe limitation
of these algorithms in inland lakes and refine their detection
limits in various aquatic environments.

Remote sensing retrieval of inland water quality is based on
the assumption that the relationship between the reflectance and
the concentration of water quality constituents is known a priori
[21]. The application of satellite remote sensing for water quality
assessment and monitoring requires accurate water reflectance
received from the water in order to retrieve reliable water qual-
ity parameters [17]. However, signals reaching a sensor above
water are often weakened by the undesired atmospheric effects
caused by absorption and scattering [22]. Thus, the atmospheric
correction that can remove such undesired effects from sen-
sor received signals, is a crucial procedure for inland lakes
quality monitoring [23]. This challenging task has motivated
scientists to develop numerous atmospheric correction methods
for estimating water quality parameters of inland lakes [24],
[25]. However, a generic, automated and reliable atmospheric
correction tool has not been developed for water applications
of multispectral sensor data at present [13]. In view of this
situation, the surface reflectance from United States Geological
Survey (USGS) (https://www.usgs.gov/) is preferred in several
cases. The USGS data improve the comparison between multiple
images over the same region by accounting for atmospheric
effects (such as aerosol scattering and thin clouds) which can
help in the detection and characterization of earth surface change
(https://www.usgs.gov/).

There have been several researches on water transparency in
larger lakes across Inner Mongolia. The water transparency in
several lakes with the area >20 km2 during 2000-2018 were
retrieved by Liu et al. [52]. Song et al. [53] mapped water
transparency in the lakes with area >8 ha with OLI images
mainly acquired in 2016. The spatial characteristics of water
transparency between 2016 and 2018 were detected by Zhang
et al. [54] using Landsat 8 images for lakes with area ≥10
km2. In contrast, TSM remote sensing research on a long-term
scale has not been reported for Inner Mongolia. The long-term
historical data from Landsat may provide an invaluable archive
for the TSM dynamic study. This article has three key objectives.
First, we tested and evaluated the Landsat data by regression
analysis to retrieve the TSM in the inland lakes of the study
area. Second, we mapped the spatiotemporal dynamics of the
TSM concentrations across the study area using the robust
model for identifying the areas of persistently elevated TSM
concentrations (which might experience serious water quality
issues). Third, the correlations between TSM variations and
factors (NDVI, wind speed and precipitation) were explored for
the implementation of water quality management.

II. MATERIALS AND METHODS

A. Study Area

Inner Mongolia, located in the northern border of China in
Eurasia (see Fig. 1), has a population of 25.048 million. It has a
vast territory with a straight-line distance of 2400 km from west
to east, and a span of 1700 km from south to north. The elevation

Fig. 1. Information of study area and samples.

of most areas in this region is above 1000 meters, and this region
mainly shows plateau landforms. Since this region is far from
the ocean and blocked by mountains on the edge, the climate of
this region is mainly characterized by a temperate continental
monsoon climate with low and uneven precipitation (a total
annual precipitation of 50–450 mm), strong winds (average
annual wind speed above 3 m/s), and huge temperature variation
(the difference of average annual temperature is 34 °C –36 °C
and average daily temperature is 12 °C –16 °C). The ground
surface is mainly covered by grassland (86.667 million hectares),
forest (20.8 million hectares), farmland (5 491 400 hectares
of usable arable land) and desert. Among them, the areas of
grassland and forest are the largest in China.

Inner Mongolia is one of the driest provinces in China, and the
total amount of water resources is 50.922 billion m3 accounting
for 1.86% of the total amount of water resources in China [26].
Moreover, the amount of water resources allocated per capita
and per land is small. The distributions of water resources and
population or arable land are uneven. In particular, affected by
factors such as natural geographic location and topography, the
distribution of water resources in Inner Mongolia is extremely
uneven among regions or in interyears and intrayear. Conse-
quently, the strategic layout of economic and social development
for Inner Mongolia is very much restricted [26]. The TSM in the
lakes with an area greater than 0.1 km2 was retrieved and the time
series with TSM of more than ten years were further analyzed
in this article.

B. Samples and TSM Measurements

In this article, the water samples were collected in the field.
Several lakes located in different geographical regions (see
Fig. 1) were sampled one to two times each year over a pe-
riod of six years (2013–2015, 2017–2019) in order to make
the TSM concentration retrieval model robust and extensible.
The minimum distance between sampling points in the same
period was 500 m. The geographic location of each point was
recorded using DGPS-Pomark2 (UniStrong company, Beijing,

https://www.usgs.gov/
https://www.usgs.gov/
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China) (see Fig. 1). Water samples were gathered and stored
in amber-colored 1-L HDPE bottles. At each sampling point,
approximately 2 L of water were collected at 0.1–1 m below the
water surface. All samples were kept in a portable refrigerator
at 4°C and dark environment before they arrived at laboratory.
A total of 216 samples were collected (see Fig. 1).

In the laboratory, samples were filtered in amounts of 150–
200 mL through preashed, preweighed 47 mm diameter, 0.7
µm pore size glass fiber filters. The sample filters were dried at
100°C and then placed in a desiccator to cool down. The filters
were weighed using a 0.0001 g resolution scale before and after
filtration. The TSM concentration was calculated based on the
sediment in the filters and the water volume used for filtration.

C. Remote Sensing Data Selection and Model Development

We applied the Landsat surface reflectance data generated
by the Landsat Ecosystem Disturbance Adaptive Processing
System (LEDAPS) (version 3.4.0) or Land Surface Reflectance
Code (LaSRC) (version 1.4.1) algorithm from USGS in this
article. The surface reflectance data accounted for atmospheric
effects, such as aerosol scattering and thin clouds (https://
www.usgs.gov/). First, we obtained the synchronous or quasi-
synchronous (within ten days) Landsat surface reflectance data
for the samples. A total of 115 pairs of in situ measured TSM and
Landsat images were acquired (see Table S1). Next, we extracted
the reflectance at each sampling point from the matched Landsat
surface reflectance data by importing the latitude and longitude
values.

After that, all 115 sample pairs were randomly divided into
two data sets, of which two-thirds (77) were used as calibration
data set for model calibration and one-third (38) were used as
validation data set for model validation. We correlated the TSM
sample measurements with the corresponding reflectance values
of each band (blue, green, red, and NIR) or band combination
(two-bands combinations and three-bands combinations among
blue, green, red, and NIR) from Landsat images at each sam-
pling point. According to the relationship between TSM and re-
flectance displayed by the statistical analysis software, we could
identify the relatively sensitive band or combination. Finally, the
models were fitted by regression analysis (linear, polynomial,
exponential, power and logarithmic) using the sensitive band or
combination.

The models were validated with the mean absolute percent
error (MAPE), root mean square error (RMSE), and bias. The
determination coefficient (R2) for model calibration, the metrics
for validation (MAPE, RMSE, and bias), and the scatter plot
of the validation data along the 1:1 line were compared and
analyzed to assess the models. The model performed best was
further used for TSM retrieval. The formulas for these model
accuracy evaluation metrics are as follows:

RMSE =

√∑n
i=1 (xi−x′

i)
2

n
(1)

MAPE =

∑n
i=1 |xi−x′

i

xi
|

n
×100% (2)

bias =

∑n
i=1 (x

′
i−xi)

n
(3)

where xi is the observed value of ith element, x′i is the estimated
value of ith element and n is the number of elements.

D. Time Series TSM Map Generation

Based on the Landsat surface reflectance available on Google
Earth Engine (GEE), the estimated TSM concentration values
were calculated using the model fitted by the band reflectance
and the TSM measurements at sampling points. First, we vi-
sually filtered and recorded the images covered by thin clouds
according to Landsat Look Natural Color Image from the USGS
(https://search.earthdata.nasa.gov/). Then, we automated cloud
cover threshold (<60%) control and date control (excluding
images covered by thin clouds) using GEE via its python API.
We used all the scenes with a cloud cover threshold of less
than 60% and without the thin clouds covering the study area
in this calculation every year (May to October, 1984–2019).
The clouds/cloud shadow/ice influenced pixels were further
automatically removed according to the pixel quality assessment
(pixel_qa) band. Nonwater masking was performed automati-
cally by a fixed threshold of certain bands or bands combinations,
such as normalized difference water index [NDWI: (green-
NIR)/(green+NIR)] and modified NDWI [MNDWI: (green-
SWIR)/(green+SWIR)]. The pixels whose average of NDWI
and MNDWI less than 0.15 were masked out. Finally, the arith-
metic average of all good scenes in the same place was derived
annually as the annual TSM value using a python-based proces-
sor available on GEE (https://code.earthengine.google.com/).
In total, the TSM concentrations dataset derived from Landsat
data contains 36 annual TSM maps covering the study area in
1984–2019.

E. Ancillary Data and Processing

The digital elevation model (DEM) (http://www.resdc.cn),
watershed data (http://www.geodata.cn), the soil erosion data
(http://www.resdc.cn), soil type data (http://www.geodata.cn)
and the ecosystem data (http://www.resdc.cn) (all of them are
1 km grid) were used. Moreover, annual precipitation data
(1 km grid) (http://www.resdc.cn) and annual wind speed data
(1 km grid) (http://www.geodata.cn) as the main meteorological
factors, and annual NDVI data (http://www.gscloud.cn) were
acquired and processed to generate their dynamic maps using
an IDL program.

F. Analysis Methods

We analyze the TSM concentrations of the lakes by means of
summary statistics in terms of annual mean value (ANNTSM),
changing rate (R), multiyear average value (AVGTSM), and
coefficient of variation (CV). First, each of the annual TSM
maps generated from the Landsat product was spatially averaged
using lake boundaries, so that we could obtain the time series
of the annual mean TSM (ANNTSM) for the lakes. Then, linear
regressions were performed among the annual values from the
TSM time series (with TSM of more than ten years) to obtain
the rates of change (R) in TSM during the study period (4).
The average values of the multi-year TSM (AVGTSM) were
calculated according to (5). The CV was calculated according

https://www.usgs.gov/
https://search.earthdata.nasa.gov/
https://code.earthengine.google.com/
http://www.resdc.cn
http://www.geodata.cn
http://www.resdc.cn
http://www.geodata.cn
http://www.resdc.cn
http://www.resdc.cn
http://www.geodata.cn
http://www.gscloud.cn
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Fig. 2. Scatter plots of calibration and validation for TSM retrieval model.
(a) Model calibration. (b) Model validation.

to (6) and (7). The calculation formulas were expressed as

R =

∑
(ANNTSM−ANNTSM)(y − ȳ)∑

(ANNTSM−ANNTSM)
2 (4)

AVGTSM=

∑
ANNTSM

N
(5)

CV =
SD

AVGTSM
× 100% (6)

SD =

√∑
(ANNTSM−AVGTSM)2

N
(7)

where “y” was the year ranging from 1 to 36 (replaces 1984 to
2019); “N” was the number of years ranging from 1 to 36.

The histograms or percentage of these indicators were gener-
ated to determine the characteristics of the TSM dynamics. The
correlations between the annual TSM series and the correspond-
ing wind speed, precipitation and NDVI series were obtained
based on the Spearman correlation analysis.

III. RESULTS

A. TSM Retrieval Model

The in situ TSM exhibited a wide range of TSM concentra-
tions (range: 1.2–860 mg/L, mean: 56.7 mg/L) and significant
differences among samples [standard deviation (SD) was 126.8
mg/L]. There was a statistical significant correlation between
the reflectance of red band from Landsat surface reflectance data
and the TSM concentrations. Further, there was a more stable
exponential function relationship between them [see Fig. 2(a)].
The exponential function was validated and assessed to be a
more feasible option for TSM retrieval in the study area relative
to other models (see Fig. S1). The determination coefficient (R2)
of this model calibration was 0.82 [see Fig. 2(a)], and the RMSE,
MAPE and bias between the measured TSM and the estimated
TSM was 8.23 mg/L, 30% and −2.35 mg/L, respectively [see
Fig. 2(b)]. The validation points of this model were also reason-
ably distributed along the 1:1 line [see Fig. 2(b)].

B. TSM Spatiotemporal Dynamics

Fig. 3 showed the annual TSM concentrations series for 591
lakes from 1984 to 2019. The color variations in Fig. 3 indicated

Fig. 3. Annual TSM and its dynamics of 591 lakes across Inner Mongolia.
Note: Here lakes are natural lakes. ANNTSM is the annual TSM value. The “R”
is the changing rate during 1984–2019. The AVGTSM is the arithmetic average
of TSM during 1984–2019. The “CV” is the variation coefficient. Colorless
blocks represent missing data.

the variations of TSM among lakes and years. Superimposed
on the interannual variations for each lake were the significant
spatial heterogeneities over the entire region. The annual TSM
less than 20 mg/L appeared in most of the reservoirs, especially
in those built after 2000 with an area of 0.1 to 1 km2 (see Fig. 3).
The annual TSM concentrations higher than 20 mg/L mostly
occurred irregularly in the lakes with an area larger than 1 km2

from 1984 to 2019, especially in the lakes with areas of 1 to
10 km2 (see Fig. 3). The annual TSM concentrations of 591
lakes were divided into four levels (0–25 mg/L, 25–50 mg/L, 50–
100 mg/L and >100 mg/L), the relative percentage of lakes with
the TSM between 0–25 mg/L increased slightly from 1984–2019
and the percentage of lakes with TSM >100 mg/L decreased
slightly (see Fig. S2).Tendency of the annual TSM series over
the 36-year observation period revealed that TSM concentrations
decreased in some lakes [dark blue blocks of the third column
(c3) in Fig. 3], while increased in other lakes [dark red blocks
of the third column (c3) in Fig. 3]. In the period of 1984–2019,
the CV of TSM concentrations in the lakes was between 12%–
276%. The TSM concentrations were relatively stable in some
lakes (with lower CV values), while less stable in other lakes
(with higher CV values) [the first column (c1) in Fig. 3]. For
example, the CV of TSM concentrations in 6 natural lakes with
an area greater than 10 km2 was greater than 135mg/L, which
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Fig. 4. (a) Histogram of the TSM changing rates. (b) Histogram of the CV
of annual TSM. (c) Histogram of the average TSM. Note: green bars represent
lakes and orange bars represent reservoirs; The black solid line represents the
cumulative percentage of all lakes and reservoirs, the green dashed line repre-
sents the cumulative percentage of lakes and the orange dashed line represents
the cumulative percentage of reservoirs.

was extremely unstable. The higher and lower values of the 36-
year average TSM occurred in lakes with different levels of area
[the second column (c2) in Fig. 3]. Overall, the average TSM
concentrations in the lakes varied from 0 to 275 mg/L.

The changing rates (also see in Fig. 3) were summarized in
Fig. 4(a). Overall, the annual TSM concentrations decreased in
57.02% of the lakes, while increased in 42.98% of the other
lakes (also see in Fig. 5). Obviously, among the eight levels
of changing rates, the percentage of lakes with a changing rate
between -0.1 and -1 mg/L/yr was the highest (27.92%), followed
by another 22.5% of lakes with a changing rate between 0.1
and 1 mg/L/yr [see Fig. 4(a)]. The number of lakes (green bars)
showing a decrease in annual TSM concentration was more than
that of reservoirs (orange bars), and conversely, the number of

Fig. 5. Spatial distribution of 36-year average TSM (1984 to 2019).

Fig. 6. Changing rates of annual NDVI and annual TSM in the study area.
Note: Rates is the changing rates (the same below). Triangles or circles with
different sizes represent different types of lakes and their area levels (as shown
in Fig. 5).

reservoirs showing an increase in annual TSM was more than
that of lakes [see Fig. 4(a)]. The distributions of TSM changing
rates in each lake were clearly displayed in Fig. 6.

The CV of the annual TSM concentrations in the lakes from
1984 to 2019 were summarized in Fig. 4(b), reflecting the
interannual variability of the TSM concentration. The CV of
TSM concentrations in 75.8% of the lakes was within 102%
and in 24.2% of the lakes was above 102% [see Fig. 4(b)]. The
percentage of lakes with the CV between 57%–72% was the
highest (23.5%) and the percentages of lakes with the CV above
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72% or below 57% were decreased [see Fig. 4(b)]. Furthermore,
the number of lakes (green bars) was slightly more than that of
reservoirs (orange bars) when the CV of TSM concentrations
was below 72%, while the number of reservoirs obviously
exceeded lakes when the CV was above 72% [see Fig. 4(b)].

The 36-year TSM average results for all lakes were shown in
the map of Fig. 5 (see Fig. 3), and the spatial patterns of the TSM
distributions could be clearly observed. It was seen that the TSM
concentrations in most reservoirs were less than 50 mg/L and in
most natural lakes were more than 50 mg/L. Similar to the Fig. 3,
of the 591 lakes, 56.18% (37.56% are reservoirs) were relatively
clear with long-term averaged TSM concentrations below 25
mg/L, 15.74% were relatively turbid with long-term averaged
TSM concentrations between 25–50 mg/L, 17.26% were more
turbid with long-term averaged TSM concentrations between
50–100 mg/L and 10.83% were very turbid with long-term
averaged TSM concentrations above 100 mg/L [see Fig. 4(c)].

C. Environmental Factors Versus TSM

The TSM in the examined lakes demonstrated spatiotemporal
variations as expected. As the main influence factors, the vegeta-
tion, wind speed and precipitation [27], [28] were analyzed. As a
result, the vegetation represented by NDVI across the study area
indicated strong variation characteristics (see Fig. 6). Overall,
63.76% of NDVI was increasing and 36.24% was decreasing.
Meanwhile, the TSM in 57.02% of the lakes were decreasing
and in 42.98% of the lakes were increasing (see Fig. 6). This
indicated that the large-scale increase in NDVI was accompanied
by a significant decrease in TSM of lakes. Specifically, the TSM
of some lakes changed in the same direction as the NDVI around
them, and the TSM and the NDVI changed in reverse for other
lakes (see Fig. 6).

The dynamics of NDVI and TSM were calculated by super-
imposing the environmental backgrounds (watersheds (see Fig.
S4), ecosystems (see Fig. S5), soil types (see Fig. S6) and soil
erosion types (see Fig. S7) that might affect TSM. The results
showed that the overall TSM dynamics and NDVI dynamics
based on different regions both showed regional differences (see
Fig. 7). For the watersheds, the NDVI decreased in five water-
sheds (orange in Fig. 7) and increased in the other 20 watersheds
(green in Fig. 7), while the TSM decreased in 19 watersheds
(blue in Fig. 7) and increased in the other six watersheds (red
in Fig. 7). The TSM and NDVI was significantly negatively
correlated in 4 watersheds (see Fig. 7). For the ecosystems, the
NDVI decreased in the forest ecosystem region and increased
in the other ecosystems, while the TSM increased in all these
ecosystem regions (see Fig. 7). The TSM and NDVI was signif-
icantly negatively correlated in the forest ecosystem region (see
Fig. 7). For the soil types, the NDVI increased in all the soil type
regions, while the TSM decreased in the clay and sand regions
and increased in the other soil type regions (see Fig. 7). The
TSM and NDVI was significantly negatively correlated in the
sand region (see Fig. 7). For the soil erosion regions, the NDVI
decreased in only two soil erosion-type regions and increased in
the other 11 regions, while the TSM increased in nine soil erosion
type regions and decreased only in four regions. The TSM

Fig. 7. Changing rates of annual TSM and annual NDVI based on different
environmental background regions. Note: The symbol “�” (“��”) represents
significant correlations (p < 0.05 (0.01)). “r” represents correlation coefficient
between annual TSM and annual NDVI from 1984 to 2019. The words “clay-
rock” represent different soil types. “farmland eco-desert eco” represent different
ecosystems. “11–15” represent different levels of water erosion; “21–26” rep-
resent different levels of wind erosion; “31”and “32” represent different levels
of freeze-thaw erosion.

and NDVI was significantly negatively correlated in two soil
erosion regions (see Fig. 7). In addition, the scatter plots between
the annual NDVI and the annual TSM for these environmental
background regions showed that the NDVI value was higher, the
TSM was generally lower and more stable in most region (see
Fig. S3). For example, the NDVI value of the forest ecosystem
region was generally high while its TSM value was relatively
low and not very scattered [see Fig. S3(b)]. The percentage of
the lakes located in different environmental background regions
with different tendency of TSM were clearly displayed in Fig.
S4–S7. It could be seen that the TSM increased in some lakes
and decreased in the other lakes for each basin (except basin
25), each ecosystem region, each soil type region, and each soil
erosion region.

Similar to the TSM variations, the meteorological factors
in the study area also demonstrated interannual variations and
regional differences (see Fig. 8). Overall, precipitation had
decreased in most regions (except in the western region) of
the study area [see Fig. 8(a)]. Wind speed had declined in the
eastern, western and a small part of the northwest regions, and
had increased in the central and northern regions [see Fig. 8(b)].
Furthermore, the correlations between annual TSM and corre-
sponding local wind and precipitation were examined using the
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Fig. 8. Spatial distributions of the changing rates for TSM and Meteorological
factors. (a) For the precipitation and TSM. (b) For the wind speed and TSM. Note:
The TSM in the lakes circled by the yellow circle was significantly negatively
correlated with precipitation. The TSM in the lakes circled by the green circle
was significantly positively correlated with precipitation. Triangles or circles
with different sizes represent different types of lakes and their area levels (as
shown in Fig. 5).

Spearman correlation analysis for each lake (see Fig. 9). We
found both positive and negative correlations for the 591 lakes,
suggesting that the effects of these factors on the TSM varied
for different lakes. According to statistics, the precipitation was
negatively correlated with the TSM in 35.84% of the lakes,
and was positively correlated with the TSM in the other lakes.
The significant effect (p < 0.05) displayed merely in 12.8% of
the lakes [see Fig. 9(a)]. The positive and negative correlations
between TSM and precipitation were reflected in both lakes
[green bars in Fig. 9(a)] and reservoirs [orange bars in Fig. 9(a)].
According to our statistics, the TSM in 42.47% of the lakes
was positively correlated with the wind speed and in 6.6% of
the lakes was significantly positively correlated [see Fig. 9(b)].
In addition, the positive correlations between TSM and wind
speed were mainly reflected in lakes (green bars in Fig. 9(b)).
For each lake, the details of the relationships between TSM and
precipitation or wind speed were presented in the superimposed

Fig. 9. Percentage of the number of lakes in different levels of correlation
coefficients (r) between annual TSM and meteorological factors. (a) For the “r”
between precipitation and TSM. (b) For the “r” between wind speed and TSM.

maps of the two in Fig. 8. The lakes where TSM was significantly
related to these two meteorological factors could be clearly seen
in Fig. 8 (lakes circled by the yellow and green circle).

IV. DISCUSSION

A. Assessment of the Landsat-Based Model

While the atmospheric corrections used to generate these
surface reflectance products were originally developed for ter-
restrial applications, a growing body of research shows that
they can be used to accurately estimate inland water quality
parameters [29], [30] and perform on par with water-specific
atmospheric correction algorithms [31]. The Landsat surface
reflectance product (from LEDAPS and LaSRC) have been used
to estimate chlorophyll, clarity and CDOM in lakes, reservoirs
and rivers at different reginal scales [29], [32]–[34]. TSM is the
first water quality parameter researched by remote sensing, so
a lot of research has been done on it with the Landsat surface
reflectance products [15], [35], [36] which are more adequate
for TSM than other parameters. In addition, the relationship be-
tween the Landsat surface reflectance product and the measured
TSM performed well (R2 = 0.82). Calculating the validation
error metrics using the random validation data set data (n = 38)
can reaffirm the sensor correction procedure [31]. The validation
metrics for the TSM retrieval model showed the RMSE of
8.23 mg/L, MAPE of 30% and bias of −2.35 mg/L. As an
additional test, we compared the in-situ reflectance from some
water bodies to the Landsat surface reflectance product, and the
results showed that both types of reflectance values displayed
similar variation trends at the different wavelengths (see Fig. S8).
And the reflectance from the Landsat 8 product were consistent
to the in situ measured reflectance values and the uncertainty
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levels in visible bands (blue: 39.81%, green: 9.02%, and red:
0.2%) could be acceptable according to previous studies [30],
especially the red band. Thus, the Landsat surface reflectance
products can be used for remote sensing estimations of TSM in
the study area.

Previous studies have shown that red spectra-based models
can be used to estimate water transparency and the related
parameters such as turbidity and TSM concentration with good
accuracy in moderately turbid lakes/reservoirs and coastal lakes
[27], [28], [37]. Using the red spectra as a reference band could
obtain reasonable accuracy in deriving water transparency and
the related parameters [30], [38], [39]. Our results of model
validation showed that the accuracy of derived TSM based on
the red band model was reasonable (RMSE was 8.23 mg/L,
MAPE was 30% and bias was −2.35 mg/L) and better than
other models (see Fig. S1). The red band model based on the
Landsat was suitable for the TSM estimation. The experience
learned from this study could be used in many current or future
earth resources satellite data (such as Sentinel 2, Gao-Fen series,
HJ A/B, and Landsat 9 which equipped with red band) to derive
spatial and temporal TSM distributions in the study area.

Regrettably, due to the limitation of time, funding, geograph-
ical conditions and navigation conditions, not all water bodies
were sampled (even for a certain lake, it is difficult to sample each
part) in this article. Fortunately, by establishing a robust model,
we can use remote sensing images for large-scale spatiotemporal
water monitoring based on limited sample [27], [40], [41].
Bio-optical model is the tool that connects the satellite imagery
to optical, biogeochemical, and water quality parameters [33]
and its robustness depends on the samples. In other words, the
robustness of the model can reflect the quality (representative-
ness) of the samples. The validation results suggested that the
model developed for retrieving TSM in the study area was robust,
with the calibration R2 of 0.82 [see Fig. 2(a)], the RMSE of 8.23
mg/L, MAPE of 30% and bias of -2.35 mg/L. As an additional
test, a total of 117 additional water samples from the water bodies
near the study area (see Table S2) were collected and used to
further test the model. The test results were good according to
previous research [15], [27], [36] with RMSE of 11.67 mg/L,
MAPE of 0.18 and bias of -2.68 (see Fig. S9), confirming that
the model based on these samples (115) can be used to all the
water in the study area. It is confirmed that the model based on
these samples (115) can be used to all the water in the study
area.

To evaluate the consistency of the Landsat series images,
the minor differences in the spectral response of sensors used
across Landsat missions has been compared by previous studies
[30]–[32], [34]. Their comparison results indicated that the
agreement of the reflectance between Landsat sensors (5 versus
7 and 7 versus 8) was very strong, especially in the red band.
This means that the model using the red band from Landsat
is generalizable from 1984–2019 between Landsat sensors. In
addition, our additional test results for the additional samples
(most of them were synchronized with Landsat 5 TM) (see
Table S2 and Fig. S9) also confirmed that our model is gen-
eralizable from 1984–2019 between Landsat sensors. Thus, the
use of Landsat series data with the proposed model can provide

accurate long-term coverage of TSM in water bodies across the
study area.

B. Assessment of Retrieval Results

Because of the optical variability in lakes, TSM concentra-
tions retrieved from remote sensing data might be underesti-
mated or overestimated compared to monitoring station mea-
surement [34], [36]. The wide distribution of our samples (see
Fig. 1) and the range of TSM concentrations (from 1.2 to
860 mg/L, SD was 126.87 mg/L) represented the water with
different turbidity, and the model developed for TSM retrieval
was robust [see Fig. 2(b)], so this error could be minimized as
much as possible. In addition, the quality of the image itself
might introduce some errors in the estimation of the TSM con-
centration in lakes [15]. The image quality was greatly improved
by cloud control, cloud removal and land mask processing,
reducing the impact on TSM estimation.

To fully cover the land surface area of the study area, about
78 Landsat images are needed. Due to the lack of images caused
by data storage and quality control (cloud filtering), there was
difference in the number of images each year. And 95–594
images were used in each year (see Fig. S10). As an additional
test, we compared the TSM (calculated by different methods) in
six lakes during 2015–2019. As a result, the annual mean TSM
calculated based on the daily images and based on the seasonal
mean TSM showed a difference in some lakes (see Fig. S11). It
is demonstrated that the annual mean TSM might be affected by
the inconsistent number of effective images in different seasons.
If the annual mean TSM was calculated based on the seasonal
mean TSM, the result might be more accurate.

The possible errors in the TSM values due to some inevitable
reasons were reduced by climatologically and spatially averag-
ing. We obtained the annual values by averaging the multi-period
TSM concentration data, thus some over- or under-estimated val-
ues might be offset. Attila et al. [55] found that the chlorophyll-a
statistics calculated for a given water body by spatially aver-
aging can represent the water body well [42]. Likewise, the
TSM concentration statistics calculated for a given water body
should be suitable for understanding the quality of the lakes.
This is suitable for the research that serves to formulate water
management strategies on a regional scale.

In the long-term research of water transparency by Liu et al.
[52], the transparency in seven lakes (area > 20 km2) across
Inner Mongolia decreased and in seven lakes increased from
2000 to 2018. The TSM in 10 lakes among the 19 lakes with area
>20 km2 detected in our research decreased and in nine lakes
increased during the same period (2000–2018). The tendency of
water transparency in some lakes was contrary to the tendency
of TSM, while in some lakes their relationship in tendency is
another phenomenon. This indicated that different data sources
(MODIS and Landsat) might affect the analysis tendency of
water quality due to their differences in time resolution.

C. Impacts of Environmental Factors on TSM Variations

The analysis of the relationship between NDVI and TSM
could be used to study the possible explanations of NDVI to
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the annual TSM change of most lakes. However, TSM changes
in some lakes might not be explained by NDVI. For example,
the increased TSM in some lakes in the 8th watershed could
not be explained by the increased NDVI. In practice, a specific
water body should be paid more attention to take an appropriate
measure to improve vegetation information.

We explored the impact of other potential factors on the role
of NDVI. In the results of Spearman correlation analysis (see
Fig. 7), the positive correlation between NDVI and TSM demon-
strated that the effect of NDVI on TSM changes was interfered
(or even obliterated) by other factors. For those watersheds with
a positive correlation (see Fig. 7), if the weak NDVI change was
not the reason, then the most plausible cause of TSM change was
the topography (DEM see Fig. S4) reflecting the characteristics
of the watershed. For example, the decreased TSM of the sixth
and tenth basins were not caused by the increased NDVI, but
probably due to the lower elevation beneficial to soil and water
conservation. For the 14th and 25th basins with the same situa-
tion, the elevation (higher) might not be a reasonable explanation
for the TSM changes, and it was more likely to be attributed to
other factors. The increased NDVI of the farmland ecosystem
region did not promote the decrease in TSM (see Fig. 7), proba-
bly because of the overall improvement of crops in recent years,
had also been accompanied by an increase in negative human
impacts (such as fertilizer use and soil loosening) [43], [44]. The
situation of the grassland ecosystem implied that TSM might
be affected by grazing activities (the suspended solids were
disturbed by the arrival of livestock) [45], [46]. The increased
NDVI of the desert ecosystem in the western region has benefited
significantly from the projects “reverting farmland to forests”
and “afforestation” launched by the Chinese government at the
end of the 20th century [47]. In contrast, the TSM changes in this
region were not ideal, which might be related to the bad weather
events (sand storms or flood) [48], [49]. TSM changes of other
soil types regions (except for the sand region) (see Fig. 7) might
be affected by human activities and the soil texture, for example,
the decreased TSM of the clay region might be mainly caused
by the poor water permeability (not easy to lose with runoff)
of this soil type [44], [50]. Finally, the correlation coefficient
“r” of the soil erosion types (see Fig. 7) showed that the role
of vegetation represented by NDVI on the TSM for the 6 soil
erosion regions was interfered by other factors (might be wind
erosion, precipitation erosion or freeze-thaw erosion effect) [51].

In summary, the effect of the factors (NDVI, wind speed
and precipitation) on the TSM change was not always exposed,
because it might be weakened or obliterated by others. It remains
a challenge to accurately identify the factor that weakens or
smears because multiple factors coexist in the TSM changes.
Nevertheless, a comprehensive analysis of the factors surround-
ing the lakes certainly helps to determine the possible trends
(better or worse) of its TSM variation.

V. CONCLUSION

For the first time, the 36-years TSM dynamics of the lakes
across inner Mongolia were obtained using remote sensing
technique. The model based on Landsat red band performed

well with the calibration R2 of 0.82, RMSE of 8.23 mg/L, MAPE
of 30% and bias of -2.35 mg/L. The retrieved results revealed
significant differences in the TSM variations for the 591 lakes. In
the annual series, the TSM less than 20 mg/L mainly appeared in
the reservoirs. The percentage of lakes with the TSM between 0–
25 mg/L increased slightly from 1984–2019 and the percentage
of lakes with TSM >100 mg/L decreased slightly. The 43.82%
of the 591 lakes were relatively turbid with long-term averaged
TSM above 25 mg/L. The TSM in all lakes was changing with
different CV. The TSM in 42.98% of the lakes increased and
in 57.02% of the lakes decreased. The number of natural lakes
showing a decrease in TSM was more than that of reservoirs. Our
study proved the importance of remote sensing observations in
gathering large-scale water quality information, and the results
obtained here should provide critical basics to support water
quality management. Whilst the vegetation generally affected
the TSM changes for most lakes, its role might be weakened or
smeared due to the coexistence of other factors. Additionally,
wind speed, precipitation, human activities (farming, grazing
and construction), and soil texture also affected TSM changes
for some lakes. In practice, comprehensive analysis on multiple
factors is necessary. Particularly, the application of the similar
sensors or more advanced sensors would assist constructing
consistent and more complete satellite-derived time series data.
The overall analysis of TSM dynamics here should help making
macro-level decisions on water quality management. In practice,
specific treatment and protection plans should also be formulated
for a specific water.
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