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Evaluation of Multiorbital SAR and Multisensor
Optical Data for Empirical Estimation of Rapeseed

Biophysical Parameters
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Luc Champolivier, and Frédéric Baup

Abstract—This article aims to evaluate the potential of multi-
temporal and multiorbital remote sensing data acquired both in
the microwave and optical domain to derive rapeseed biophysical
parameters (crop height, dry mass, fresh mass, and plant water
content). Dense temporal series of 98 Landsat-8 and Sentinel-2
images were used to derive normalized difference vegetation index
(NDVI), green fraction cover (fCover), and green area index (GAI),
while backscattering coefficients and radar vegetation index (RVI)
were obtained from 231 mages acquired by synthetic aperture
radar (SAR) onboard Sentinel-1 platform. Temporal signatures of
these remote sensing indicators (RSI) were physically interpreted,
compared with each other to ground measurements of biophysical
parameters acquired over 14 winter rapeseed fields throughout
the 2017–2018 crop season. We introduced new indicators based
on the cumulative sum of each RSI that showed a significant
improvement in their predictive power. Results particularly re-
veal the complementarity of SAR and optical data for rapeseed
crop monitoring throughout its phenological cycle. They highlight
the potential of the newly introduced indicator based on the VH
polarized backscatter coefficient to estimate height (R2 = 0.87),
plant water content (R2 = 0.77, from flowering to harvest), and
fresh mass (R2 = 0.73) and RVI to estimate dry mass (R2 =
0.82). Results also demonstrate that multiorbital SAR data can
be merged without significantly degrading the performance of
SAR-based relationships while strongly increasing the temporal
sampling of the monitoring. These results are promising in view
of assimilating optical and SAR data into crop models for finer
rapeseed monitoring.
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I. INTRODUCTION

IN THE context of global change and an increasing world de-
mography, one of the major issues for mankind is to develop

agriculture practices allowing to ensure together food security,
sustainability of natural resources, and economic profitability
for farmers [1], [2]. To address these challenges, precision
agriculture became an essential scientific topic [3]. Precise crop
monitoring systems generally rely on the high-frequency acqui-
sition and assessment of crop biophysical parameters (BP) such
as green/leaf area index (GAI/LAI), dry (DM) and fresh masses
(FM), crop height, or plant water content (PWC). These param-
eters are key variables since they express the phenological and
physiological plant response to meteorological events [4], [5],
pest and diseases outbreaks [6], fertilizer applications [7], or wa-
ter management practices [8]. They are, in addition, paramount
for crop yields estimation from modeling approaches [9], [10].
However, for most crops, in situ ground measurements are
lacking. Ground survey of such parameters is time-consuming
and, thus, cannot be reproduced at a fine spatio-temporal scale
in real or near-real time. To overcome this limitation, satellite
remote sensing has been recognized as an effective solution to
monitor spatio-temporal evolutions of crops at scales compatible
with decision makers of landscape management [11], [12].

Both optical and microwave domains have been intensively
explored for crop parameters retrieval [13]–[15]. In the optical
domain, a large panel of studies has demonstrated the interest in
using reflectance or vegetation index to derive BP, in particular,
LAI [16]–[18], biomass [19], or crop height [20]. However, the
use of optical data has major drawbacks, first and foremost,
their sensitivity to weather and lightning conditions that can
drastically limit their availability in terms of temporal frequency.
To overcome these shortcomings, more and more studies have
focused on the use of microwave data (acquired by SAR sensors)
to estimate crop BP [21]–[24] or on the use of combined optical
and microwave signals [25]–[30]. However, SAR data are not
without limitations. They remain complex to interpret since they
are sensitive to both soil and vegetation properties (wetness,
roughness, phytomass, vegetation structure, etc.).

Regarding the potential use of the main microwave bands (X-,
C-, and L-bands), many authors have highlighted the interest
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of the X- and L-bands for the monitoring of wheat [30], [31],
corn [27], barley [21], or rice [32]. However, the lack of dense
temporal satellite data series acquired at L-band and/or their high
cost (acquired, for example, by Alos-2, Terrasar-X, Tandem-X,
or Cosmoskymed constellation) do not permit their use in fine
temporal approaches for crop monitoring. The launch of the
European Space Agency’s Sentinel satellites from 2015 resolves
this limitation in the C-band domain. Indeed, they offer an
unprecedented opportunity to monitor crops worldwide in both
SAR (with Sentinel 1A and 1B) and optical (with Sentinel 2A
and 2B) domains at a high temporal frequency and high spatial
resolution [33]. Moreover, the multiplicity of Sentinel-1’s orbits,
which can cover the same field theoretically, offers the oppor-
tunity to increase data frequency. In this sense, the feasibility
of merging Sentinel-1 data from different orbits deserves to be
studied. Regarding optical images, at the field scale, data fre-
quency can also potentially be increased by the combination of
different sensors with different features. In particular, Sentinel-2
and Landsat-8 both seem to meet requirements, in terms of
spatial resolution, of worldwide field-scale applications.

Nonetheless, most of the few studies that focused on the
synergy of optical and SAR data for crop monitoring suffer from
the unavailability of a sufficient dense dataset containing con-
comitant in situ and satellite data [27], [34]. Such shortcomings
intrinsically weaken the statistical robustness of the relationships
established between satellite indicators and in situ BP. This is
particularly true for rapeseed, for which robust ground measure-
ments are scarce, especially in Europe. However, rapeseed is one
of the most important seasonal crops cultivated in the world for
oil, proteins, and biofuel production. In 2018, rapeseed was the
seventh world crop in terms of cultivated area with almost 37.6
million hectares for a total production of 75 million tons (FAO
statistics for 2018).

In this context, the objectives of this study consist in: 1)
analyzing the temporal signatures of SAR data from Sentinel-1
and optical data from Sentinel-2 and Landsat-8 throughout the
rapeseed crop cycle; 2) analyzing the effect of multiorbit ac-
quisitions on SAR data and multisensor acquisitions on optical
data for rapeseed fields; and 3) evaluating the potential of both
multiorbital SAR data from Sentinel-1 and multisensor optical
data from both Sentinel-2 and Landsat-8 to empirically derive
rapeseed BP, i.e., DM, FM, height, and PWC. This article is
structured as follows. Section II introduces the material and
methods used, including weather data and ground measurements
of rapeseed BP in Sections II-A and II-B, respectively, satellites
data in Section II-C, and the methodology employed to derive BP
from remote sensing indicators (RSI) and evaluate the predictive
power of each RSI in Section II-D. Section III is dedicated to the
presentation of results. First, the temporal signatures of optical
and SAR RSI are analyzed regarding the temporal evolutions
of measured BP all along the rapeseed phenological cycle in
Section III-A. Second, the feasibility of a fusion of Sentinel-1
data from different orbits is scrutinized through an analysis of
angular effects on backscatter coefficients in Section III-B1. In
parallel, the sensitivity of optical data to the sensor (Sentinel-2 or
Landsat-8) is analyzed in Section III-B2. Finally, relationships
between RSI and rapeseed BP are studied and the predictive

Fig. 1. Map of monitored rapeseed fields (red dots) and those used for GAI
measurements (blue dots). Meteorological stations are represented by black
flags.

Fig. 2. Ombrothermic diagram of the six meteorological stations for the
2017–2018 agricultural season of rapeseed. Mean daily temperature and monthly
rainfall are represented by lines and vertical colored bars, respectively (according
to weather station).

power of each RSI is analyzed in Section III-C. Results are
discussed in Section IV according to the effect of multiorbit and
multisensor acquisitions on SAR and optical data, respectively,
the impact of fields sampling on empirical relationships, the
order of the empirical polynomials functions, and the impact of
radiometric correction in SAR processing. Finally, conclusions
and perspectives of this work are given in Section V.

II. MATERIAL AND METHODS

A. Description of the Study Sites and
Meteorological Conditions

Monitored rapeseed fields used in this study are located in two
study sites, specialized in annual grain crops, in southwestern
and central France with contrasted pedoclimatic conditions (see
Fig. 1). We used meteorological data (i.e., rainfall, temperature,
and global radiation) from Méteo-France (Issoudun, Le Subdray,
Bourges, Farges-en-Septaine, and Prémery stations) and Arvalis
Institut du végétal (En Crambade station). These data have been
daily acquired by six meteorological stations situated less than
19 km far from the monitored rapeseed fields (see Table I and
Fig. 1). Fig. 2 provides an ombrothermic diagram for these
six meteorological stations for the entire agricultural season
of rapeseed (i.e., from August 2017 to July 2018). Compared
to other stations, the southern-most station, i.e., En Crambade,
is characterized by milder temperatures, a drier 2017 autumn
and a strongly rainier end of the season from May to July
2018. Prémery and Farges-en-Septaine are the coldest stations,



7270 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

TABLE I
IDENTIFIER, SOWING, AND HARVEST DATES OF MONITORED RAPESEED FIELDS

For each field, the distance from the nearest meteorological station, the
number of ground measurements, and the mean slope are mentioned.

especially during winter. Bourges and Farges-en-Septaine show
a rainier autumn. Le Subdray shows significantly higher rainfalls
in December and June and winter temperatures comparable to
En Crambade. Issoudun has an intermediary behavior.

B. Ground Measurements

In the framework of the R&D project named Colza digital, an
intensive field campaign was carried out to collect ground data
over 14 fields of winter varieties of rapeseed (Brassica napus L.)
during the 2017–2018 growing season (see Fig. 1 and Table I).

For each field, in situ measurements of crop height, above-
ground DM, aboveground FM, and PWC were regularly carried
out (20 days timestep on average) from sowing to harvest. For
each ground measurement date, three samples of rapeseed plants
were collected on a 1 m2 elementary sampling unit (ESU). All
ESUs were located inside a 20 by 30 m2 area, the center of
which was located on average 60 m far from the edge of the field.
Aboveground FM was obtained by directly weighing plants on
the field. Aboveground DM was obtained after drying plants in
an oven (80 °C for 36 h). PWC was obtained from DM and FM.
For each BP, the final value is given by averaging measurements
performed on the three samples. Phenological stages according
to the BBCH scale [35] have also been recorded (see Appendix
A). All ground measurements, including BBCH stages, have
later been linearly interpolated at a daily time step. Sowing dates
vary from August 16 to August 29, 2017, whereas harvest dates
vary from June 28 to July 18, 2018 (see Table I).

Fig. 3. Chronogram of satellite acquisitions performed in the optical (Sentinel-
2, Landsat-8) and microwave (Sentinel-1) domains during the rapeseed crop
cycle, according to orbit number: 8, 59, 110, and 132 for Sentinel-1, and 51 and
8 for Sentinel-2 acquisitions. n is the number of respective acquisitions.

TABLE II
MAIN FEATURES OF SENTINEL-1 A OR B IMAGES USED IN THIS STUDY

In addition to the 14 monitored fields, 18 other independent
winter rapeseed fields have been used to evaluate the GAI
derived from Sentinel-2 and Landsat-8 images (see blue fields
in Fig. 1) and sensor effect on optical data. GAI measurements
were carried out on one ESU of 30 by 30 m2 for each field using
the SunScan Canopy Analysis System (Delta-T Devices, Ltd.,
U.K.) for the FR-Aur field and from hemispherical photography
acquired according to the protocol described in [36] and treated
with the CAN-EYE software [37] for the other fields (see Ap-
pendix B for more details on the features of these fields).

C. Satellite Acquisitions

Fig. 3 shows a chronogram of satellite acquisitions performed
in both optical (Sentinel-2, Landsat-8) and microwave (Sentinel-
1) domains during the 2017–2018 rapeseed crop season.

1) SAR Data: The backscatter coefficients at C-band (5.405
GHz) were provided by the SAR sensor onboard the Sentinel-1
satellite (see Table II). They were derived from the interferomet-
ric wide (IW) mode and ground range detected (GRD) process-
ing from four different orbits (i.e., 132, 110, 59, and 8; Fig. 3).
Mean incidence angles at field scale are θ132 = 43.5°, θ110 =
38.3°, θ59 = 36.6°, and θ8 = 30.3° for the four orbits allowing a
repetitiveness of 2.6 days on average for all combined orbits (231
images). Backscatters coefficients for the four orbits and the two
polarizations (VH and VV) were extracted for each field (noted
σ0

VH and σ0
VV in the following) from preprocessed GRD data

using the Google Earth Engine (GEE) website [38]. The GEE
preprocessing includes the following steps: orbit file application,
GRD border noise removal, thermal noise removal, radiometric
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TABLE III
MAIN FEATURES OF OPTICAL IMAGES USED IN THIS STUDY

calibration (sigma naught), range Doppler terrain correction, and
resampling at 10 m spacing. Two indexes were derived from
σ0

VH and σ0
VV: the co-cross-polarization ratio (σ0

VH-VV) and
the radar vegetation index (RVI). Originally introduced in [39],
RVI is generally calculated using quadpolarized SAR data. Since
Sentinel-1 only provides VH and VV polarizations, RVI was
computed according to [40], who adapted the concept of RVI
for dual-polarization Sentinel-1 data as follows:

RVI =
4σ0

VH

σ0
VV + σ0

VH

(1)

whereσ0
VH andσ0

VV are the backscatter coefficients in VH and
VV polarization, respectively. They are expressed in m2·m−2,
and RVI has no unit.

2) Optical Data: NDVI, fCover, and GAI were calculated
from both ESA Sentinel-2 level-1C and USGS Landsat-8 level-1
products (see Table III). fCover and GAI were obtained by
inverting the PROSAIL canopy reflectance model [41] with
the Overland processor developed by Airbus DS GEO (https://
www.intelligence-airbusds.com/verde-processing/). The over-
land processing principle is based on the coupling of the
combined PROSPECT leaf optical properties model [42] and
SAIL canopy bidirectional reflectance model [43], [44] with
the LOWTRAN 7 atmospheric model [45] completed with an
ad-hoc cloud model. Overland uses top of atmosphere radiances
as inputs to perform inversion of the above described coupled
model through minimization techniques. Thanks to its built-in
atmospheric model, overland performs autonomous atmospheric
corrections of reflectance as well as automatic masking of thin
clouds and dark shadows. The overland processor also includes a
coregistration algorithm to deal with differences in native resolu-
tions and geometric performances of Sentinel-2 and Landsat-8.
A detailed description of the overland algorithms can be found
in [46]. Only fCover, NDVI, and GAI estimations derived from
images with more than 80% of cloud-free pixels over considered
rapeseed fields were conserved. fCover, NDVI, and GAI were
finally derived from 76 Sentinel-2 images and 22 Landsat-8
images for the 14 monitored rapeseed fields throughout the entire

rapeseed growth cycle (see Fig. 3). Field-scale fCover, NDVI,
and GAI were obtained using the mean value of pixels included
in the field.

D. Methodology

First, the temporal signatures of SAR and optical signals were
analyzed in light of the temporal evolution of in situ BP (see
Section III-A). In this study, four orbits from Sentinel-1 have
been simultaneously exploited to increase SAR data acquisitions
for each studied rapeseed field. Acquisitions from different
orbits necessarily induce different angular configurations, which
can affect backscatter coefficients values. Consequently, orbital
effects on SAR data have been scrutinized (see Section III-B1).
Optical data have also been acquired from two different sensors,
i.e., Sentinel-2 and Landsat-8, whose impact on the accuracy of
GAI estimates was assessed (see Section III-B2).

We then analyzed and evaluated the relationship between
both SAR and optical RSI, respectively derived from Sentinel-1
and Sentinel-2 and Landsat-8, and the ground measurements
of DM, FM, height, and PWC acquired on the 14 monitored
rapeseed fields during the entire 2017–2018 crop cycle (see
Section III-C). In the first step regarding SAR RSI aside, evalu-
ation was performed for the complete SAR dataset (see Section
III-C1). In the second step, for a fair statistical comparison
between optical and SAR RSI, this evaluation was performed
for concurrent acquisitions of optical and SAR data (see Section
III-C2). We also scrutinized the effect of phenological stages
on the suitability of empirical relationships by analyzing the
distribution of residuals (i.e., differences between measured and
estimated BP) of the best RSI-based relationship by BBCH main
stages (see Section III-D).

1) Definition of RSI: Four SAR RSI, i.e., σ0
VH, σ0

VV,
σ0

VH-VV, and RVI, and three optical RSI, i.e., NDVI, fCover,
and GAI, have been considered. As an alternative to raw RSI,
we proposed new indicators (noted ηRSI) based on the cumu-
lative sum of each RSI, and already successfully applied to the
estimation of wheat parameters [47]

ηRSI (di) =

n∑

0

|RSI (di)| (di − di−1) (2)

where RSI (di) is the value of the given RSI at day di, n is the
total number of remote sensing acquisitions, and (di – di–1) is
the number of days between day di and the previous acquisition
date di–1. This term allows taking into account the differences
of acquisition frequency between monitored fields for both SAR
(mainly due to orbits configurations) and optical (mainly due to
cloud cover conditions) images. For all RSI, a common starting
date d0 is set for all fields for which ηRSI is initialized to 0.
In this study, d0 was set to August 4, 2017 for both SAR and
optical data, matching the dates of the first presowing available
Sentinel-1 image and/or the first presowing available Sentinel-2
or Landsat-8 image. A complete list of RSI analyzed in this
article is given in Table IV.

2) Analysis of Orbital Effects on SAR Data: To consider the
feasibility of the fusion of Sentinel-1 data from different orbits,
we scrutinized angular effects on backscattering coefficients. To

https://www.intelligence-airbusds.com/verde-processing/
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TABLE IV
RSI USED IN THIS STUDY

do so, we analyzed the temporal evolution of the Γ variable (in
dB·°-1) defined as follows:

Γ =
Δσ0

Δθ
(3)

where Δσ0 (dB) and Δθ (°) are the differences between either
σ0

VH, σ0
VV or σ0

VH-VV and the incidence angles from two
successive acquisitions in different orbits. Considering the sen-
sitivity of SAR data to soil moisture, in this analysis, we also
computed cumulated rainfall values from the nearest meteoro-
logical station between two consecutive acquisitions. In this way,
we investigated if the difference between σ0 values can rather
be explained by a rainfall event than by a difference in incidence
angle.

3) Evaluation of Optical GAI and Analysis of Sensors Effects
on Optical Data: To explore the effect of sensors on optical
data, two kinds of analysis have been carried out. In the first
one, the accuracy of GAI estimations derived from Sentinel-2
and Landsat-8 has been assessed by comparing them with in situ
measurements acquired on the 18 fields with available ground
GAI (see blue fields in Fig. 1). For this comparison, the results
were analyzed according to the sensor and according to the time
difference between ground measurements and acquisition dates
of satellite images.

In a second analysis, GAI, fCover, and NDVI derived from
Sentinel-2 and Landsat-8 have been compared with each other
for all monitored fields (i.e., blue and red fields in Fig. 1) by con-
sidering a maximal difference of one day between acquisition
dates of Sentinel-2 and Landsat-8 images.

4) From Satellite to Crop Parameters: Linear (4) and
second-order polynomial (5) regressions were established be-
tween either SAR or optical indicators and measured BP

P = aRSI + b (4)

BP = aRSI2 + bRSI + c (5)

where BP is a rapeseed biophysical parameter (DM, FM, PWC,
height), RSI is a remote sensing indicator from either SAR or
optical domain, and a, b, c are the parameters of the regression.
Performance of each relationship was evaluated using the coef-
ficient of determination (R2), root-mean-square error (RMSE),
and relative root-mean-square error (RMSEr).

Fig. 4. Temporal evolution of in situ (a) height and PWC, (b) DM and FM, (c)
optical NDVI and fCover, (d) GAI, (e) SAR backscattering coefficients, and (f)
backscattering coefficients ratio and RVI, (g) as well as ηRVI and ησ for VH and
VV polarization and VH-VV ratio and (h) ηNDVI, ηfCover, and ηGAI. Lines
and shadow areas represent the mean and standard deviation of the considered
variable, respectively. The mean of in situ observed dates of the main rapeseed
phenological stages is given by vertical dashed lines with corresponding stages
name and plant illustrations at the top of the panel (a).

III. RESULTS

A. SAR and Optical Temporal Signatures

Fig. 4 shows the temporal evolution of fCover, NDVI [see
Fig. 4(c)], GAI [see Fig. 4(d)], σ0

VH, σ
0
VV [see Fig. 4(e)],

σ0
VH-VV and RVI [see Fig. 4(f)], ησVH, ησVV, ησVH-VV, ηRVI

[see Fig. 4(g)], ηfCover, ηNDVI, ηGAI [see Fig. 4(h)], as well
as in situ measurements of height and PWC [see Fig. 4(a)],
DM and FM [see Fig. 4(b)] as the mean and standard deviation
of all studied fields. In this figure, for display reasons, ground
measurements, optical and radar indicators have been linearly
interpolated beforehand at a daily timescale.

1) Optical Signatures: NDVI and fCover showed similar
behavior, both rapidly increasing from cotyledon emergence
(BBCH 09) to the development of first leaves (BBCH ∼13).
This increase was steeper than the one showed by in situ height,
DM, and FM. On the contrary, PWC showed a slight decrease
from sowing to the first leaves development. Similar to all,
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BP, NDVI, and fCover then stagnated until the end of stem
elongation (BBCH 39). However, measured height showed a par-
ticular behavior with a winter decrease during the beginning of
December where interfield variability is high before decreasing
until BBCH 50. Such a winter decrease was clearly attenuated
for DM and FM that rather exhibited stagnation. Both NDVI
and fCover later increased from BBCH 50 to reach a peak during
siliques development (around BBCH 73). This peak was reached
earlier than the peak of measured FM. NDVI and fCover finally
rapidly decreased until harvests such as in situ FM and PWC,
whereas height and DM stagnated. Note that during early April,
when rapeseed is flowering, NDVI showed a slight decrease,
whereas fCover stagnated. Note also that NDVI showed a higher
saturation effect than fCover during nongrowing periods (before
sowing and after harvest), during which vegetation cover was
particularly sparse, even absent.

GAI showed a similar time curve but with higher intra-annual
variability. More precisely, the increase during the leaves devel-
opment (BBCH 10 to 29) was smoother, whereas the increase
from inflorescence emergence (BBCH 50) to fruit development
(BBCH ∼ 73) and the decrease during fruit maturation were
steeper. During the peak phase, interfield variability was higher
for GAI (coefficient of variation CV = 17.1%) than for NDVI
(CV = 6.6%) and fCover (CV = 7.1%). Regarding optical ηRSI,
they all showed a quasi-linear increase with a slightly higher
slope from sowing to the first leaves development and from stem
elongation to fruits development, corresponding to an increase
in NDVI, fCover, and GAI values.

2) SAR Signatures: Regarding SAR indicators, σ0
VH and

σ0
VV were particularly noisy (CV = 9.0 and 13.7%, respec-

tively) during the beginning of the agricultural season when
vegetation cover was less developed. This is probably due
to their sensibility to soil moisture and surface roughness at
this stage. The use of σ0

VH-VV allowed reducing this noise
(CV = 5.9%). σ0

VH-VV and RVI showed very similar behavior.
Similar to optical RSI, σ0

VH, σ
0
VV, σ0

VH-VV, and RVI started
from low values (around − 22 dB, − 12 dB, − 10 dB, and
0.36, respectively) and increased during the development of
the first leaves and rapidly reached a quasi-plateau until the
inflorescence emergence. Note that the increase forσ0

VH-VV and
RVI was smoother than for σ0

VH, σ
0
VV. Then, both σ0

VH-VV

and RVI increased and reached a new plateau around − 4
dB (respectively 1.2) during fruits development before rapidly
decreased during fruits maturation following the desiccation of
rapeseed organs, as illustrated by the PWC decrease. Standard
deviation increases during this decline due to the variability in
the harvest dates. Unlike σ0

VH-VV and RVI, σ0
VH and σ0

VV

showed a slight decrease during flowering. Note also that the
decrease during fruits maturation is stronger for σ0

VH than for
σ0

VV. Interfields variability was globally smaller for SAR RSI
(CV of 8.7% on average) than for optical RSI (CV of 24.1% on
average).

Similar to optical ηRSI, SAR ηRSI showed a quasi-linear
increase with a slightly higher slope from sowing to the first
leaves development, corresponding to an increase in backscat-
ter coefficients values, and a slightly lower slope (respec-
tively higher) from BBCH 80 to harvest for ησ (respectively

Fig. 5. Temporal evolution of Γ for (a) σ0
VV, (b) σ0

VH, and (c) σ0
VH-VV.

The color of each dot represents the sum of rainfall between two acquisitions in
millimeters.

ηRVI), corresponding to a decrease in backscatter coefficients
values.

B. Analysis of Orbital and Sensors Effects

1) Feasibility of Sentinel-1 Orbits Fusion: Analysis of
Angular Effects on Backscatter Coefficients: Fig. 5 shows the
temporal evolution of Γ for all the studied fields for σ0

VV [see
Fig. 5(a)], σ0

VH [see Fig. 5(b)], and σ0
VH-VV [see Fig. 5(c)].

Only data with a difference of acquisition date of one day
and a difference of incidence angle superior to 5° have been
considered. For the informational purpose, cumulated rainfall
between two acquisitions is also given in the color bar. Both
σ0

VV and σ0
VH data showed significant Γ dispersion (stan-

dard deviation of 0.13 dB·°-1 for both polarization) with values
ranging from 0 to 0.74, and 0 to 0.87 dB·°-1, respectively, and
a mean value superior to 0.15 dB·°-1 (0.18 and 0.16 dB·°-1,
respectively). Particularly high Γ values (>0.40 dB·°-1) were
observed during the first months of the rapeseed crop cycle
(from August to November), for which surface heterogeneity
was the highest since the soil was not fully covered by the
vegetation. For σ0

VH-VV,Γ values were less dispersed (standard
deviation of 0.06 dB·°-1) whatever the considered crop cycle
period and mean value was significantly lower (i.e., 0.07 dB·°-1).
Note that whatever the considered SAR indicator, cumulated
rainfall between two acquisitions had not significant impact on
Γ values. These results suggest that Sentinel-1 data fusion from
multiorbits is practicable for σ0

VH-VV, but is subject to higher
angular effects for both σ0

VH and σ0
VV, as demonstrated with

Radarsat data in [30].
2) Sensitivity of Optical Signal to Sensors: Fig. 6 provides

an evaluation of satellite GAI estimates compared to in situ
measurements for both Landsat-8 [see Fig. 6(a)] and Sentinel-2
[see Fig. 6b)] images. Results are displayed by field (color of
points) and according to the number of days between satel-
lites overpasses and ground measurements (size of points) as
both acquisitions are not systematically concomitant. Sentinel-
2-derived GAI estimates were in good agreement with in situ
measurements showing R2 of 0.78 and RMSE of 0.36 m2·m−2

with differences between satellite and ground acquisitions vary-
ing from 0 to 8 days. Landsat-8 estimates showed lower accuracy
with R2 of 0.78 and RMSE of 0.41 m2·m−2.

For further evaluation of sensor impacts on optical RSI,
Fig. 7 provides a comparison between Landsat-8 and Sentinel-
2-derived GAI [see Fig. 7(a)], fCover [see Fig. 7(b)], and NDVI
[see Fig. 7(c)] with a maximal difference in acquisition date
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Fig. 6. Comparison between Overland GAI and in situ GAI for (a) Landsat-
8 and (b) Sentinel-2 images. Dashed line is a 1:1 line and solid line is the
linear regression between satellite-derived and measured GAI. The color of
points corresponds to the fields’ identifiers, whereas their size corresponds to
the number of days between satellites overpass and ground measurement. R2,
RMSE, and RMSEr are given in the top left of each panel.

of one day. Globally, Landsat-8 and Sentinel-2-derived RSI
are in good agreement with R2 values higher than 0.93 and
RMSEr values below 25%. Landsat-8 estimates showed a slight
underestimation for high GAI (>2 m2·m−2) and fCover (>0.5)
values. For NDVI, Landsat-8 showed higher values for low
NDVI values (<0.6) and lower values for high NDVI values
(>0.6). The combined use of Landsat-8 and Sentinel-2 data
allowed an average revisit interval of 12.1 days against 14.2
days for Sentinel-2 acquisitions alone. Moreover, evaluation of
Overland GAI from both sensors showed consistent results that
permit GAI computation from combined sources.

C. Relationships Between SAR or Optical RSI and Crop BP

1) Comparison Between SAR RSI for Multiorbital Sentinel-1
Acquisitions: Fig. 8 shows the performance of empirical rela-
tionships between SAR RSI and rapeseed BP (n = 1436). Fig. 9
shows the best relationships obtained between rapeseed BP and
SAR RSI. For further information, values of RMSEr and R2 for
each SAR RSI and each empirical relationship are provided in
Appendix C.

Globally, the use of ηRSI tended to improve the performance
of relationships whatever the RSI considered, except σ0

VH-VV.
Moreover, the second-order polynomial relationship always out-
performed simple linear regression. σ0

VV showed particularly
low predictive power whatever the relationship and the BP

Fig. 7. Comparison between Landsat-8 and Sentinel-2-derived (a) GAI, (b)
fCover, and (c) NDVI. Dashed line is a 1:1 line. R2, RMSE, and RMSEr are
given in the top left of each panel.

Fig. 8. R2 (bars) and RMSEr (dots) of empirical relationships between SAR
indicators and in situ measured (a) height, (b) PWC, (c) dry mass, and (d) FM.

considered with maximal R2 values ranging from 0.01 to 0.25
and RMSEr values ranging from 86.66% to 99.45%.

Regarding height, the best results were obtained with
ησVH using second-order-polynomial relationship [R2 = 0.87,
RMSE = 21.19 cm, and RMSEr = 35.73%; Figs. 8(a) and 9(a)].
ησVV using the second-order polynomial relationship showed
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Fig. 9. Best relationships between in situ measured (a) height, (b) PWC, (c)
DM, and (d) FM and SAR indicators. Equation of the regression as well as values
of R2, RMSE, and RMSEr and the number of observations (n) are given in the
top left corner of each panel.

only a slightly lower performance (R2 = 0.85, RMSE = 22.84
cm, and RMSEr = 38.51%). For PWC, σ0

VH was the best
predictor [R2 = 0.60, RMSE = 2.37%, and RMSEr = 63.04%
using the second-order polynomial relationship; Figs. 8(b) and
9(b)]. Globally all SAR RSI provided low performance for PWC
retrieval.

Regarding DM, ηRVI was the best predictor [R2 = 0.82,
RMSE = 155.71 g·m−2 and RMSEr = 41.97% using second-
order polynomial relationship; Figs. 8(c) and 9(c)]. Using the
second-order polynomial regression, ησVH and ησVV showed
similar performance (R2 = 0.82, RMSE = 156.37 g·m−2,
RMSEr = 42.15% and R2 = 0.82, RMSE = 157.54 g·m−2,
RMSEr = 41.97%, respectively). Using the second-order poly-
nomial regression, ησVH was the best predictor for FM [R2

= 0.73, RMSE = 1035.46 g·m−2, and RMSEr = 52.04%;
Figs. 8(d) and 9(d)] followed by ησVV (R2 = 0.71, RMSE =
1068.62 g·m−2, and RMSEr = 53.71%).

2) Evaluation of SAR and Optical RSI Performances for
Concurrent Acquisitions: Fig. 10 shows the overall performance
of empirical relationships between RSI and rapeseed BP for SAR
and optical concurrent acquisitions (n = 86), whereas Fig. 11
focuses on the best relationships. For further information, values
of RMSEr and R2 for each RSI and each empirical relationship
are provided in Appendix D.

Again, the use of ηRSI improved the performance of rela-
tionships whatever the considered RSI, except σ0

VH-VV and
GAI. NDVI provided poor results, whatever considered BP. For
every BP and every RSI, the second-order polynomial regression
outperformed linear regression.

Concerning height, the best results were obtained with ησVH

using polynomial regression [R2 = 0.88, RMSE = 21.98 cm
and RMSEr = 33.76%; Figs. 10(a) and 11(a)]. ηNDVI using the
second-order polynomial relationship showed only a slightly
lower performance (R2 = 0.88, RMSE = 22.37 cm, and RMSEr

= 34.35%). σVV and NDVI showed particularly low predictive

Fig. 10. R2 (bars) and RMSEr (dots) of empirical relationships estimated
between satellite indicators and in situ measured (a) height, (b) PWC, (c) DM,
and (d) FM.

Fig. 11. Best relationships between in situ measured (a) height, (b) PWC, (c)
DM, and (d) FM and optical RSI. Equation of the regression as well as values
of R2, RMSE, and RMSEr and the number of observations (n) are given in the
top left corner of each panel.

power whatever the considered relationship with R2 values
below 0.43 and RMSEr values above 74% (RMSE >48 cm).

For PWC, no RSI provided satisfactory results [R2 = 0.17–
0.49 and RMSEr = 71.14–90.71%; Fig. 10(b)] throughout the
entire crop cycle. The best performance were obtained with
σ0

VH using the second-order polynomial regression [R2 = 0.49,
RMSE = 2.08%, and RMSEr = 71.14%; Fig. 11(b)]. Regard-
ing DM, ησVH was the best predictor using the second-order
polynomial regression [R2 = 0.87, RMSE = 151.68 g·m−2, and
RMSEr = 36.48%; Fig. 11(c)]. ησVV (R2 = 0.86, RMSE =
153.06 g·m−2, and RMSEr = 36.81%), ηRVI (R2 = 0.86, RMSE
= 155.83 g·m−2, and RMSEr = 37.48%), and ηNDVI (R2 =
0.86, RMSE = 155.27 g·m−2, and RMSEr = 37.34%) showed
similar performance [see Fig. 10(c)]. Using the second-order
polynomial regression, ηNDVI was the best predictor for FM
(R2 = 0.81, RMSE = 968.14 g·m−2, and RMSEr = 43.39%),
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Fig. 12. Boxplots of residuals of the best SAR-based relationship for (a)
height, (b) PWC, (c) DM, and (d) FM by main phenological stages. Blue lines and
red crosses represent the median and the mean of each distribution, respectively.
Green diamonds represent the standard deviation of in situ measurements of
each BP for the considered main phenological stage.

closely followed by ησVH (R2 = 0.81, RMSE = 968.23 g·m−2,
and RMSEr = 43.40%) [see Figs. 10(d) and 11(d)].

D. Interphenological Stages Variability

Fig. 12 shows the standard deviation in observations (be-
tween fields) and boxplots of residuals (i.e., the differences
between measured and simulated BP) of the best multiorbit
SAR-based relationship for each BP (see Section III-C1). These
values are calculated for the main phenological stages and for
all stages. Due to the lack of observations for BBCH above
80, fruits development and fruit ripening stages have been
clustered.

Regarding height, the interquartile range of residuals was
enlarged for inflorescence emergence, flowering and fruits
development, and ripening compared to the previous stages
[see Fig. 12(a)]. More precisely, residuals were significantly
negatively skewed during inflorescence emergence (median of
−20.2 and average of −16.7 cm) and positively skewed during
flowering (median of 5.9 and average of 12.9 cm) and fruits de-
velopment and ripening (median of 15.7 and average of 16.0 cm)
indicating an overestimation (respectively an underestimation)
of rapeseed height. Note that these stages were those associated
with the largest standard deviation in observed height.

Regarding PWC, the fruits development and ripening stages
showed a particular behavior with a large number of negative
outliers resulting in a large overestimation of derived PWC.
Note that whatever considered BP, it was the only case for which

Fig. 13. Differences in R2 (bars) and RMSEr (dots) between mono-orbit and
multiorbit SAR-based best relationship for rapeseed BP retrieval.

standard deviation was higher for one phenological stage than
for all stages combined. The leaves development stage showed
a higher interquartile range and a slightly positively skewed
distribution of residuals (median of 1.4 and average of 0.7%).

For DM, interfields variability (i.e., the standard deviation in
observations) globally increased with the growth of rapeseed
[Fig. 12(c)]. Compared to other stages, residuals distribution
was strongly enlarged for fruits development and ripening and
showed a negative skewness (median of 125.7 and average of
91.9 g·m−2). Other stages showed a similar interquartile range
and a slighter skewness of residuals distribution.

The distribution of residuals for FM was not significantly
skewed whatever the considered phenological stage except for
stem elongation [see Fig. 12(d)]. A larger distribution was
observed for the development of side shoots and inflorescence
emergence. The latter was associated with the highest standard
deviation in observed FM. The flowering and fruits development
and ripening stages also showed a higher interquartile range
compared to previous stages.

IV. DISCUSSION

A. Impact of Multiorbit Acquisitions on SAR RSI
Predictive Power

Similar to Section III-C1, we performed SAR RSI-based
regressions to retrieve rapeseed BP but for mono-orbital (orbit
110) Sentinel-1 acquisitions. We then computed the difference
in terms of R2 and RMSEr values between mono-orbit and
multiorbit best relationships for each RSI and each BP. Results of
this procedure are shown in Fig. 13. Globally, except for σ0

VV,
the mono-orbit approach induced a slight improvement of R2 and
RMSEr values. However, differences in performance between
mono-orbit and multiorbit approaches remained relatively low.
The best improvement was achieved for PWC and FM. Note
that for the mono-orbit approach, the best predictors using a
second-order polynomial regression are ησVH for height (R2 =
0.95, RMSE = 21.48 cm, and RMSEr = 28.25%), σ0

VH for
PWC (R2 = 0.53, RMSE = 2.39%, and RMSEr = 66.74%),
ηRVI for DM (R2 = 0.87, RMSE = 148.60 g·m−2, and RMSEr

= 34.81%) and ησVV for FM (R2 = 0.84, RMSE = 1107.85
g·m−2, and RMSEr = 38.60%).
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Fig. 14. Boxplots of residuals of the best SAR-based relationship for (a) height
(a), (b) PWC, (c) DM, and (d) FM by field. Blue lines and red crosses represent
the median and the mean of each distribution, respectively.

Furthermore, for three of the biophysical-monitored parame-
ters (i.e., height, PWC, and FM), RSI based on the polarized
backscattering coefficients (VV or VH) stood out as being
the most efficient, although they showed greater sensitivity to
angular effects from orbits fusion than the polarization ratio (see
Section III-B1). On the one hand, if the multiorbital approach
offered satisfactory results, a slight degradation of statistical per-
formance was observed compared to the mono-orbital approach,
whatever BP considered. On the other hand, the multiorbital
approach allows to materially increase the number of acquisi-
tions with an average revisit interval of 2.6 days against 6 days
for mono-orbital acquisitions (combining Sentinel-1A and B).
Hence, the choice between the mono-orbital and multiorbital
approach will depend on the objective sought between the sta-
tistical accuracy of the empirical relationship and the desired
frequency of considered BP estimations.

B. Impact of Fields Sampling on Empirical Relationships

Fig. 14 shows boxplots by fields of residuals of the best
multiorbit SAR-based relationship for each BP (see Section III-
C1). Important discrepancies could be observed in field-specific
residuals distribution. Whatever considered BP, field 01 always
showed a negatively skewed distribution of residuals, whereas
plots 02, 03, and 11 were associated with a positively skewed
distribution. The field showing an average behavior, i.e., the field
showing the less skewed distribution and a small interquartile
range, varies according to the considered BP. Regarding height,
field 07 showed the less skewed distribution of residuals (me-
dian of −0.17 cm and mean of −2.22 cm) and the smallest
interquartile range. For PWC, field 04 showed the least skewed
distribution of residuals (median of − 0.25% and mean of −
0.05%), whereas it was field 10 for DM (median of 31.3 cm and
mean of 122.5 g·m−2) and field 06 for FM (median of −27.2 cm
and mean of −32.2 g·m−2). Other plots tended to show either
positively or negatively skewed distributions of residuals.

These results highlight the importance of the fields sampling
strategy adopted to establish relationships between RSI and

Fig. 15. Best relationships between in situ measured (a) height, (PWC) PWC,
(c) DM, and (d) FM and SAR indicators for each field taken separately (color
code by field identifier).

measured BP. The sample size and variability of in situ obser-
vations affect the statistical robustness of these relationships.
It is, thus, necessary to consider a sufficient range of fields
with different situations in terms of climatic conditions and
agricultural practices. To illustrate this point, we calculated
the best relationship for each field separately, and we showed
the variability of obtained relationships in Fig. 15. One can
observe that this variability is significant and varies according
to the considered BP and phenological stages. In particular, for
DM, it increased throughout the rapeseed phenological cycle
[see Fig. 15(c)], while it was relatively constant for height and
FM [see Fig. 15(a) and (d)] and strongly enlarged for PWC
during the beginning and the end of the agricultural season [see
Fig. 15(b)].

C. Complementarity and Potential of Combined
SAR/Optical-Derived BP for Monitoring and
Modeling Fields of Rapeseed

Most of the time, during the core of the rapeseed growth
cycle, SAR and optical signals are out of phase (see Section
III-B). More precisely, the increase in optical GAI occurred at
the beginning of inflorescence emergence (BBCH 50), whereas
backscatter coefficients and RVI remained quite stable until
BBCH 60 from which volume scattering increases resulting in an
increase of σ0

VH-VV and RVI. Finally, the GAI peak was raised
during the first half of May, whereas backscatter coefficients
showed a peak at the end of May around BBCH 80. After
flowering, the rapeseed canopy becomes randomly oriented
with the fall of leaves and the inset of siliques. Betbeder et al.
[28] demonstrated that this steep architecture change induces a
strong increase in the canopy contribution in volume scattering.
This can explain the delayed peak of backscatter coefficients
compared to GAI. Indeed, leaves fall induces a decrease of
GAI, but the development of fruits, less covering than leaves,
contributes to volume scattering. Furthermore, during winter,
most of the fields located in Central France showed a slight
decrease in GAI (not shown). This decrease is explained by the
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Fig. 16. Best relationship between in situ measured PWC andησVH for BBCH
stages beyond 60. Equation of the regression as well as values of R2, RMSE,
and RMSEr and the number of observations (n) are given in the top left corner
of the panel.

loss of the first well-developed leaves due to winter frosts [48].
Such a phenomenon was not captured in SAR indicators that
remained stable during this period.

For the purpose of the assimilation of these remote sensed data
in crop models, this complementarity of SAR RSI and optical
GAI and the good predictive power of ηRVI for DM retrieval
are promising. Indeed, in agrometeorological models, GAI and
DM are state variables often linked in models formalism (see,
e.g., [49]). Consequently, the possibility of driving these two
dependent variables by means of independent time series (SAR-
derived DM and optically-derived GAI) should provide the right
conditions for optimizing rapeseed monitoring and yields mod-
eling. Benefits of combined assimilation of optically-derived
GAI and SAR-derived DM in agrometeorological models have
been already proved for maize [25], [26], soybean [50], [51], or
sunflower [52] but remained to be demonstrated for rapeseed.
Besides, the analysis of residuals distribution by phenological
stages carried out in Section III-D offered the opportunity to
develop an assimilation strategy by periods through a weighing
scheme according to the confidence in SAR and/or optical-based
relationship for each phenological stage.

D. Performance of RSI-Based Relationship for BP Retrieval in
Light of Relevant Previous Studies

Newly introduced SAR ηRSI provided very satisfactory re-
sults for DM (with ηRVI) and height (with ησVH) with R2 above
0.82 and RMSEr below 42%. For FM, results are more lukewarm
with higher interfields variability resulting in higher RMSEr

(52.04%). Globally no clear relationship can be inferred from
the comparison of RSI with PWC measurements. However,
results for PWC retrieval can be drastically improved (R2 =
0.76, RMSE = 2.02%, and RMSEr = 49.51%) by using ησVH

and considering ground measurements from inflorescence emer-
gence (BBCH 60) only when vegetation starts drying out (see
Fig. 16).

The performance of the fitting between SAR RSI and mea-
sured BP can also be improved using n-order polynomial

Fig. 17. Best relationships between in situ measured (a) height, (b) DM, and
(c) FM and SAR indicators for polynomial regression of order 3 or 4. Equation
of the regression as well as values of R2, RMSE, and RMSEr and the number
of observations (n) are given in the top left corner of each panel.

Fig. 18. Comparison between γ0 with RTF from SNAP and σ0 without RTF
from GEE for (a) VH and (b) VV polarizations, (c) the polarization ratio, and
the (d) RVI. The color of points corresponds to the local incidence angle derived
from SNAP processing. R2 and RMSE are given in the top left corner of each
panel.

regression (third and fourth-order polynomial regressions have
been tested; Fig. 17). Table V provides the values of the Akaike
Information Criterion (AIC [53]) for each rapeseed BP and each
tested regression for the best RSI. Note that the best RSI changed
when n-order polynomial regressions are considered. The best
improvement is achieved for DM, ησVH being the best RSI [R2

= 0.88, RMSE= 126.07 g·m−2 and RMSEr = 33.98; Fig. 17(b)]
using the third-order polynomial regression (a decrease of skill
scores is observed for the fourth-order polynomial regression;
Table V). For height [R2 = 0.90, RMSE= 18.29 cm, and RMSEr

= 30.85% with ησVV; Fig. 17(b)] and FM [R2 = 0.78, RMSE =
942.19 g·m−2 and RMSEr = 47.35% with ηRVI; Fig. 17(c)], the
improvement is lower and required a fourth-order polynomial
regression. The use of these n-order relationships reduces the
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TABLE V
VALUES OF AIC OF THE RELATIONSHIPS (ORDER 1 TO 4) BETWEEN THE BEST

INDICATOR AND EACH RAPESEED BP

The best indicator is given after each AIC value and the lower AIC value
for each parameter is given in bold.

TABLE VI
VALUES OF RMSE AND R2 OF THE BEST RELATIONSHIP BETWEEN SAR ηRSI

DERIVED FROM σ0 OR γ0 ACQUIRED IN ORBIT 110 AND RAPESEED BP

The best skill scores were obtained from fourth-order polynomial re-
gressions using ηRVI for height, PWC, and DM and using ησVH-VV

(ηγVH-VV respectively) for FM.

skill scores difference between mono-orbital and multiorbital
approaches (not shown).

Unlike other crops, in particular winter wheat, studies fo-
cusing on the potential of SAR and/or optical data to derive
BP of rapeseed are scarce, limiting comparison with relevant
studies. Direct comparison between studies is particularly tricky
due to differences in remote sensed indicators set compared,
sensors used, and phenological stages range available from
ground measurements.

Using Radarsat-2 quad-polarization data acquired over four
rapeseed fields in Southwest France, [30] showed that σ0

HV-HH

was the best predictor for crop height using linear regression
(R2 = 0.76, RMSEr = 43%, n = 36), notably outperforming
σ0

VV (R2 = 0.58, RMSEr = 71%, n = 32) and σ0
VH (R2 =

0.44, RMSEr = 80%, n = 40). However, they obtained better
statistical performance with NDVI derived from SPOT-4/5 and
Formosat-2 images (R2 = 0.82, RMSEr = 25%, n = 26). For
the same fields, Betbeder et al. [28] studied the predictive power
of polarimetric parameters derived from 14 quad-polarization
Radarsat-2 images and NDVI derived from 16 optical images
from Formosat-2 and Spot 4/5 sensors. Using an exponential
regression, authors obtained the best results with RVI for DM
monitoring (R2 = 0.8, RMSEr = 7%, n = 9) and the degree of
polarization for height monitoring (R2 = 0.67, RMSEr = 15%, n
= 40) both largely outperforming optically-derived NDVI. Us-
ing Radarsat-2 quadpolarization wide mode SAR data from eight
images acquired over seven rapeseed fields in southern Manitoba
(Canada), Wiseman et al. [24] obtained the best correlation with
entropy using logarithmic regression for DM (R2 = 0.65, n =
64). The authors also showed a saturation of the C-band signal
for dry mass beyond 800 g·m−2. Using compact polarimetric
data from five Radarsat-2 images acquired over 11–14 rapeseed
fields (according to the date), Zhang et al. [54] showed the po-
tential of Stokes parameters to derive DM (R2 = 0.77) and stem
height (R2 = 0.92) using second-order polynomial regressions.
Authors showed a nonnegligible improvement of predicted DM

(R2 = 0.93, n = 30) and height (R2 = 0.95, n = 22) using a
Random Forest model and 27 compact polarimetric parameters.
For the same dataset, and using fully polarimetric data, Yang et
al. [55] obtained the best results with the ratio between volume
scattering and the sum of odd and double-bounce scattering for
both DM (R2 = 0.85, n = 24) and FM (R2 = 0.76, n = 36).
Note that these studies concerned summer varieties with low
biomass production and a shorter life-cycle without wintering
stage compared to our winter rapeseed fields. Such differences
jeopardize the direct comparison of the results.

From Sentinel-1 images acquired over three fields in Austria
(n = 25), Vreugdenhil et al. [23] showed that σ0

VH-VV was
the best predictor for PWC (R2 = 0.34), FM (R2 = 0.34),
and crop height (R2 = 0.51). More recently, using Gaussian
processes regression with Sentinel-1 and Sentinel-2 images for
a drastically smaller dataset (three rapeseed fields, five dates),
Mercier et al. [34] demonstrated that σ0

VH-VV was the best SAR
indicator to derive DM (R2 = 0.80) and FM (R2 = 0.75), whereas
σ0

VH was the best indicator for PWC (R2 = 0.60). However,
authors obtained better results using band 11 of Sentinel-2 for
DM (R2 = 0.85) and FM (R2 = 0.77).

Globally, the results of this article are in line with these
previous studies demonstrating the high potential of C-band
SAR data for rapeseed BP monitoring, in particular for height
and DM. Compared to these studies, we introduced new indi-
cators based on the cumulated sum of backscatter coefficients,
polarization ratio, or RVI that proved to significantly improve
performances of rapeseed BP retrieval (see Figs. 8 and 10).
These indicators allow for the integration of backscattering
phenomena over time and are, thus, intrinsically less sensitive to
sudden changes (crop architecture, soil moisture due to rainfall
or irrigation, dew, etc.) between two acquisitions. Moreover,
the present work offered increased robustness of the developed
statistical relationship (14 fields, n = 1436) and a potential
ranking by phenological stages. For instance, we pointed out that
the best relationship for DM based on ηRVI showed significantly
larger residuals distribution for postflowering stages, suggesting
that confidence in the developed relationship is impaired for
these stages. Such seasonal information should be exploited by
providing a dynamic uncertainty or confidence interval of BP
estimations according to the considered phenological stage.

E. Impacts of Radiometric Terrain Flattening (RTF) in SAR
Data Processing

The backscatters generated by GEE preprocessing are not
fully corrected from the terrain deformation as they do not
undergo an RTF process. This can introduce bias in radiometric
values due to the topographical properties of each field combined
with the tilt of the SAR antenna onboard Sentinel-1. The impact
of the RTF processing has been evaluated by comparing the
sigma backscatters (σ0) derived from GEE and preprocessed
gamma backscatters (γ0 being the ratio between σ0 and the
cosine of the incidence angle) using the SNAP software (ESA
Sentinel Application Platform v8; http://step.esa.int) in VV and
VH polarizations as well as for derived polarization ratios and
RVI from acquisitions in orbit 110 (see Fig. 18).

http://step.esa.int
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Results show that the use of γ0 with RTF instead ofσ0 without
RTF has a significant impact on values derived in VH and VV
polarizations (R2 = 0.88 and 0.67, respectively with RMSE
= 1.04 dB for both polarizations). These differences become
negligible for RVI and the polarization ratio (R2 = 1 and RMSE
= 0.01 and 0.07 dB, respectively). The effect of local incidence
angle (derived from the SNAP processing) is more visible for
the VV polarization than for the VH polarization (the differences
in backscatter values increasing with the local incidence angle).
Note that the comparison between γ0 with and without RTF (all
other processing being identical) shows the negligible impact of
the RTF processing (R2 = 1, RMSE = 0.12 dB for VV and VH
polarization, RMSE = 0.001 dB for the polarization ratio, and
0.005 for RVI).

The impact of the use ofγ0 with RTF processing rather thanσ0

on the here established relationships between SAR RSI and BP
has been assessed. This impact is significant on the relationships
based on noncumulated VH and VV backscatters, but slighter
for the polarization ratio and RVI (the use of γ0 inducing a
systematic improvement of skill scores; not shown). Finally,
when cumulative sums (ηRSI) are used, these impacts become
totally negligible and the skill scores remain similar whatever the
order of the considered polynomial relationship (see Table VI).

V. CONCLUSION

This article aimed to evaluate the potential of multiorbital
SAR and multisensor optical remote sensed data for rapeseed
monitoring and the retrieval of its key BP. We introduced new
indicators based on the cumulative sum of each RSI (notedηRSI).
We showed that the use of ηRSI allowed us to significantly
improve the predictive power of each indicator, whatever BP
considered. The best results were obtained with ησVH for height
(R2 = 0.87, RMSE = 21.19 cm, RMSEr = 35.73%), FM (R2

= 0.73, RMSE = 1035.46 g·m−2, RMSEr = 52.04%), and
PWC (R2 = 0.76, RMSE = 2.37%, RMSEr = 49.51% for
postinflorescence emergence stages only) and ηRVI for DM
(R2 = 0.82, RMSE = 155.71 g·m−2, RMSEr = 41.97%). We
also demonstrated that multiorbital Sentinel-1 SAR data could
be used with low impact on the performance of SAR-based
relationships allowing to divide by more than two the mean
revisit interval. Finally, the asynchronous behaviors of GAI
and backscattering coefficients from inflorescence emergence
to fruits ripening suggest complementarity between both optical
and SAR domains. To further evaluate their robustness, here
developed relationships will be tested for other rapeseed fields
for which ground datasets have been acquired during the 2018–
2019 and 2019–2020 crop seasons in the framework of the Colza
Digital project. The use of polarimetric indicators based on fully
and compact SAR images should also be investigated on summer
rapeseed, as illustrated in [54] and [55]. An assimilation scheme
in an agrometeorological model will be later developed for
combined SAR and optical remote sensing data-driven rapeseed
yields modeling. In a near-real-time simulations perspective,
such an approach could be extremely useful to develop insurance
products allowing to strengthen financial protection of farmers.

APPENDIX

APPENDIX A:
BBCH SCALE OF MAIN PHENOLOGICAL STAGES OF RAPESEED

APPENDIX B:
FEATURES OF RAPESEED FIELDS USED FOR GAI EVALUATION
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APPENDIX C:
RMSEr (%)/R2 VALUES OF REGRESSIONS BETWEEN RAPESEED BP AND SAR RSI FOR MULTIORBITAL SENTINEL-1 ACQUISITIONS (N = 1436)

APPENDIX D:
RMSEr (%)/R2 VALUES OF REGRESSIONS BETWEEN RAPESEED BP AND RSI FOR SAR AND OPTICAL CONCURRENT ACQUISITIONS (N = 86)
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