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A Quantum Annealer for Subset Feature Selection
and the Classification of Hyperspectral Images
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Abstract—Hyperspectral images (HSIs) showing objects belong-
ing to several distinct target classes are characterized by dozens of
spectral bands being available. However, some of these spectral
bands are redundant and/or noisy, and hence, selecting highly
informative and trustworthy bands for each class is a vital step
for classification and for saving internal storage space; then the
selected bands are termed a highly informative spectral band
subset. We use a mutual information (MI)-based method to select
the spectral band subset of a given class and two additional bi-
nary quantum classifiers, namely a quantum boost (Qboost) and a
quantum boost plus (Qboost-Plus) classifier, to classify a two-label
dataset characterized by the selected band subset. We pose both
our MI-based band subset selection problem and the binary quan-
tum classifiers as a quadratic unconstrained binary optimization
(QUBO) problem. Such a quadratic problem is solvable with the
help of conventional optimization techniques. However, the QUBO
problem is an NP-hard global optimization problem, and hence, it is
worthwhile for applying a quantum annealer. Thus, we adapted our
MI-based optimization problem for selecting highly informative
bands for each class of a given HSI to be run on a D-Wave quantum
annealer. After the selection of these highly informative bands for
each class, we employ our binary quantum classifiers to a two-label
dataset on the D-Wave quantum annealer. In addition, we provide
a novel multilabel classifier exploiting an error-encoding output
code when using our binary quantum classifiers. As a real-world
dataset in Earth observation, we used the well-known AVIRIS HSI
of Indian Pine, north-western Indiana, USA. We can demonstrate
that the MI-based band subset selection problem can be run on
a D-Wave quantum annealer that selects the highly informative
spectral band subset for each target class in the Indian Pine HSI.
We can also prove that our binary quantum classifiers and our novel
multilabel classifier generate a correct two- and multilabel dataset
characterized by their selected bands and with high accuracy such
as having been produced by conventional classifiers—and even
better in some instances.

Index Terms—D-wave quantum annealer (QA), feature
selection, hyperspectral images (HSIs), mutual information
(MI), quantum machine learning, quantum classifier.
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I. INTRODUCTION

AQUANTUM annealer (QA) is a computing machine con-
figured as a graph network G = (E, V ), at each vertex of

which particles are residing, and its edges define the interaction
strengths among these particles, which are in quantum states
ups or downs. For a D-Wave QA, the graph G has a specific
network topology named Pegasus, in which only certain edges
are connected. In particular, the interaction among the particles
is constrained [1], [2].

A D-Wave QA works as a metaheuristic process, which is ded-
icated to tackle specific classes of optimization problems, e.g.,
quadratic unconstrained binary optimization (QUBO) problems.
There are theoretical studies that a D-Wave QA can solve these
QUBO problems faster than a conventional annealer (even for
NP problems) [3], [4]. However, currently, there are no indica-
tions of computational advantages for real-world problems. For
practical applications, several studies are devoted to benchmark
and assess a D-Wave QA for an operational planning and feature
extraction from remotely sensed images [5], [6].

For a real-world dataset in Earth observation, remotely sensed
images differ in their image content representations due to the
diverse satellite platforms with their different types of sensors.
When we want to use a D-Wave QA with an Earth observation
dataset, some of the challenges are the proper choice of appro-
priate remotely sensed images specified by their image content
representations such as their spatial information, polarization
states, spectral bands, and the embedding of a given dataset in
the topology of a D-Wave QA. Here, we consider hyperspectral
images (HSIs), and a selection of their highly informative band
subset is a very vital procedure in Earth observation. Hence, we
use a mutual information (MI)-based optimization method to
select the highly informative band subset, and more importantly,
we can easily embed and optimize the MI-based optimization
method in the Pegasus topology of a D-Wave QA. Therefore,
HSIs are one of the most proper datasets in Earth observation
for a D-Wave QA than others. In particular, HSIs became an
important field of study to classify or identify objects in a ground
scene such as roads, land cover, or agriculture since each object
is characterized by a high-dimensional vector of the different
spectral bands within the given full wavelength range. Due to
the rich information content of the spectral bands, some of these
bands carry more discriminatory information than others. Hence,
some studies are focused on extracting highly informative fea-
tures or a dimensionality reduction of HSIs, for instance, by
using deep learning networks or principal component analysis
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(PCA) [7], [8]. On the other hand, some researchers focused on
how to select a highly informative band subset by using the con-
cept of the information theory; in particular, MI-based methods
that provide a measure of independence between several spectral
bands. Moreover, these MI-based methods are based on prior
or reference knowledge of the spectral signatures of objects;
such knowledge can be obtained in specific spectral-signature
databases of common ground targets [9], [10].

In this article, we use an Indian Pine HSI of Indian Pine
composed of l = 16 distinct classes. Each class is characterized
by n = 200 bands (features); thus, the number of subsets of the
features of a given class, e.g., yS = 1, is 2n combinations. A
way to find the best feature subset of this given class is to try
all combinations. This is clearly computationally expensive for
a large number of these features.

Hence, in the first part of this study, we introduce an MI-based
subset feature selection problem as a global optimization prob-
lem for the Indian Pine HSI. Then, we propose to optimize this
MI-based band subset selection problem on a D-Wave QA. As a
first step, we map the MI-based band subset selection problem
to a QUBO-based band subset selection problem. This is our
first problem mapping step. Second, we optimize this mapping
problem on a D-Wave QA; quantum optimization [11], [12];
this part was strongly motivated by a feature selection tutorial
offered by D-Wave [2].

In the second part of this study, we use binary quantum clas-
sifiers, namely a quantum boost (Qboost) and a quantum boost
plus (Qboost-Plus) classifier, in contrast to an adaptive boost
(Adaboost) classifier [13], [14]. We first apply these quantum
classifiers to a two-label dataset of the Indian Pine HSI, and
second, we provide a novel multilabel classifier via an error-
encoding output code (ECOC) when using our binary quantum
classifiers [15], [16]; each resulting class is discriminated by the
selected bands in the first part of our study. We also benchmarked
and assessed these binary quantum classifiers and the novel
multilabel classifier with respect to conventional classifiers, a
decision tree classifier (DTC), a support vector machine (SVM),
and an Adaboost classifier.

Our contribution in this article is then an attempt to benchmark
and assess a D-Wave QA for Earth observation data and to
recognize the challenges that are encountered with real-world
datasets and future QAs or devices. Toward these goals, we are
employing a D-Wave QA for feature selection and classification
of the Indian Pine HSI as a machine learning technique; our
contribution consists of a three-step approach.

1) Feature selection on a D-Wave QA: The MI-based band
subset selection.

2) Binary classification on a D-Wave QA: The binary quan-
tum classifiers to a two-label dataset characterized by
those selected bands.

3) Multi-label classification on a D-Wave QA: The ECOC
generates a multilabel dataset when we are using our
binary quantum classifiers.

Moreover, the D-Wave QA may prove relevant even if we are
not intending to demonstrate its advantage over a conventional
annealer.

Fig. 1. Indian Pine HSI: Ground truth.

This article is structured as follows. We introduce the basics of
hyperspectral imaging in Section II. We present the basics of the
information theory and MI-based band subset selection problem
in Section III. In Section IV, we discuss the fundamentals of a
QUBO problem and demonstrate the problem mapping of an
MI-based problem to a QUBO-based problem. We introduce
the basics of a D-Wave QA and optimize the QUBO-based
band subset selection problem for the Indian Pine HSI on a
D-Wave QA (see Section V, quantum optimization). Finally, we
apply the binary quantum classifiers and the novel multilabel
classifier to the two- and multilabel dataset in Sections VI, and
VII, respectively. Section VIII concludes this article.

II. INTRODUCTION TO HYPERSPECTRAL IMAGING

A hyperspectral imaging sensor mounted on a satellite or
aircraft measures the electromagnetic spectrum ranging from
the visible to the near infrared wavelengths; for instance, the
imaging spectroscopy and the airborne visible/infrared imaging
spectrometer (AVIRIS) sensor measures 224 continuous spectral
bands ranging from 400 to 2500 nm at 10-nm intervals [17].

As a real-world dataset of HSIs, we consider an Indian
Pine HSI obtained by the AVIRIS sensor (see Fig. 1). This
low-noise Indian Pine image having the spectral bands of X =
{band1, . . . , band200} elements is a high-dimensional dataset.
However, not all of these spectral bands are informative for
characterizing a specific class; in other words, some bands of
X are redundant or noisy.

It is advantageous to select a highly informative band subset of
the given spectral bands for a given class. Hence, we employ an
MI-based band subset selection problem as a global optimization
problem.

III. INFORMATION THEORY AND MI-BASED BAND

SUBSET SELECTION

We select a highly informative band subset for each class
of the Indian Pine HSI; for instance, we consider the spec-
tral bands X = {X1, . . . , X200} = {band1, . . . , band200} of a
given class yS and find its most informative band subset. To
find the highly informative band subset for that specific class,
we employ an information theory; information is a function of
probabilities. Hence, we represent the band Xi and its corre-
sponding class yS as probabilities. We derived the probabilities
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for the band Xi and its class yS by dividing them into ten bins
in a histogram. The probability is then defined as

P (Xn′) =
Xn′∑10

n′=1 Xn′
, P (ym′) =

ym′∑10
m′=1 ym′

(1)

where Xn′ and ym′ represent the number of occurrences of the
band Xi and its class yS in the n′th or m′th bin, respectively.
Their joint probability is defined in the same way.

For the selection of the band subset, we exploit mutual infor-
mation (MI) that measures independence between band Xi and
its class yS . It is defined by

I(Xi; yS) =
∑
m′

∑
n′

P (Xn′ , ym′) log
P (Xn′ , ym′)

P (Xn′)P (ym′)
(2)

and by conditional mutual information (CMI), which is a mea-
sure of the dependence between the band Xi and its class yS
given another band Xj . The CMI can then be written as

I(Xi; yS |Xj) = E(Xi|Xj)− E(Xi|yS , Xj) (3)

where E is the entropy that is a measure of the uncertainty of a
random variable [18].

These band subset selection techniques expressed by both
(2) and (3) are named after an MI-based band subset selection
problem, which became popular in machine learning due to
its strong mathematical foundation rooted in the information
theory.

In the next sections, we pose the MI-based band subset
selection problem as a global optimization problem. First, we
map our MI-based band subset selection problem to a QUBO
problem, and the QUBO problem to a QUBO-based band subset
selection problem. Finally, we optimize the QUBO-based band
subset selection problem on a D-Wave QA.

IV. PROBLEM MAPPING: THE QUBO-BASED BAND

SUBSET SELECTION

A. Mapping of a MI-Based Problem to a QUBO Problem

In this part, we consider and pose the MI-based band subset
selection problem as a global optimization problem [11], [12].
Moreover, the maximization over the subsets {Xi} can be
written as

max
{Xi}

⎡
⎣∑

Xi

I(Xi; yS) +
∑

Xi,Xj

I(Xi; yS |Xj)

⎤
⎦ (4)

where Xi represents the bands of a given class yS of the Indian
Pine HSI (see Fig. 1).

Let us consider the band data X = {band1, . . . , band200} of
a given class of Alfalfa or simply yS = 1 as an example case.
We assume that (4) is maximized when we use the subset XS =
{X1, X2} = {band1, band2}. We can express this result in a
matrix form such that

I(X1; yS) + I(X1; yS |X2) + I(X2; yS) + I(X2; yS |X1)⇔

⇔
(
x̃1 x̃2

)( I(X1; yS) I(X1; yS |X2)

I(X2; yS |X1) I(X2; yS)

)(
x̃1

x̃2

)
(5)

here, x̃1 = 1, x̃2 = 1, and x̃3 = · · · = x̃n = 0. On the other
hand, we can interpret this matrix form that the x̃n’s are for se-
lecting a highly informative band subset. Hence, we can express
the MI-maximization problem expressed by (4) alternatively as

max
�x

[�xTQ�x], �x = (x̃1, x̃2, . . . , x̃n)
T , �x ∈ {0,+1}n (6)

where T represents a transpose operation, and Q is rep-
resented diagonal Qii = I(Xi; yS) and off-diagonal Qij =
I(Xi; yS |Xj) elements. We can even transform this maximiza-
tion problem to a minimization problem by multiplying it by
“−1.” As a result, we have

min
�x

[�xTQ�x], �x ∈ {0,+1}n (7)

where Qii = −I(Xi; yS) and Qij = −I(Xi; yS |Xj) [11]. This
form of the minimization problem over binary variables �x is
called a QUBO problem.

The MI-based band subset selection problem is, therefore,
equivalent to a QUBO problem when we write “−I(Xi; yS)”
and “−I(Xi; yS |Xj)” in the Q matrix, and minimize the Q
matrix over the binary variables.

B. Mapping the QUBO Problem to the QUBO-Based Subset
Band Selection Problem

To select a highly informative band subset characterizing each
class of the Indian Pine image (see Fig. 1), we employ the QUBO
problem described by (7) with an additional constraint

min
�x

[�xTQ�x], s.t.

n∑
i=1

x̃i = k, x̃i ∈ {0,+1} (8)

where k is the number of bands (band subset) of interest, and
n = 200 is the total number of given bands. Hence, we define
the QUBO-based band subset selection problem as

min
�x

[
�xTQ�x+ γ

n∑
i=1

(x̃i − k)2

]
, �x ∈ {0,+1}n (9)

where γ is a Lagrange multiplier. As an experiment for selecting
the most informative band subset for the specific class of an In-
dian Pine HSI, we consider the band subsets with three elements
(k = 3).

V. QUANTUM OPTIMIZATION: USING A D-WAVE QA

A. D-Wave QA

We selected a highly informative band subset characterizing
the specific class of the Indian Pine HSI by optimizing the
QUBO-based band subset selection problem in the form of
(9). We optimized this optimization problem on a D-Wave QA,
and we even benchmark the D-Wave QA with respect to its
conventional version.

A D-Wave QA is a QA for the special class of optimization
problems, in particular, QUBO-like problems. Such a QA is
a metaheuristic process evolving slowly enough from its initial
energyHi to its final energyHf in the form of a QUBO problem.
The evolution process is expressed by

H(t) = (1− λ(t))Hi(X̂) + λ(t)Hf (Ẑ) (10)
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Algorithm 1: Fitting Weak Classifiers.
1: INPUT: Training bands:
(x,y) = (x1, y1), . . . , (xS , yS); �xS represents the three
selected bands for a given class yS (see Table I).

2: y ∈ {−1,+1}S ; �S is the size of the input dataset,
and y represents the two-label of the Indian Pine HSI
(see Table III).

3: Initialize the weak classifiers: c = [c1, . . . , cN ];
�DTCs.

4: N ; �the number of DTCs.
5: wS = (1, . . . , 1)/S; �Assigning the same weight to

each data element xS .
6: for i← 1, . . . , N do
7: Fit a DTC, c[i], to the (x,y) with a weight wS .
8: yp = c[i](x), yp ∈ {−1,+1}S .
9: errm = wS · I(yp! = y)/sum(wS).

10: am = 0.5 · log 1− errm
errm

.

11: wS = wS · exp(−am · yp · y); �boosting the
weight of misclassified data.

12: wS = wS/sum(wS).
13: end for
14: h = [h1, . . . , hN ], hn ∈ RS ; �defining an array to

store the weak classifier predictions.
15: for i← 1, . . . , N do
16: h[i] = c[i](x); �storing the predicted classes.
17: end for
18: h = h/N ; �scaling h to the range of [−1/N, 1/N ].
19: return h.
20: STOP ALGORITHM.

where X̂ and Ẑ are Pauli-x and −z matrices, Hi is the initial
Hamiltonian of a system for a given time function of λ(t) = 0,
and Hf is the QUBO problem with λ(t) = 1 [1]–[3].

The hardware of the D-Wave QA has a specific graph topol-
ogy G = (V,E) named Pegasus; its vertices represent binary
variables �x, and its edges define interaction strengths among the
binary variables. However, the connectivity of these binary vari-
ables in the Pegasus topology is very constrained; in particular,
only the certain binary variables are allowed to interact with
others through the edges [19].

In addition, the performance of a D-Wave QA strongly de-
pends on mapping the binary variables of our QUBO problem
expressed by (9) to the Pegasus topology. As it is possible
to map (embed) our QUBO problem to the Pegasus topology
as efficiently as possible, we employed a technique called
minor embedding, which is offered by the company D-Wave
systems [2], [19].

B. Quantum Optimization for the Band Subset Selection

Quantum optimization is an optimization of our QUBO-based
band subset selection problem on a D-Wave QA. We performed
our experiment in a classical annealer and a D-Wave QA. Both
of these annealers selected the same band subset for each class

TABLE I
SELECTION OF THE BEST BAND SUBSET FOR EACH CLASS OF THE INDIAN PINE

HSI BY USING THE QUBO-BASED BAND SUBSET SELECTION ON

A D-WAVE QA

Fig. 2. (Left) Ground truth. (Right) Classification of the l = 16 classes char-
acterized by three highly informative spectral bands shown in Table I by using
an SVM.

of the Indian Pine HSI; we shown these selected band subsets
in Table I, while k = 3 in (9).

To prove that we selected the highly informative band subset
for each class on a D-Wave QA, we performed the scene clas-
sification for our Indian Pine HSI by using a DTC and an SVM
shown in Fig. 2 as a proof-of-concept.

In addition, we discovered that we needed at least a 10-D
parameter to reach the same accuracy as our proof-of-concept
method when we apply the PCA for the dimensionality reduction
and conventional classifiers (the DT and the SVM) for the
multiclass classification of the Indian Pine HSI (see Table I) [8].
For this scenario, we present the classification accuracy of the
test dataset in Table II.

These findings lead to the conclusion that our QUBO-based
band subset selection method identified the highly informative
band subset, and it even helped to reduce a storage space and
the computational load for training the given classifiers.

VI. CASE STUDY OF A BINARY QUANTUM CLASSIFIER ON A

D-WAVE QA FOR HSI

We have the Indian Pine HSI with 16 classes, where each
class is characterized by three highly informative bands selected
by our QUBO-based band subset selection method shown in
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Algorithm 2: Qboost Classifier.
1: INPUT: h from (Algorithm 1) or given.
2: OUTPUT: The strong classifier C.
3: Fit the weak classifiers to (x,y) (Algorithm 1): h (if h

is not given).
4: The weak subset classifier selection:
α∗ = minα[α

TQα], α ∈ {0,+1}N ; �QUBO problem
5: Diagonal and off-diagonal elements of a matrix Q:
6: Q ∈ RN×N .
7: for i← 1, . . . , N do
8: Qii = S/N2 + λ− 2(h[i])T · y.
9: end for

10: for i← 1, . . . , N do
11: for j ← i+ 1, . . . , N do
12: Qij = (h[i])T · h[j].
13: end for
14: end for
15: Optimize QUBO problem on a D-Wave QA
16: An optimal estimator weight vector: α∗.
17: PREDICT: given the test band set (x1, . . . xt);

18: T =
1

t

∑t
t=1

∑N
i=1 α

∗h[i](xt).

C(xt) = sign(
∑N

i=1 α
∗[i]h[i](xt)− T ).

19: STOP ALGORITHM.

TABLE II
CLASSIFICATION ACCURACY OF THE DTC AND THE SVM

Table I. In this section, we analyze binary quantum classifiers,
namely a Qboost classifier, and a Qboost-Plus classifier, for a
two-label dataset of the Indian Pine HSI created as the binary
output of a D-Wave QA; for instance, Alfalfa and Corn-notill, or
Corn-mintill and Corn-notill, etc. Further, we benchmarked the
classification accuracy of our binary quantum classifiers with
respect to conventional binary classifiers, such as a DTC, an
SVM, and an Adaboost classifier.

We considered first two types of boosting algorithms, a Qboost
and an Adaboost algorithm (classifier). The Qboost classifier is
a quantum version of an Adaboost classifier. Here, we use two
types of terminology for these classifiers, a strong classifier C
and a weak classifier ci. The strong classifier leverages many
weak classifiers to achieve its high classification accuracy; the
weak classifier is a classifier that classifies a given dataset better
than random guessing [20].

A. Basics of an Adaboost Classifier

An Adaboost classifier is an algorithm for finding an optimal
estimator weight of many weak classifiers so that the classifier
C is maximized [21]

C(xS) = sign

[
N∑
i=1

αici(xS)

]
, ci(xS) ∈ {−1,+1} (11)

where (xS , yS) represents a training dataset, and αi ∈ [0,+1]
is the estimator weight that is continuous-valued. Here,
sign(f(xS)) = 1 if f(xS) > 0, sign(f(xS)) = −1 if f(xS) <
0, and sign(f(xS)) = 0 otherwise. The loss of the Adaboost
classifier is defined as an exponential loss

α∗ = min
α

[
S∑

s=1

exp−ys
N∑
i=1

αici(xs)/S

]
. (12)

In contrast, a Qboost classifier is an algorithm for finding
an optimal estimator weight that takes only binary numbers
αi ∈ {0,+1}, and its loss is defined by a squared loss denoted as
L2. Hence, the Qboost classifier is equivalent to a subset selec-
tion algorithm among many weak classifiers to approximately
maximize the accuracy of the strong classifier. In next section,
we delve into the Qboost classifier in more detail.

In general, these boosting algorithms start with assigning
identical weightswS to our dataset. The weak classifiers classify
these datasets, and if the data are misclassified, then the weight
of that data are increased (boosted). This procedure is repeated
until no further improvement in the classification accuracy can
be seen. A DTC with a depth of one is considered as a weak
classifier; sometimes, it is called a decision stump classifier. We
already presented the steps for boosting a weight wS and the
weak classifier in Algorithm 1.

B. Qboost Classifier for a Two-Label Dataset of the
Indian Pine HSI

Moving toward the Qboost classifier, after having stopped
boosting the weight of our dataset, the Qboost classifier selects
the weak subset classifier so that the classification accuracy of
the strong classifier is maximized. We executed the weak subset
classifier selection algorithm on a D-Wave QA as shown in
Algorithm 2. Below, we explain the derivation of Algorithm
2 in detail. More importantly, the Qboost classifier exploits the
weight boosting by solving the weak subset classifier selection
problem on a D-Wave QA.

For the two-label dataset of the Indian Pine HSI, we de-
fine the training band dataset as (x1, y1), . . . , (xS , yS), the test
band dataset as (x1, . . . , xt), and the strong classifier, C(xS) ∈
{−1,+1}, which is a binary classifier in the form of [13] and [20]

C(xS) = sign

[
N∑
i=1

αici(xS)

]
, ci(xS) ∈ {−1,+1} (13)

where αi ∈ {0, 1} is the estimator weight, and ci(xS) is the
weak classifier; we chose DTCs as our weak classifiers.

Recent papers on theoretical studies [13], [14] and a practical
application for the remote sensing [22] are proposed to formulate
the loss of the strong classifier as a squared loss L2

α∗ = min
αi,λ

⎡
⎣ S∑
s=1

(
N∑
i=1

αici(xs)− y(xs)

)2

+ λ

N∑
i=1

α0
i

⎤
⎦ (14)

where α∗ represents the optimal estimator weight vector, S is
the size of the training band dataset, and λ

∑N
i=1 α

0
i represents a
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0-norm term. By expanding the squared loss function, we have

α∗ = min
α,λ

⎡
⎣ N∑

i=1

N∑
j=1

αiαj

(
S∑

s=1

ci(xs)cj(xs)

)

+

N∑
i=1

αi

(
λ− 2

S∑
s=1

ci(xs)y(xs)

)]
(15)

which is in the form of a QUBO problem, while we define

Qij =

S∑
s=1

ci(xs)cj(xs)

Qii = S/N2 + λ− 2

N∑
i=1

ci(xS)y(xS).

(16)

Then, we can write

α∗ = min
α

[αTQα], α ∈ {0,+1}N . (17)

We optimized this problem on a D-Wave QA to select the weak
subset classifier in its quadratic form.

Then, we obtained the optimal estimator weight vector α∗,
and the strong classifier for the test band dataset becomes

C(xt) = sign

[
N∑
i=1

α∗ici(xt)− T

]

T =
1

t

t∑
t=1

N∑
i=1

α∗ci(xt) (18)

where (x1, . . . xt) are from the test band dataset of the Indian
Pine HSI, and T is derived experimentally to increase the clas-
sification accuracy of the strong classifier C(xt) [13], [14]. We
have already presented the procedures of the Qboost classifier
in Algorithms 1 and 2.

Second, we chose the DTC, SVM, and Qboost classifiers
as weak classifiers instead of only a DTC. This method is
sometimes called an ensemble method. By exploiting (13) and
(15), we again formulated weak classifiers such that

C(xS) = sign

[
3∑

i=1

αici(xS)

]
, ci(xS) ∈ {−1,+1} (19)

where c1(xS), c2(xS), and c3(xS) represent the DTC, SVM,
and Qboost classifiers, respectively. In this scenario, we have
h = [c1(xS), c2(xS), c3(xS)] in Algorithm 2, and this ensemble
method is called a Qboost-Plus classifier [2].

C. Benchmarking Qboost and Qboost-Plus for the
Two-Class Classification

We run our experiment in several scenarios for the two-label
dataset of the Indian Pine HSI by using the DTC, SVM, Qboost,
Qboost-Plus, and Adaboost classifier. These scenarios are as
follows.

1) DTC for the two-label dataset of the Indian HSI.
2) SVM for the two-label dataset of the Indian HSI.

TABLE III
CLASSIFICATION ACCURACY OF THE DTC, SVM, QBOOST, QBOOST-PLUS, AND

ADABOOST FOR THE TWO-LABEL OF THE INDIAN PINE HSI; {i, j} REPRESENTS

THE TWO-LABELS, W.G., {1, 2} → ALFALFA AND CORN-NOTILL (SEE FIG. 1)

By a Bold font, we noted the highest accuracy value of the Qboost-Plus classifier
with respect to the Adaboost classifier.

3) Qboost with 30 weak classifiers for the two-label dataset of
the Indian HSI; the weak classifiers are the DT classifiers
with the depth three.

4) Qboost-Plus for the two-label dataset of the Indian HSI;
the weak classifiers are a DTC, an SVM, and a Qboost
classifier.

5) Adaboost with 30 weak classifiers for the two-label dataset
of the Indian HSI; the weak classifiers are the decision
stump classifiers.

All aforementioned scenarios used for benchmarking are the
two-label classification of the Indian Pine HSI, and we present
the classification accuracy of our experiment in Table III. We
even compared the boosting algorithms, the Qboost-Plus and the
Adaboost classifier. Their results demonstrate that the Qboost-
Plus classifier performs the same as the Adaboost classifier and
even better in some instances.

In this part, we selected the most highly informative band of
the Indian Pine HSI by using our QUBO-based band subset
selection method. Furthermore, we leveraged these selected
bands to benchmark our Qboost and Qboost-plus algorithms
with respect to the classical classifiers. Our quantum classifiers
clearly outperform the conventional classifiers for most of the
binary instances of the Indian pine HSI.

VII. NOVEL MULTILABEL CLASSIFIER FOR THE INDIAN PINE

HSI ON A D-WAVE QA

In the prior section, we exhibited that our quantum binary
classifiers (Qboost and QboostPlus) classify the two-label of
the Indian Pine HSI with high accuracy due to the binary
output of a D-Wave QA. However, the Indian Pine HSI has
16 classes, and the quantum binary classifiers are needed to
extend for the multilabel classification. Hence, we propose a
novel technique for the multilabel classification via an ECOC,
and namely, we leverage an ECOC technique to classify the
multilabel of the Indian Pine HSI when using our binary quantum
classifiers [15], [16], [23].
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Fig. 3. Confusion matrix for the l = 16 labels of the Indian Pine HSI. (a) Qboost-Plus classifier via the ECOC technique. (b) Adaboost classifier via the ECOC
technique.

Algorithm 3: A Multilabel Classifier by Using Quantum
Binary Classifiers Via an ECOC.

1: INPUT: Training bands:
(x,y) = (x1, y1), . . . , (xS , yS); �xS represents the three
selected bands for a given class yS (see Table I).
y ∈ {1, 2, . . . , 16}S ;
� y represents l = 16 distinct labels of the Indian Pine
HSI, and S is a size of the training dataset.

2: OUTPUT: Quantum binary classifiers:
Cb = {C1, C2, . . . , C24}.
3: CODING MATRIX:
4: Assign b = 24 codewords to each class (b > log2 l),

and generate l by b coding matrix M for l = 16
distinct labels (see Table IV).

5: Construct S by b coding matrix M ′ for training classes
y.

6: TRAINING:
7: for i← 1, . . . , b do
8: Construct two sets, Gi and Gi. Gi consists of all

labels for which M ′[:, i] == 1, and Gi is the
complement set.

9: Fit a quantum binary classifier Ci to distinguish Gi

from Gi by using Algorithm 2.
10: end for
11: TESTING:
12: Given an unlabeled data xt.
13: Evaluate the trained quantum binary classifiers

Cb(xt) = {C1(xt), C2(xt), . . . , C24(xt)} by
employing the step 17 of Algorithm 2.

14: Compute an Euclidean/Hamming distance:
dj = d(Cb(xt),M [j, :]), j = 1, 2, . . . , l.

15: return argminjdj ; �codewords (a label) for the
unlabeled data xt.

16: STOP ALGORITHM.

TABLE IV
EXAMPLE OF THE CODING MATRIX M FOR THE ALL l = 16 LABELS OF THE

INDIAN PINE HSI GENERATED RANDOMLY, AND EACH CLASS IS

CHARACTERIZED BY b = 24 CODEWORDS

A. ECOC Technique (see Algorithm 3 for a
Detailed Procedure).

1) Coding matrix: We assign unique b-bits (codewords) to
each class of the Indian Pine HSI such that b > log2 ˜l
where l = 16 is a number of classes; the classes are
represented by a so-called coding matrix M ∈ {0, 1}l×b
(see Table IV), and M ′ ∈ {0, 1}S×b for a training dataset
with sizeS. In our case, each class is represented by b = 24
codewords generated randomly.

2) Training: We train each column of the coding matrix M ′

by quantum binary classifiers Cb = {C1, C2, . . . , C24}.
3) Testing: For an unlabeled input xt, we evaluate Cb(xt) =
{C1(xt), C2(xt), . . . , C24(xt)}, and then, we assign
Cb(xt) to the closest codewords in the coding matrix M
by using an Euclidean/Hamming distance.

B. Benchmarking Qboost and Qboost-Plus for the
Multilabel Classification

We run our experiment for the multilabel of the Indian Pine
HSI via the ECOC by using the DTC, SVM, Qboost, Qboost-
Plus, and Adaboost classifier. Furthermore, we presented the
classification accuracy of our experiment in Table V. We com-
pared also the classification accuracy and the confusion matrix of
the Qboost-Plus with one of the Adaboost classifier (see Fig. 3).
Their results again demonstrate that the Qboost-Plus classifier
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TABLE V
CLASSIFICATION ACCURACY OF THE DTC, SVM, QBOOST CLASSIFIER,

QBOOST-PLUS CLASSIFIER, AND ADABOOST CLASSIFIER FOR THE ALL 16
LABELS OF THE INDIAN PINE HSI; {1, 2, . . . , 16} REPRESENTS THE ALL 16

LABELS (SEE FIG. 1)

By a Bold font, we noted the highest accuracy value of the Qboost-Plus classifier with
respect to the Adaboost classifier.

beats the Adaboost classifier when we leverage the ECOC tech-
nique for a multilabel classification case. More importantly, we
provided a novel multilabel classifier via the ECOC technique
when applying a quantum computing device yielding binary
outputs.

VIII. DISCUSSION AND CONCLUSION

In the first part of this article, we used an MI-based band
subset selection technique as a global optimization approach for
a real-world problem of the Indian Pine hyperspectral dataset
on a D-Wave QA. We first mapped this MI-based band subset
selection problem to a QUBO-based band subset selection prob-
lem. Then, we benchmarked and assessed the performance of a
D-Wave QA compared to a conventional annealer. We demon-
strated that the D-Wave QA correctly selects highly informative
bands competitive to a conventional annealer. To prove that our
D-Wave QA selected the best bands for each class, we classified
all 16 classes based on their three highly informative bands by
applying a DTC and a SVM classifier. Their classification results
exhibit that the selected bands are the highly informative ones.
Besides, the feature selection method saves storage space and
reduces the computational load for the training process.

In the second part of our article, we first tested a binary
classification for the Indian Pine HSI due to the binary output of
our D-Wave QA. We proposed to employ two binary quantum
classifiers, Qboost and Qboost-Plus, to our two-label dataset.
Second, we provided an ECOC for the multilabel classification
of the Indian Pine HSI when applying our binary quantum
classifiers. Here, the classes are characterized by the bands
selected during the first part of our study. We benchmarked these
binary quantum classifiers and the novel multilabel classifier
in comparison to conventional classifiers that are a DTC, a
SVM classifier, and an Adaboost classifier. Our binary quantum
classifiers and our novel multilabel classifier even outperform
these conventional classifiers for most instances of the two- and
multilabel dataset.

In the end, we realized how to leverage a quantum annealing
device to extract knowledge and support real-world optimization
problems in comparison to conventional machine learning tech-
niques. In addition, we conceived strategies for formulating and
embedding real-world problems to the topology of a D-Wave
machine.

We must note, however, that our method is not intended to
compete with a conventional method, but we intended to find
a proper dataset in Earth observation to evaluate an existing

quantum algorithm on a D-Wave QA or the future quantum
computers since the choice and the size of a dataset play a vital
role in quantum computers.

In terms of a future work, we will design a hybrid quantum-
classical network for Earth observation datasets, which exploits
both quantum computers (a QA and gate-based quantum com-
puter) and a conventional computer. Such a hybrid network will
be independent of the choice and size of datasets.
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