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Automatic Road Extraction From Remote Sensing
Imagery Using Ensemble
Learning and Postprocessing

Junjie Li

Abstract—High-resolution satellite images contain valuable road
semantic information, but the occlusion of vegetation and buildings
and the sparse distribution and heterogeneous appearance of roads
limit the accuracy of road extraction models. In this article, we
propose a novel method for extracting roads using an ensemble
learning model with a postprocessing stage. The network weights
and biases of our proposed deep learning model are transmitted
through the random combination of layers of different submodels
during forward and backward propagation. In the gradient descent
process, a superior loss function is designed to solve the problem of
class imbalance caused by road sparseness, and more attention is
given to hard classification samples to extract narrow and covered
roads. In addition, we solve road disconnection issues in the results
obtained with the neural network by extracting and analyzing the
geometric structures and feature points of the roads. Experiments
on two challenging datasets of remote sensing imagery show that
the proposed method performs better than other models and can
extract road information from complex scenes.

Index Terms—Convolutional neural network (CNN), ensemble
learning, remote sensing, road extraction, semantic segmentation.

1. INTRODUCTION

S AN essential part of basic geographical data at the
A national scale, roads play an important role in urban plan-
ning, transportation logistics, disaster assistance, emergency
relief, navigation, etc. Automatically extracting and updating
road information has always been a popular research topic. At
present, methods for extracting and updating road information
mainly involve traditional surveying and mapping, for which
road information is generated from manual field measurements
and recorded, or GPS trajectories. Road information is collected
through professional GPS track acquisition devices for vehicles,
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taxis and individuals [1], [2]. Traditional methods require con-
siderable manpower and material resources. Additionally, the
extensive time requirement for early data collection leads to
low-efficiency road extraction and updating. Thus, most meth-
ods are not suitable for the timely updating of road information
over a large range. The temporal availability and wide coverage
of remote sensing images support the large-scale extraction of
object information. With the development of remote sensing
technology, very high-resolution satellite images and aerial im-
ages have become important data sources for road extraction.
However, there are various challenges associated with these
sources. First, roads are often masked by the shadows of build-
ings and vegetation. Second, the colors, widths and shapes
of roads in different regions vary greatly. For example, urban
arterial roads are straighter and wider than rural roads. Third,
relative to the distributions of vegetation, water and other objects
in an image, the road distribution is generally sparser. All these
factors increase the difficulty of automatically extracting roads
from remote sensing images.

To solve these problems, many methods have been proposed
to extract roads from complex backgrounds. Early methods can
be divided into snake models [3], [4], dynamic programming
methods [5], [6] and template matching methods [7], [8]. These
methods extract the geometric and texture features of roads at
pixel or object scale. However, road interference and connectiv-
ity problems are often encountered with these methods. In recent
years, with the broad application of deep learning technology in
computer vision, natural language processing and multimedia,
convolutional neural networks (CNNs) have been verified as
effective in mining contextual information from images. Some
representative CNNs and algorithms include FCNs [9], UNet
[10], PSPNet [11], and DeepLab [12], [13].

Based on the above networks, many road extraction neural
networks have been proposed [14]-[19]. These algorithms treat
road extraction as a semantic segmentation problem. Although
these networks have achieved satisfactory results, there are still
obvious limitations, such as the lack of sufficient reasoning
ability. Feature extraction based on CNNs mainly relies on visual
information, but the capture angle of an image, imaging time, and
distribution of surface objects can influence the original visual
information. Therefore, if a road is blocked by vegetation, build-
ings or other nonroad objects, obvious road distortion may occur,
thus reducing the accuracy of extraction. Sparse distribution
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and class imbalance issues also influence these methods. Road
extraction is essentially a problem of semantic segmentation, and
road information is segmented from the complex background
of remote sensing images. In this process, only two categories
need to be considered: roads and nonroads. However, the road
and nonroad pixels in a sample are often unbalanced due to the
diversity of road widths and the sparse distribution of roads.
Ordinary CNNs cannot solve this problem because they give the
same amount of attention to each pixel.

To overcome such limitations, inspired by [20], we propose

a road extraction framework based on ensemble learning that
considers contextual information and road connectivity. A large
number of studies and online competitions have proved that
ensemble learning methods can effectively improve the accuracy
and robustness of the model [17], [21]. Unlike ordinary CNNs,
the network weights and biases of the proposed deep learning
model are transmitted through the random combination of layers
of different submodels during forward and backward propaga-
tion. By fusing the features of different layers of different sub-
models, low-level location information and high-level semantic
information can be effectively extracted, thus enhancing the rea-
soning ability and robustness of the model. A new loss function is
designed for road sparsity and diversity. Compared with the tra-
ditional cross-entropy (CE) loss function, this new function can
effectively solve the problem of class imbalance and consider
pixels that are difficult to classify. Moreover, due to the decep-
tiveness of visual information in an image, we design a post-
processing method based on geometric structure analysis and
feature point extraction to help solve the problem of road con-
nectivity. In general, our framework achieves performance im-
provements by ensemble learning and connecting broken roads.
The main contributions of the article are summarized as follows.

1) A new ensemble learning model for road extraction is
proposed, which improves the robustness and predictive
performance through random combination and propaga-
tion of neural network layers.

2) A synthetic loss is designed to simultaneously focuses on
class imbalance at the image level and the hard classifica-
tion at the pixel level.

3) Animproved multistage postprocessing algorithm is intro-
duced to connect road breakpoints. A linear region grow-
ing algorithm is proposed to speed up the connection, and
the width of the breakage can be automatically obtained
by calculating the connected domain of road segments.

The remainder of this article is structured as follows. Section II

explains the existing work related to road extraction. The details
of the proposed method are presented in Section III. Section IV
introduces the datasets and preprocessing method. Section V
describes the experimental results and the corresponding anal-
yses. Finally, in Section VI, conclusions are drawn, and future
research is recommended.

II. RELATED WORK

A. Feature-Based Approaches for Road Extraction

In the early stage of road extraction research, roads
were mainly identified based on spectral, color, shape, edge,
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topological, and direction features. The process of road extrac-
tion involves feature extraction, feature fusion, and classification
steps. Tupin et al. [22] extracted linear features from speckled
radar images and then defined a Markov random field to identify
real roads. Gaetano et al. [23] used an ad hoc skeletonization
procedure to describe the linear structure of road segments. Liu
et al. [24] constructed a geometric knowledge base for rural
roads based on the linear characteristics of roads. Chaudhuri
et al. [25] used a semiautomatic approach that accurately de-
rives road segments by developing customized operators. These
methods based on feature extraction are often semiautomatic
methods that rely on manual selection, and although the re-
quired operations are simple, the experimental effect depends
largely on the quality of feature selection and the feature fusion
algorithm.

B. Object-Based Approaches for Road Extraction

Object-based image analysis (OBIA) uses the object region
as the basic analysis unit. Compared with pixel-scale methods,
OBIA can deeply extract shape, texture and other information
for ground objects in an image to improve the smoothness of
the road extraction results [26]. The image is first segmented
to obtain many irregular homogeneous objects, and the pixels
located in these objects have similar spectral and texture charac-
teristics. These objects are then classified to extract the road. Shi
et al. [27] first used a general adaptive neighborhood and local
Geary’s C toimplement spectral-spatial classification to segment
images. Then, road shape features, locally weighted regression
and tensor voting were used to generate road centerlines and
road networks. Maboudi et al. [28] applied a well-established
multiresolution segmentation approach to create nonoverlap-
ping regions, and then a fuzzy logic system and the ant colony
optimization were used to analyze spatial, spectral, and textural
object descriptors and extract road objects. The first image
segmentation step is one of the most fundamental stages of
OBIA, and it directly affects the precision and recall of road
extraction.

C. Deep-Learning-Based Approaches for Road Extraction

With the great success of CNNs in the field of computer
vision, deep learning approaches have been increasingly used
in the field of remote sensing and have produced state-of-the-art
results. Zhang et al. [14] proposed a deep ResUNet to extract
roads from aerial images based on UNet. Tao et al. [29] proposed
a spatial information inference network to capture and transmit
road-specific contextual information, and this method displayed
good road continuity performance. Zhang et al. [18] used a
generative adversarial network to build an end-to-end framework
for road extraction. Gao et al. [16] proposed a multiple feature
pyramid network that combined feature pyramids and pyramid
pooling to capture contextual information. Rezaee and Zhang
[30] redesigned a patch-based deep neural network to detect
roads in the Fredericton dataset, and the results showed that this
method was better than SVM. Abdollahi ef al. [31] proposed
an end-to-end fully CNN to produce a high-resolution road
segmentation map, and they combined CE and dice loss to
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decrease the class imbalance influence. Li ef al. [32] proposed
an improved neural network D-Linknetplus based on D-LinkNet
to extract roads from UAV remote sensing images. Wei et al.
[33] designed a boosting segmentation framework to extract
the road surface and road centerline simultaneously, and they
also synthesized CE and dice loss. These deep-learning-based
approaches achieved good results, but they only improved from
the networks used and did not address road breakage issues
caused by vegetation and buildings. They hardly simultaneously
consider the hard-classified samples and class imbalance issue of
the road. The above will reduce the accuracy of road extraction
in complex environments.

D. Postprocessing of Road Extraction Data

In the traditional feature-based and object-based approaches
and the current deep learning methods, the extracted roads are
often noncontinuous due to vegetation and building occlusion
issues. These road segments cannot be directly processed by
computer vision. Spatial connectivity is an important attribute
of roads, so postprocessing steps to assess road connections are
necessary. Samet et al. [34] proposed a nontrivial semiautomatic
approach to fill gaps in contour lines based on local and geomet-
ric properties. Gao et al. [35] used a tensor voting algorithm to
reduce broken regions and improve the topological expressions
of roads. Fan et al. [36] proposed an optimization method for
broken road connections, and the approach included road break-
point detection, polynomial fitting and pixel filling. In general,
the postprocessing of extracted roads is commonly considered
in traditional road extraction methods but less frequently used
in deep learning methods because researchers have been more
inclined to improve the structure of the neural network itself than
to form an end-to-end processing system to improve accuracy
and efficiency.

III. METHOD

In this article, a novel deep CNN (E-UNet) based on ensem-
ble learning for semantic image segmentation is proposed to
extract roads from remote sensing imagery. In the following
subsections, we describe the basic structure of the proposed E-
UNet and discuss the designed loss function and postprocessing
method.

A. Structure of E-UNet

As one of the network structures widely used in academia and
industry at present, UNet [10] has achieved good segmentation
results through the feature fusion of different levels through skip
connections. In our research, we use UNet as the basic model
to build a more stable and robust ensemble learning model (E-
UNet). We have simplified the process of ensemble learning
proposed in [20], and resplit the various layers of UNet in our
work. The construction process of E-UNet is as follows. In the
initial stage, we make N copies of a single submodel to construct
an integrated model E with N parallel submodels. Assuming that
each submodel contains Q layers of CNNs, then E can be defined
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as
Ey Ly Lig

B — FEs _ Loy ... Log )
Ey Lyt Lyg

where L,, represents the weight and bias of the gth layer of
submodel 7. For the gth (1 < g < @) layer of model E, we then
construct a 1&times;N random matrix M, to randomly select
a layer of the submodels as the gth layer L, for forward and
backward propagation. L, can be calculated as

Ly,

L, =M, Lag (2)
Ly

My=[X1q... Xng] 3)

where X, is arandom variable and the value of X, is defined
as

Y 1, 1f Lyq s selected.
"0, otherwise.

During the ith iteration of training, E-UNet can then be defined

“

as

Ei=[Li...Lqy... Lo . 5)

After forward propagation, the loss is calculated through the
loss function, and the parameters of each layer in the submodels
are updated by back propagation. During the jth iteration of
training, a new random matrix is constructed for each layer
to generate a new propagation path, and then the above steps
are repeated. The overview of proposed E-UNet is shown in
Fig. 1. The detailed training procedure of E-UNet is also given
in Algorithm 1. In the model prediction phase, the prediction P,
of sample x is the average of each submodel, and the calculation
formula is as follows:

1 N
Py = Z; E; (x). (6)

Therefore, the ensemble strategy of E-UNet is mainly embod-
ied in two aspects. First, the random combination of different
layers of submodels in the training process can improve the
robustness of the model. Theoretically, for N submodels each
with Q layers of CNNs, a total of N new models may be
randomly combined for training. Random combination is an
effective mechanism to induce model diversity, which helps to
extract complex and heterogeneous road features through more
model parameters and more diversified model structures. The
purpose of E-UNet is to search for a powerful ensemble model
with strong generalization ability and high robustness in the
hypothesis space by combining multiple simple models. Second,
using the average output of the N submodels as the prediction
result in the test process can reduce the deviation and improve
the predictive performance.
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Fig. 1. Overview of E-UNet training.
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Fig. 2. Architecture of UNet.

Fig. 2 shows the basic model structure of the UNet we use.
The contracting path performs deep feature extraction through
convolution and pooling operations, and then the expansive
path recovers the detailed information and structural informa-
tion associated with roads through convolution and upsampling
modules; its specific network parameters are given in Table I.
Excluding the max pooling and concatenation operations, we di-
vide UNet into 14 modules (layers), including 10 DoubleConvs
in the contracting path and expansive path and 4 upsampling
(deconvolution) layers in the expansive path. Therefore, Q = 14
in E-UNet.

B. Loss Function

Two issues in road semantic segmentation are the sparseness
of roads and the imbalance of samples. The pixels in a certain
road category account for a relatively small part of the entire

image, and most of the pixels include the image background.
In road extraction research, the traditional mean squared error
(MSE) [14] and CE [15], [35] are mainly used.

For binary classification, CE can be defined as

k k (K k (K
CEZ(.j) = — yl(j)logygj) + (1 — yl(j)> log (1 — logyl(j)ﬂ
(N
where yg-c) and g)l(jk) represent the ground truth and estimated

probability for roads at location (i, j) in sample k, respectively. If
the pixel represents a road, the ground truth value is 1; otherwise,
it is 0. For minibatch training, the total loss of CE can be
calculated as follows:

K w H

1
Lot = sy 2o 0 2L CEY ®

k=1i=1j=1
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TABLE I
NETWORK PARAMETERS OF UNET

1(\;{(;321; Operator Kseirzr::el Stride  Padding C()é?;;;i;/z)e
c1 Convl 3x3 1 1 64x512%512
Conv2 3x3 1 1 64Xx512x512
Pooll 2%2 2 0 64X256%256
o Convl 3x3 1 1 128%256%256
Conv2 3x3 1 1 128%256%256
Pool2 2%2 2 0 128x128x 128
3 Convl 3x3 1 1 256x128x128
Conv2 3%3 1 1 256x128x128
Pool3 2x2 2 0 256Xx64x64
c4 Convl 3x3 1 1 512x64x64
Conv2 3%3 1 1 512X64x64
Pool4 2%2 2 0 512X%32%32
Cs Convl 3x3 1 1 1024x32%32
Conv2 3%3 1 1 1024x32%32
UP1 DConv  2X2 2 0 512X64x64
Concat - - - 1024 %64 x 64
DI Convl 3x3 1 1 512X64x64
Conv2 3x3 1 1 512X64X64
UP2 DConv  2X2 2 0 256x128%128
Concat - - - 512x128x128
D2 Convl 3x3 1 1 256x128x128
Conv2 3x3 1 1 256x128%x128
UP3  DConv  2X2 2 0 128%256%256
Concat - - - 256X256%X256
D3 Convl 3x3 1 1 128x256%256
Conv2 3%3 1 1 128%256%256
UP4  DConv  2Xx2 2 0 64Xx512x512
Concat - - - 128%x512%x512
D4 Convl 3x3 1 1 64x512x512
Conv2 3x3 1 1 64Xx512x512
D5 Convl 1x1 1 0 1X512%512

Algorithm 1: Training procedure of E-UNet.

Input: training dataset X. Batch size K. Training epochs
1. The number of sub-models included in E-UNet is N.
The number of network layers of UNet is Q.

Initialize a single submodel U (UNet)

Copy N submodels to form a model list UList (E-UNet)

for epoch =01.../do

for batch = 12... X/K do
iteration = epochx X/K+ batch
Create an empty array A with size Q
for layer ¢ = 01...0-1 do
Alg] = random(0, N-1)
submodel R = UList[A[q]]
Update weight, Layer{, = Layer},
end for
outputs = forward (images, U)
Loss (outputs, labels)
Loss.backward()
Optimizer.step()
for layer ¢ =01...0-1 do
submodel R = UList[A[q]]
Update weight, Layer, = Layer{,
end for
end for
end for

where K, W, and H represent the mini-batch size, width and
height of the sample, respectively. As seen from the above
formula, the loss function gives the same weight to each pixel
in an image. The total loss is calculated as the average per
pixel without considering the imbalance among classes or the
difficulty of classifying various samples.

In fact, background objects and wide roads are easier to
identify and classify than narrow and segmented roads; thus,
the former is the focus of model optimization, and the latter is
generally ignored when determining the overall loss. Inspired
by focal loss [37], we first introduced a modulating factor for
the CE loss to focus on the samples that were difficult to classify
during training. The weighted CE loss can be defined as follows:

WCEY
_ {ygc) (1 _ggp)”logggp +g” (1 _y§f>) log (1 —1ogy§]’?>)}

—(1 - fo))vlogﬁff) if g =1
B ©)
—g)gf)vlog (1 — logg)g@)) otherwise

where (1 — Qz(f))vis a modulating factor that downweights the
loss assigned to well-classified samples and upweights the loss
assigned to hard-classified samples. v is used to adjust the degree
of downweighting and upweighting. We adopted the conclusion
in [37] and set v = 2. WCEEf) is a pixel-level loss, while the
problem of class imbalance is reflected at the image level, so we
introduce dice loss [38] to compensate for the lack of WCE in
representing class imbalance. The dice loss of sample k can be
defined as

w H k) ~(k
221’:12]’:1 yz(j)yz(j)

w H k NOINN
Zi:le:l( W yz(j)’)

Yij
Finally, the complete loss function we designed is as follows:

Dice®) = 1 —

(10)
+

w H
L®=(1-a) 3 3 WCEY +abDice® (11

i=1j=1

where L) is the loss of sample k. Dice(®) is mainly used to mit-
igate the imbalance among classes, WCEI(;) is used to improve
the classification of hard pixels, and « is a hyperparameter used
to adjust the contributions of these two losses to the total loss.

C. Postprocessing

A deep CNN cannot solve road breakage problems when
extracting roads from an image. These broken roads may be due
to narrow road widths or road blockages caused by vegetation,
buildings, or other nonroad objects. Inspired by Manandhar
et al. [39], we propose a linear region-growing algorithm to
solve road breakage and disconnection problems.

1) Detection of Potential Road Breakpoints: The result of
road extraction using a deep neural network is a binary image
of a single band. Each pixel is either the foreground (road) or
the background (nonroad). If a small change in any direction
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Fig. 3. Postprocessing of extracted roads. (a) Example of road segments.
(b) Skeleton lines and nodes of road segments.

causes a large change in the grayscale, then the corresponding
point is called a corner point or feature point. Road breakpoints
and inflection points are obviously points of interest. Fig. 3(a)
shows the road segments identified by the deep learning model.
Each road segment can be considered an independent connected
domain (o, f3, 7, and §). We first use the Zhang—Suen thinning
algorithm [40] to obtain the skeleton lines of road segments, as
shown in Fig. 3(b). We then use the Shi—Tomasi corner detector
[41], which is improved on the basis of the Harris corner [42],
to find the potential road breakpoints. The basic principle is as
follows. Given a shift (Az, Ay) and a point (z, y) in a grayscale
image, the change in pixel value is defined as

¢ (Az,Ay) = Y w(z,y) I (z+ Aw,y + Ay) — I (z,y)]
(z,y)

(12)
where w() denotes the window function and the simplest case is
w = 1. I(x, y) is the gray value at location (x, y). The formula
can be approximated by a Taylor expansion as follows:

Ax }

Ay 13)

¢ (Azx,Ay) = [Az Ay] M [
where M is a matrix and A\; and A\, are the eigenvalues of M.
These eigenvalues determine whether a region is a corner, an
edge, or a plane. Finally, a corner response function RF is used
to detect corners.

RF = min (A1, A2). (14)

2) Find the Nearest Node: We regard the potential road
breakpoints on each road segment as the nodes of the connected
domain, represented by capital letters A to J in Fig. 3(b). There-
fore, connecting broken roads actually connects nodes located on
different connected domains. The closer two nodes are, the more
similar the two nodes are, and the more likely they are to belong
to the same road. For this hypothesis, we use the Euclidean
distance as the connection cost, and two nodes with the minimum
cost on different connected domains are connected. As shown
in Fig. 3(b), we randomly select a node (for example, node A)
in connected domain « as the initial node and then calculate the
cost between the nodes in f3, -, and § and node A until all nodes
in all domains are calculated. The nearest node and minimum
cost of each node are given in Table II.

We set a hyperparameter L; if the minimum cost of the two
nodes is less than L, then the two nodes are added to the list to be
connected; otherwise, they are abandoned. In addition, different
connected domains are connected only once. For example, if we
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TABLE II
NEAREST NODE AND MINIMUM COST OF EACH NODE

Road Segment

( Connected Node Nearest Minimum
. Node Cost
Domain )
A J 3
o B D 20
C E 19
D F 13
B E F 2
F E 2
b G E 14
H 1 3
1 H 3
0 J A 3
TABLE 1T

NODE CONNECTION SEQUENCE

Connected nodes Connected Domain

A>]J a9
E>F B>y
H>1 Y238

————— J

Y

/
ml| 7
A

Fig. 4. Linear region growing.
set L = 10, we first start from the connected domain «, nodes A
and J are considered to be connectable, and the minimum cost
of B and C is greater than 10 and is not considered. We then
move to connected domain 3, where we connect node E to node
F. The complete node connection sequence is given in Table III.
3) Linear Region Growing: A linear region-growing algo-
rithm is designed to connect breakpoints based on region grow-
ing [43]. Nodes in Fig. 3(b) are single-coordinate points, but the
road in the input image is several pixels wide. In other words, the
road area is a raster image rather than a line vector. Therefore,
it is necessary to estimate the width of the roads and design an
algorithm to connect the middle region of the fracture according
to the two points. As shown in Fig. 4, each square represents a
pixel, with point A as the center used to construct an “L”’-shaped
growth template. If A is in the upper left corner of J, then the
template has an inverted “L” shape, and m is the template size.
We use the average road width of two segments to be connected
to calculate m, and the formula is as follows:

1 (Vi
may =5 x (7 +7

1
TtT (15)

where i and j represent the connected domain where nodes A
and J are located, respectively. V; is the number of pixels in con-
nected domain 7 before thinning, and 77 is the number of pixels
in connected domain i after thinning. Unlike the requirement
in the region-growing algorithm, there is no need to select the
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Fig. 5. Connection result.

4 5 6

Fig. 6. Overlapping cropping for MRD images.

seed point in this case, and the pixels in the growth template are
directly used as the initial seed points. Our linear region-growing
algorithm uses the slope of the line AJ as the growth direction
and stops the growth when the x—y coordinates of the pixel reach
point J. Compared with the approach of growth in any direction
for four neighbors or eight neighbors, the proposed algorithm
is much more efficient. Finally, the region of growth between
two nodes serves as the connection for the broken segments, as
shown in Fig. 5.

IV. DATASETS AND PREPROCESSING
A. Datasets

To verify the accuracy of our model, the Massachusetts road
dataset (MRD) [44] and the DeepGlobe 2018 road extraction
challenge dataset (DRECD) [45] were used for road extraction.
The MRD covers an area of approximately 2600 km? and spans
urban, suburban and rural areas of Massachusetts, USA. The
dataset consists of 1171 images in total, including 1108 images
that were used for training, 14 images for validation, and 49
images for testing. Each image is 1500 x 1500 pixels with a
resolution of 1.2 m/pixel. The DRECD consists of 6226 satellite
images of 1024 x 1024 pixels and a resolution of 0.5 m/pixel.
The dataset covers approximately 1632 km? of land in Thailand,
Indonesia, and India. The original image size in these two
datasets is large, and the roads are not evenly distributed; there-
fore, data preprocessing is necessary due to memory constraints.

B. Data Preprocessing

DRECD images (1024 x 1024) were directly divided into
4 blocks (512 x 512) of equal area. For MRD images, an
overlapping cropping method was used to divide the sample into
nine blocks with a size of 512 x 512 pixels, as shown in Fig. 6.
After cropping, there were many samples with no roads or few
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roads in the new samples; such issues can lead to imbalanced
samples in the training process and affect the convergence of
the model. To solve this problem, we designed a ratio § to
measure the sparseness of roads in a single sample. Assuming
that the number of foreground pixels in a labeled image is x
and the number of background (nonroad) pixels is y, then 5 =
x/y. Through analyzing a large number of samples, we set the
threshold to 0.02, and samples with 8 > 0.02 were retained.
We finally obtained 11442 MRD samples and 14603 DRECD
samples, which were divided into training set, validation set and
test set according to 7:2:1, respectively.

V. EXPERIMENTS AND ANALYSIS
A. Overall Details of the Experiments

1) Evaluation Metrics: To quantitatively evaluate the perfor-
mance of different road extraction methods, precision, recall,
overall accuracy (OA), F1 score [46] and intersection over union
(IoU) [47] were used as metrics. OA measures the accuracy of
road and nonroad identification at the pixel level and can be
calculated as follows:

TP + TN
TP +FP + TN +FN
where TP, FP, TN, and FN represent the numbers of true pos-
itives, false positives, true negatives and false negatives at the
pixel level, respectively. The F1 score is an indicator used to

measure the accuracy of binary classification in statistics, and it
is calculated based on the precision (P) and recall (R)

_ 2xPxR

OA = (16)

F1l = 17
P+ R (17
where
TP TP
TP+FP’R TP + FN (18)

The IoU is a commonly used evaluation metric in semantic
segmentation, and it is the ratio of overlap between the true area
and predicted area considering the total area. Specifically, loU
can be calculated as follows:

TP
TP + FP + FN'

2) Training Details: The proposed neural network was im-
plemented using PyTorch [48], and all experiments were exe-
cuted on a supercomputing platform with Nvidia Tesla V100 (16
GB) GPUs. We used L2 regularization [49] to prevent overfitting
and used the Adam (adaptive moment estimation) [50] optimizer
to minimize losses and update parameters. The learning rate was
initially set to 0.001. The plateau decay strategy was used, and
the learning rate was halved if the epoch loss did not decrease
for three consecutive epochs. The network was trained on the
training set with a batch size of 16 for 100 epochs, and if
the model performance was not improved for five consecutive
epochs, the model stopped training early. Finally, the accuracy
of the network was evaluated based on the test set. According to
the above details, we conducted road extraction experiments on
the MRD and DRECD.

IoU = (19)
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B. Experiment with the MRD

We compared our proposed network with five semantic
segmentation-based road extraction methods: HRNet-32 [51],
HRNet-48 [51], DeepLab V3, PSPNet, GAN [18], and UNet.
As shown in Fig. 7, the yellow line is the actual road, and the red
ellipses represent the areas where the roads extracted by different
extraction methods have significant differences. The first row in
Fig. 7 is an area with sparse buildings and dense vegetation
coverage. Our model effectively mines high-level semantic in-
formation and accurately extracts roads blocked by vegetation.
A suburban area where buildings and vegetation are evenly
distributed is shown in the second row. Compared with other
methods, our model is able to eliminate the interference caused
by buildings and extract detailed and complex road information.
The third row is a typical complex urban environment where
roads and buildings are densely distributed and there is a high
degree of similarity among spectral and texture characteristics;
here, the roads are highly influenced by buildings. The results
show that the proposed model has better spatial reasoning ability
and multilevel contextual information mining ability than the
other methods, and the results are approximate to the real road
distribution. In addition, it can be seen from the comparison of
different experimental results that the road boundaries identified
by our model are smoother, which reduces the workload of
postprocessing.

We also quantitatively analyzed the road extraction effects of
different models. As given in Table IV, the precision, recall, OA,
F1 score, and IoU of the proposed model are higher than those of
the other models. From the experimental results, it can be found
that UNet has a congenital advantage for road extraction on
the MRD dataset, and the ensemble learning model we propose
further magnifies this advantage. Specifically, E-UNet achieves
increases of 2.18-12.43% for the F1 score and 3.0-17.02% for
the IoU. In addition, our postprocessing method can improve the
road extraction effect. The postprocessing actually corrects the
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Road extraction results for the MRD. (a) Ground truth. (b) HRNet-32. (¢) HRNet-48. (d) DeepLab V3. (e) PSPNet. (f) UNet. (g) Our proposed model.

pixels predicted by the CNN as the nonroad to road. As more
roads on the image are extracted, the error rate also increases.
Therefore, it is necessary to use comprehensive indicators such
as F1 and IOU to balance precision and recall. As given in
Table IV, after postprocessing, the recall increased while the
precision and OA decreased, but F1 and IoU slightly improved.
The postprocessing result will be shown and discussed in a later
section.

C. Experiment with the DRECD

For the DeepGlobe dataset, we again compared the proposed
network with HRNet-32, HRNet-48, DeepLab V3, PSPNet,
GAN and UNet. As shown in Fig. 8, we chose areas with
different road sparseness levels. Intuitively, the six models can
effectively extract road information, but DeepLab V3 and UNet
are relatively ineffective because they cannot identify road areas
blocked by vegetation or buildings, and the extracted roads lack
connectivity. In addition, the roads extracted by HRNet-32 and
HRNet-48 have obvious jagged features. We further quantita-
tively analyzed the accuracies of different models, as shown in
Table IV. In the existing models, UNet does not show similar
predictive ability on the MRD dataset. In contrast, PSPNet
performs better on the recall and F1 indicators. Our proposed
method achieves better performance than the other methods
based on precision, OA and IoU. Specifically, E-UNet achieves
increases of 1.42%-6.13% for precision and 0.52-4.55% for
the IoU. After postprocessing, compared with the other models,
our model has better spatial reasoning ability for the DRECD
dataset, thus ensuring the connectivity and integrity of the roads
to the greatest extent.

D. Analysis of the Threshold « in the Loss Function

In this section, we assess the influence of the threshold «,
an important parameter in the loss function. We use our model
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TABLE IV
ROAD EXTRACTION RESULTS FOR MRD AND DRECD

Dataset Method P(%) R(%) OA (%) F1 (%) ToU (%)
HRNet 32 72.719 75.995 96.585 73.581 59.169

HRNet 48 71.454 76.688 96.513 73.263 58.761

PSPNet 71.985 70.927 96.300 69.613 55.138

DeepLab V3 66.423 79.571 95.984 71.694 56.786

GAN 68.965 67.114 95.716 68.027 51.546

UNet 79.232 78.819 97.347 78.275 65.564

MRD E-UNet 80.710 81.309 97.595 80.455 68.564
HRNet 32 + Postprocessing 72.574 76.185 96.586 73.609 59.201

HRNet 48+ Postprocessing 71.451 76.725 96.513 73.284 58.783

PSPNet+ Postprocessing 67.592 75.253 96.289 69.840 55.340

DeepLab V3+ Postprocessing 68.184 77.907 95.982 71.736 56.833

GAN-+ Postprocessing 67.742 70.470 95.716 69.079 52.764

UNet+ Postprocessing 77.842 80.285 97.347 78.348 65.653

E-UNet+ Postprocessing 79.772 82.335 97.594 80.522 68.650

HRNet 32 76.583 78.029 96.903 76.122 62.814

HRNet 48 76.890 77.475 96.899 76.065 62.693

PSPNet 78.158 79.158 97.188 77.839 65.141

DeepLab V3 75.113 78.184 96.808 75.414 62.220

GAN 75.000 76.744 96.133 75.862 61.111

UNet 79.705 76.827 97.226 77.099 64.483

DRECD E-UNet 81.128 77.021 97.362 77.810 65.660
HRNet 32 + Postprocessing 75.998 78.718 96.905 76.192 62.891

HRNet 48+ Postprocessing 76.144 78.312 96.901 76.128 62.767

PSPNet+ Postprocessing 77.455 79.968 97.187 77.923 65.243

DeepLab V3+ Postprocessing 73.939 79.495 96.803 75.575 62.383

GAN + Postprocessing 73.799 78.605 96.096 76.126 61.455

UNet+ Postprocessing 77.037 80.366 97.234 77.658 65.162

E-UNet+ Postprocessing 76.938 81.439 97.357 78.090 65.982

(@) (®) ©

Fig. 8.

to perform road extraction experiments based on the MRD and
DRECD. The other parameters in the experiment are unchanged,
and the value of « takes a value from O to 1, with an interval
of 0.1. When o« = 0, our loss function becomes the focal
loss function, and when o = 1, it is the dice loss function.
The visualization results during the model training process for
Binary Cross Entropy loss, Dice loss, Focal loss and the loss we
designed are shown in Fig. 9. The detailed experimental results
are shown in Table V and Table VI. When o« = 0.2 for both

@ (@ ® (@

Road extraction results for the DRECD. (a) Ground truth. (b) HRNet-32. (c) HRNet-48. (d) DeepLab V3. (e) PSPNet. (f) UNet. (g) Our proposed model.

datasets, the model achieves a balance between considering road
sparsity and road classification. The dice loss function seeks to
solve the problem of imbalance between the foreground and the
background. The focal loss function considers the difficulty of
classifying certain samples; for example, wide roads without
vegetation are easier to identify than narrow roads with veg-
etation. When o = 0.2, the accuracy is high, which indicates
that the focal loss accounted for a larger proportion of the total
loss than did the dice loss; notably, during the training process,
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Fig. 9. Changes of loss and IoU while training on MRD and DRECD.

TABLE V
PERFORMANCE OF DIFFERENT THRESHOLDS «v FOR THE MRD

loss P(%) R(%) OA (%) F1 (%)  IoU (%)

a=0 (focal loss) 80.203 74.112 97.189 76.122 62.843
a=0.1 80.685 78.232 97.445 78.789 66.266
0=0.2 80.710 81.308 97.596 80.455 68.564
a=0.3 81.468 80.383 97.604 80.226 68.370
0=0.4 79.790 80.204 97.465 79.319 67.016
a=0.5 79.686 78.501 97.371 78.260 65.623
a=0.6 80.775 78.795 97.474 78.966 66.638
a=0.7 81.515 79.649 97.574 79.884 67.866
0=0.8 81.261 79.529 97.533 79.635 67.518
a=0.9 79.918 78.916 97.412 78.599 66.104

a=1 (dice loss) 81.573 79.554 97.571 79.802 67.791

TABLE VI

PERFORMANCE OF DIFFERENT THRESHOLD «v FOR THE DRECD

loss P(%) R(%) OA(%) F1(%) IoU (%)

0=0 (focal loss)  79.705  76.827 97226  77.099  64.483
a=0.1 81.135 76343 97330 77404  65.152
a=0.2 81.128  77.021 97362  77.810  65.659
a=0.3 78.599 78074 97212  77.106  64.542
a=0.4 79639 77297 97261  77.243  64.750
a=0.5 78.897 78535 97260  77.624  65.169
a=0.6 79570 78109 97296  77.628 65309
a=0.7 77137 79.085  97.109  76.861  64.053
a=0.8 79.953  76.769 97261  77.085  64.688
a=0.9 80.716 75386  97.253 76589  64.023
o=1(diceloss)  80.268 76382  97.259  77.134  64.586

the algorithm focuses more on difficult-to-classify samples to
enhance the contextual reasoning ability of the model. This
finding is closely related to our data preprocessing approach, in
which data are filtered based on the foreground-to-background
pixel ratio to solve the imbalance issue for roads and nonroads.
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Road extraction results after postprocessing. (a) Ground truth.
(b) Model output. (c) Postprocessing result.

Fig. 10.

E. Analysis of Postprocessing

The purpose of the postprocessing stage is to connect road
breakpoints. As shown in Fig. 10, the postprocessing algorithm
we designed can automatically detect breakpoints and connect
them. The accuracy of postprocessing depends on the hyper-
parameter L, which determines how far away two nodes are
considered road breakpoints. If L is set too small, normal broken
roads are not connected. If L is set too large, nonbroken points
are connected. To select the optimal parameter value, we use the
MRD and DRECD test sets to explore the relationship between
the hyperparameter L and the accuracy of road extraction. Ac-
cording to our experience, we set the domain of L to { L | L
=101 1 <1< 20 & IENx}. We use the precision, recall,
F1 score and IoU as the evaluation metrics. The experimental
results are shown in Fig. 11. In the four subfigures, the vertical
axes on the left and right represent the evaluation values on
the MRD dataset and DRECD dataset, respectively. We find
that the optimal solution of the postprocessing hyperparameter
L is the same when different datasets yield the best accuracy.
Specifically, when L gradually increases, an increasing number
of broken roads are connected, which means that an increasing
number of roads in the remote sensing images are extracted, but
at the same time, an increasing number of nonroad errors are
introduced. Therefore, the recall rate increases, and the precision
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TABLE VII
PERFORMANCE OF DIFFERENT N FOR MRD AND DRECD
dataset P(%) R(%) OA (%) F1 (%) ToU (%)
N=1 79.232 78.819 97.347 78.275 65.564
N=2 78.629 77.655 97.251 77.370 64.419
MRD N=3 80.710 81.309 97.595 80.455 68.564
N=4 79.897 78.601 97.396 78.544 65.928
N=5 78.507 78.038 97.231 77.380 64.414
N=1 79.705 76.827 97.226 77.099 64.483
N=2 79.401 77.668 97.256 77.420 64.866
DRECD N=3 81.012 77.154 97.360 77.790 65.656
N=4 81.128 77.021 97.362 77.810 65.660
N=5 79.639 77.323 97.257 77.318 64.867

rate decreases, and when L = 100, the F1 score and IoU reach the
maximum value. Subsequently, when L continues to increase,
more fake breakpoints are connected, and finally, precision and
recall reach a balance.

These results demonstrate that postprocessing steps can im-
prove the connectivity of roads and compensate for the lack of
visual features used by neural networks to retain road integrity.
A road network with high connectivity is optimally generated by
analyzing the geometric structures and feature points of roads.
However, a drawback of the proposed method is that it relies too

much on the feature point detection algorithm. For example, in
Fig. 3(b), point D is likely to be connected to line segment AB,
but no other feature points are detected on AB, which leads to
this breakage not being connected. This issue is worthy of article
in future research.

F. Structure Analysis of E-UNet

In our ensemble learning model, E-UNet is composed of N
ordinary UNets. The value of N affects the fitting ability and
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generalization ability of E-UNet. We used our model to perform
road extraction experiments based on the MRD and DRECD.
The other parameters in the experiment were unchanged, and
the value of N was set from 1 to 5. The experimental results are
given in Table VII and Fig. 12. With the increase in N, there
are an increasing number of parameters of the model, and the
fitting ability of the model becomes stronger. However, under
the condition of a fixed number of training sets, the possibility of
overfitting increases. In our experiment, for MRD and DRECD,
when N is 3 and 4, the model has the highest accuracy. Although
we used data augmentation, regularization and early stop strate-
gies, we can see from the experimental results that overfitting
occurs. How to simplify the model structure and adopt more
effective training methods to avoid overfitting is the focus of our
next study.

VI. CONCLUSION

In this article, we proposed a deep neural network based
on ensemble learning for road extraction from remote sensing
imagery. First, we use E-UNet to identify the road information
in the image. In the process of encoding and decoding, the
network weights and biases of E-UNet are transmitted through
the random combination of layers of different submodels. A new
loss function is designed to solve the class imbalance problem
caused by road sparseness, and attention is given to samples that
are difficult to classify to extract narrow and covered roads. We
then use an effective algorithm to connect road breakpoints based
on geometric features. Experiments on two datasets showed the
advantages of the proposed method in road extraction from
remote sensing imagery. Notably, our model infers the road
information when roads are blocked by vegetation and buildings
by integrating different models. The improved loss function can
simultaneously solve the class imbalance issue associated with
road sparseness and aid in narrow road classification. In addition,
we investigated the performance of the model based on different
values of the hyperparameter in the postprocessing step. In future
work, we will focus on how to enhance the generalization ability
of the model while simplifying the model parameters to avoid
overfitting. In addition, we will apply the proposed method for
other types of semantic segmentation and object detection.
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