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Abstract—The Ice, Cloud, and Land Elevation Satellite-2
(ICESat-2) was launched on September 15, 2018. It is the first
photon-counting laser altimeter satellite, which is of great signif-
icance for the research into laser altimetry. ICESat-2 is, however,
highly sensitive and susceptible to environmental influences. In
addition to surface returns, a lot of nonsurface photons are found
in the data. It is, therefore, necessary to study an effective method
to separate the surface signal from background information. In
this article, we review the existing surface detection methods for
photon point cloud data and select seven methods for compari-
son. Four sources of photon-counting data were considered in the
experiments: The Multiple Altimeter Beam Experimental Lidar
(MABEL), the Chinese Multibeam LiDAR, The Advanced Topo-
graphic Laser Altimeter System (ICESat-2/ATLAS), and MATLAS
(using MABEL data to simulate the expected ATLAS photon point
cloud). Four scenarios of land, land ice, sea ice, and ocean were
also considered. Each surface detection method was tested in 12
experiments, and the different methods were finally compared
by qualitative and quantitative measures. We were, thus, able to
establish the advantages and disadvantages of each method, which
will be of great significance for scholars studying surface detection
methods.
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I. INTRODUCTION

LASER altimetry is one of the frontiers and core technolo-
gies for spatial information acquisition in earth observation

and deep space exploration [1]. As a result, laser altimetry
data are widely used in surveying, meteorological, geological,
environmental, and other fields, in applications such as polar
ice sheet measurement [2] and change detection [3], [4], to-
pographic mapping [5], [6], biomass estimation [7], disaster
monitoring and assessment [8], etc. Most of the existing earth
observation laser altimeters, such as the Ice, Cloud and Land
Elevation Satellite /the Geoscience Laser Altimeter System
(ICESat/GLAS), the ZiYuan-302 (ZY-302) laser altimeter, and
the Gaofen 7 (GF-7) laser altimeter, use linear detection sys-
tems with high-energy laser consumption. However, such laser
altimeters have a limited repetition frequency when collecting
large-scale and multitemporal three-dimensional (3-D) data on
space platforms such as satellites, resulting in low data density
[9]. In the past few years, quantum information technology
has developed rapidly, and photon detection is now one of
the key technologies [10]. The essence of photon detection is
high-sensitivity probability detection. It can detect photons in
harsh environments and complex target characteristics with a
loss of resolution and a decrease in ground resolution. The
combination of photon detection technology and laser radar
technology has brought laser radar technology to a new level.
This kind of LiDAR technology is also highly reliable [11],
[12]. Photon detection reduces the energy consumption and the
mass of the loading of laser radar, and can effectively reduce the
weight of satellite loads [13]. At the same time, based on the
photon-counting detection mode, the low energy consumption
also makes LiDAR multibeam detection easier to achieve [14].
Therefore, photon-counting LiDAR (PCL) technology is likely
to be the major approach used to carry out satellite laser altimetry
and 3-D imaging in the future, and will be the main way to re-
solve the contradiction between LiDAR energy consumption and
acquisition frequency. The ICESat-2 satellite was launched in
September 2018, and is the first earth observation satellite using
photon-counting technology. The LiDAR Surface Topography
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mission, the Active Sensing of CO2 Emissions over Nights,
Days, and Seasons mission, and the Aerosols-Cloud-Ecosystem
(ACE) mission are all planning to adopt photon-counting tech-
nology when launched [15]. According to the national civil
space infrastructure medium and long-term development plan
(2015–2025), China is also planning a photon-counting laser
altimeter satellite [16], [17], and an airborne system has been
implemented by the Shanghai Institute of Technical Physics of
the Chinese Academy of Sciences with 51 beams.

With the photon-counting and multibeam mode, the sampling
density of the laser footprint is greatly improved, but PCL data
still have the problem that the data density in the transverse direc-
tion is far lower than in the along-track direction. PCL systems
have high sensitivity and can detect weak signals, but they are
easily affected by atmospheric scattering, solar radiation, and the
instrument’s own dark count. As a result, PCL data contain large
numbers of nonsurface photons, which are widely distributed
both in the air and beneath the surface, which is completely
different from the large-footprint full-waveform data obtained
by the traditional spaceborne laser altimetry systems, and the
3-D laser point cloud data acquired by ground and airborne
LiDAR. It is therefore necessary to identify the surface photons
for PCL data, to provide accurate terrain information for the
subsequent scientific research and application.

In this article, we focus on the surface detection methods for
PCL data. Interested readers can find information regarding the
basic physical and mathematical relations of the different surface
detection methods. We begin by presenting a brief history of
the development of PCL, without repeating the basic physical
principles behind the technology (which are discussed in detail
in [14]), and the difference between PCL and large-footprint
full-waveform laser altimetry data. In the following sections,
we review the existing surface detection methods for photon-
counting laser altimetry data. We then select several typical
methods and compare their performances. The different methods
were adopted to process the same PCL data. We chose data
from four different sources: the Multiple Altimeter Beam Exper-
imental LiDAR (MABEL) instrument, the ICESat-2 Advanced
Topographic Laser Altimeter System (ATLAS), the Chinese
Multibeam LiDAR (MBL) system, and MATLAS (using MA-
BEL data to simulate the expected ATLAS photon point cloud).
Finally, we provided a qualitative and quantitative evaluation of
the experimental results.

II. PHOTON-COUNTING LIDAR DATA

In order to verify the advantages and disadvantages of the
respective algorithms, we selected 12 datasets from four sources
and different scenarios: three MABEL datasets (land ice, ocean,
and land), seven ICESat-2/ATLAS datasets (land ice-flat, land
ice-uneven, ocean data, land/low vegetation, land/high veg-
etation, land/vegetation-uneven, sea ice), one MBL dataset
(land/urban area), and one MATLAS dataset (land/vegetation).
The data we selected are very typical, basically covering data
of different sensor types and various characteristics (including
day and night, land area with vegetation, land area without
vegetation, urban area, ocean area, sea ice area, land ice area,

etc.). The specific selection of data is shown in Table I. The
profiles of each type of experimental data are shown in Fig. 1,
and the location distributions are shown in Fig. 2.

A. Multiple Altimeter Beam Experimental Lidar

The MABEL instrument is an airborne PCL system, which
is used as a demonstrator and validation tool for the ICESat-
2 photon-counting altimetry concept. The MABEL instrument
is carried by the high-altitude ER-2 aircraft, which fly at an
altitude of 20 km. The pulse repetition frequency of the MABEL
instrument varies from 5 kHz to 20 kHz. The pulse is transmitted
every ∼4 cm along track and produce 2 m footprint with 5 kHz
repetition rate [18]. The MABEL instrument uses both green
(532 nm) and near-infrared (NIR, 1064 nm) laser wavelengths
to detect the surface. There are 24 beams on MABEL, containing
eight near-infrared beams and 16 green beams [19].

The first demonstration flights of the MABEL instrument took
place in December 2010, and the flight data were published
on the ICESat-2 website (https://icesat-2.gsfc.nasa.gov/legacy-
data/mabel/data/browse/index.html). In order to verify the per-
formance of ICESat-2 on different surface types, the MABEL
data include data on different surface types such as land, ocean,
sea ice, land ice, and inland water. In this article, MABEL data
of three different land-cover types are selected: 1) land ice data
with fluctuations; 2) ocean data with slight fluctuations in the
sea surface; and 3) land data covered by vegetation with uneven
background photons and large terrain fluctuations. These data
correspond to data Nos. 1–3 in Table I.

B. ICESat-2 ATLAS/ATL03

ICESat-2 operates at a speed of 7 km/s at a height of∼500 km,
with an inclination of 92°. Each orbit is referred to as a reference
ground track (RGT), and there are 1387 RGTs in one cycle. It
takes 91 days for the satellite to complete a cycle.

ATLAS is the only instrument carried by ICESat-2. It is a
photon-counting detector with a 10-kHz 532-nm laser that is
used to obtain high-resolution altimetry measurements. Based
on the velocity of the satellite and its repetition rate, one laser
pulse is transmitted every 0.7 m along the ground tracks. ATLAS
has a 17-m diameter footprint and six beams, which are divided
into three groups. Each group contains a weak beam and a strong
beam; for instance, both GT1L and GT1R belong to group one.
The distribution of strong and weak beams is not absolute, and it
depends on the direction of flight of the satellite. When ATLAS
is oriented forward, GTxL (where x represents the number of the
group) is in front of GTxR by a distance of 2.5 km, and the GTxL
beams are always the weak beams. In contrast, when ATLAS
moves in the negative direction, the GTxR beams are ahead and
become the weak beams. The centers of the two adjacent groups
are 3.3 km apart [20], [21].

ICESat-2 product data release is handled by the National
Snow and Ice Data Center, and the entire data system includes
three levels and 21 data products (ATL00–ATL21). ATL01 and
ATL02 are the Level 1 products, which contain raw data. ATL03
and ATL04 belong to the Level 2 products, and ATL06–ATL21
belong to the Level 3 products. Based on ATL02, Precise Orbit

https://icesat-2.gsfc.nasa.gov/legacy-data/mabel/data/browse/index.html
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TABLE I
EXPERIMENTAL DATA

Fig. 1. Experimental data profiles (X: orbital distance, Y: elevation).
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Fig. 2. Data distribution map, with the dots indicating the data locations. The MABEL (red), ATLAS03 (green), MBL (blue), and MATLAS (yellow) data are
labeled with the time, location, and type of data. The base map is the Global Land Cover by National Mapping Organizations map with a 15-s resolution.

Determination, Precision Pointing Determination, and other an-
cillary data, ATL03 generates the data of each photon’s time,
latitude, longitude, and height, which is significant for the
higher-level products. The ATL03 product is described as a
bridge between the lower-level products and the higher-level
products. In addition, based on other data resources, ATL03
classifies each photon into five surface types (land, ocean, sea
ice, land ice, inland water) and provides a preliminary assess-
ment of each photon. In addition, for each photon event, ATL03
provides corrected heights for multiple geophysical corrections
(i.e., geoid, ocean tides, dynamic atmospheric correction) and all
the instrument information for the higher-level data algorithms.

In this article, seven ATL03 datasets were used in the exper-
iments to verify the performance of the seven surface detection
algorithms. The datasets comprised two land ice datasets, one
ocean dataset, three vegetation-covered land dataset, and one sea
ice dataset, which correspond to Nos. 4–10 in Table I. Among
the different datasets, the first land ice dataset was made up of

data with less undulation, and the second dataset was made up
of undulating data, and included a segment of sea. For the ocean
dataset, this was almost flat on the sea surface. There were large
differences in the three terrestrial datasets. The first land dataset
was covered by a small amount of vegetation; the second dataset
contained background photons that were unevenly distributed,
with less vegetation coverage; and the third dataset contained
many background photons, which were distributed relatively
evenly, with dense vegetation on the surface.

C. Chinese Multibeam LiDAR

MBL system was developed by the Shanghai Institute of
Technical Physics of the Chinese Academy of Sciences and
is the first multiple-beam photon-counting LiDAR system of
China. The airborne test of the MBL system was carried out
in December 2015 in Hainan province, China. The test flight
speed was 200 km/h. The MBL system collects data using the
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1064 nm wavelength with 51 beams, and the maximum detection
distance across the orbit is 3 km. Each beam transmits pulses at
1.5 µJ, with a 3-kHz repetition rate. The data are presented in
geographic coordinates of each photon point [22]. In this article,
we used the MBL data of the middle beam (channel 26). The
data were obtained in a residential area, with some undulating
houses on the surface.

D. MATLAS

MATLAS data simulate the expected performance of the
ICESat-2 ATLAS instrument. The simulation is undertaken as
per the ATLAS 10-kHz laser fire, with a 0.7 m sample spacing.
MATLAS signal photons are subsampled from MABEL signal
photons. The numbers of signal and noise photons are then
adjusted according to the predicted using the ATLAS instrument
model design cases [23]. MATLAS data were used for the
quantitative evaluation as this dataset is the only dataset, which
has the correct surface type for each photon. In this article,
land data with vegetation cover were selected to quantitatively
describe the performance of the surface detection algorithms.

III. COMPREHENSIVE REVIEW OF THE SURFACE DETECTION

METHODS FOR PHOTON-COUNTING LIDAR DATA

Surface detection is the first step and the key step to accurately
extracting surface information for photon-counting LiDAR in
many applications. At present, the surface detection algorithms
for photon point cloud data are basically based on the distribution
of the photons. Due to the influence of the environment and the
instrument itself, there are many background photons in both the
air and beneath the surface, and they are randomly distributed in
space. The density of background photons is smaller than that
of surface photons [24]. Many scholars have researched photon
detection algorithms and proposed many excellent algorithms.
We studied these and found that the algorithms have similar
steps.

1) Preprocessing: Determine the signal range based on the
original data or other ways to reduce the processing
amount of photons.

2) Surface detection: The core step for algorithms. The pur-
pose of signal detection is accomplished in this step. There
are many ways to achieve the goal in different algorithms.
According our summary, there are three main ways of
surface detection: 1) clustering; 2) feature calculation and
separation; and 3) waveform statistics and processing.
Different ways cause different results for different surface
types.

3) Subsequent processing. For the better results, part of
methods carried out subsequent processing, for example,
Iterative processing, histogram statistics, and so on.

The specific processing flows are summarized and shown in
Fig. 3. In the following sections, we analyze the existing methods
introduced previously in detail.

A. Preprocessing

Photon detectors placed on satellites usually only record pho-
tons within a certain range gate. However, the data still contain a

large number of background photons, which need to be removed
before surface detection can take place. The main purpose of the
preprocessing is to decrease the number of background photons
and to reduce the amount of calculation needed in the subsequent
steps. Image processing[25], [28], [29], envelope curves [26],
and histogram statistics [26], [30]–[33] are the commonly used
methods in the preprocessing step.

1) Image processing: The first preprocessing method in-
volves rasterizing the profile point cloud along the orbit
into a 2-D image according to the density of the photons.
The image processing algorithm is then adopted to detect
the surface. In the earlier data processing approaches,
image processing was not only a method of data prepro-
cessing, but was also used as a method of surface detection.
Magruder et al. [28] proposed the Canny edge detector to
extract surface photons. In this method, the profile data are
rasterized into a 2-D (along-track direction and elevation)
profile image, where the pixel values correspond to the
number of photons within each cell. A Gaussian filter
is then applied to broaden the edge of the high-density
pixels, and to remove the background pixels. The gradient
value and direction are then calculated, and a threshold
of the gradient is determined using the resulting statistics.
Awadallah et al. [29] used a median filter to remove a
large amount of background photons, and then used a
size filter to remove the remaining isolated regions. Since
rasterization reduces the accuracy, and this method cannot
filter out the photons among the surface and ground ob-
jects, such as the photons among a vegetation canopy, this
results in low-accuracy processing results. This method
has subsequently been used only for image preprocessing.
Li et al. [25] segmented the imagery using the image
processing technique, retaining the surface photons, and
filtering out most of the nonsurface photons.

2) Envelope curves: The second preprocessing method relies
on ancillary data to preserve possible surface photons. The
ancillary datasets are usually a digital elevation model
(DEM) or a canopy height map (CHM). In 2018, Popescu
et al. [26] sought to reduce the range of the possible surface
photons that are actually returned from the vegetation
canopy and the ground. In this method, the minimum
and maximum elevation thresholds are set based on the
advanced spaceborne thermal emission and reflection ra-
diometer global DEM, and global canopy height map, and
photons within the two thresholds are extracted as possible
surface photons.

3) Histogram statistics: The last preprocessing method in-
volves dividing the distance/time segments into small
elevation bins, and then counting the number of photons
within each bin. Photons in a certain range above and be-
low the bin containing the maximum number of photons,
or photons in bins whose number are greater than sev-
eral standard deviations, are considered possible surface
photons. Moussavi et al. [31] established a histogram of
the elevation frequency distribution, and calculated the
standard deviation (sigma) based on the histogram. The
cut-off threshold was set as 3 times sigma. Zhu et al. [30]
and Nie et al. [32] used Moussavi’s method to extract
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Fig. 3. Classification chart of the existing PCL data surface detection algorithms, according to the processing flow. Image (a) is from Li et al. (2017) [25]; image
(b) is from Popescu et al. (2018) [26]; image (c) is from Wang et al. (2016) [24]; and image (d) is from Markus et al. (2017) [27].

possible surface photons. Popescu et al. [26] also proposed
a preprocessing method based on histogram statistics. This
method retains the photons within a certain elevation width
of the peak of the statistical histogram for each distance
segment along the orbit. In some studies, this method has
also been directly used to detect the surface, without other
subsequent steps. Horan et al. [33] divided the photons
into along-track distance segments containing the same
number of photons, and counted the number of photons
in each specific elevation range bin. In this method, the
photons within an elevation threshold are considered as
surface photons, and the elevation threshold is set to a
certain elevation range above and below the elevation
corresponding to the maximum number of photons. For
different terrains, the width of the bin and threshold must

be reset, and according to Horan et al. [33], the results are
optimal when the along-track distance segments contain
25 photons and the elevation range is 50 cm.

Due to the differences in surface spectral reflectance, atmo-
spheric conditions, and aircraft speed, the density of photons
is inconsistent, and the background photons are unevenly dis-
tributed in the direction along the track. The inconsistent photon
density greatly limits the performance of some surface detection
algorithms. Specifically, background photons may be incorrectly
classified as surface photons, while surface photons may not be
correctly detected. Therefore, to address this issue, Wang et al.
[24] homogenized the background photons along the orbital
direction according to the 0.02 s instantaneous noise_rate (chan-
nelxxx/altimetry/noise_rate) provided in the MABEL HDF5
data file.
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B. Surface Detection

There are three main ways to achieve surface detection. The
first is distinguishing surface photons and background photons
by clustering. The second method is waveform statistics. This
method involves converting PCL data into a waveform by statis-
tics, and the surface is then detected by a waveform processing
method. The third method involves calculating the feature values
and then separating the background and surface photons based
on their feature differences.

1) Clustering: The first surface detection method can be used
to measure the similarity between different data sources
and to classify the data sources into different clusters. The
clustering method can also be used to detect the surface of
PCL data. Popescu et al. [26] applied the R package named
tclust to eliminate a certain proportion of photons. The
principle of the method is to limit the covariance matrix to
achieve maximum likelihood estimation in different ways,
and the data are clustered into k classes and out-of-group
photons. Narine et al. [34], [35] adopted this method for
surface detection.

2) Waveform statistics: The second surface detection method
is based on the principle of the photon point cloud can
be converted into a waveform by histogram statistics.
This method involves processing the photon point cloud
data using full-waveform processing, which allows us to
quantitatively estimate the surface and canopy heights.
The photons are merged to a waveform in a certain length
of time/distance along the track, and then the height
is directly acquired according to waveform processing
technology [15], [27], [36]–[38].

3) Feature calculation: The third surface detection method
is a key step in surface detection. There are four main
features that have been calculated in the existing studies,
namely, the data distribution feature [28], [39], the photon
density [25], [30]–[32], [40]–[49], the k-nearest neighbor
distance [24], [50], and the local outlier factor [51], [52].
Among the different features, the photon density is the
most commonly adopted feature.

Step 1: Feature value calculation of each photon

1© Distribution feature: The distributions of the surface pho-
tons and background photons of PCL data are usually different.
The surface photons are typically more closely distributed, with
the background photons being randomly distributed in space.
The surface photons can, thus, be separated from the background
photons based on the distribution differences. Magruder et al.
[28] selected some of the background photons, usually more
than 100 m above or below the surface. They then calculated
the average distance of each photon to its neighborhood, and
established a background photon distribution. Gwenzi et al. [39]
assumed that the background photons obey a Poisson distribu-
tion. In this method, the expected number of background photons
is determined according to the average background statistics of
the bins and the Poisson distribution. If the number of photons in
a bin exceeds the expected value, the excess amount is removed

by random sampling, and the remaining photons are classified
as background photons.

2© Density feature: The surface photons of PCL data are typ-
ically denser than the background photons. Separating surface
photons from background photons based on density is, therefore,
an effective method. There are several existing methods [53],
[54] used for calculating the density, which involve calculating
the number of photons in a grid and then calculating the number
of photons in its neighborhood. The neighborhood can be a circle
or ellipse centered on the photon. Alternatively, the weighted
density is calculated in its neighborhood for each photon.

1) Number of photons in a grid. Brunt et al. [40] detected
surface photons through a multiple statistical method. In
this method, the data are first divided into bins with a width
and height of 25 m and 10 m, and the mean and standard
deviation of all the bins are calculated. Photons in the bins
with a photon number greater than the mean plus variance
are considered to be potential surface photons, and the
standard deviation is recalculated for the remaining bins.
Photons in the bins with more than 15 times the standard
deviation are also considered as potential surface photons,
and photons within ±10 m of potential surface photons
in the elevation direction are also considered as surface
photons. Finally, photons within 0.5 m above or below
the median height of these surface photons are defined
as surface photons. Chen et al. [43], Glenn et al. [44],
and Farrell et al. [45] all used Brunt’s method to detect
the surface for PCL data. Tang et al. [46] considered the
number of photons in a 3-D cell as the density. Ma et al.
[47] proposed an ocean surface detection method based
on the Joint North Sea Wave Project (JONSWAP) spectra
and Levenberg–Marquardt (LM) nonlinear least-squares
fitting. The JONSWAP wave spectra are widely used to
express surface profiles. In this method, the histogram of
the number of photons in each 20 m vertical segment is
calculated, and the segments are reserved, which have 1.2
times the density of the average density of all the segments.
The sea level is fitted every 500 m segment using the LM
method, and the initial parameters can be calculated based
on the JONSWAP spectra.

2) Number of photons in a circle or ellipse. Zhang et al.
[48], [49] modified the density based spatial clustering
of applications with noise (DBSCAN) algorithm. Since
the surface photons are linearly and tightly distributed in
the direction along the orbit, the shape of the search area
in DBSCAN is changed from a circle to an ellipse, and
the density is the number of photons in the elliptical area
centered on the photon. Photons in the horizontal direction
have a greater weight relative to the center of the search
area than photons in the vertical direction. Therefore, con-
tinuous photons in the horizontal direction are more likely
to be classified as surface photons. Moussavi et al. [31]
extracted photons within a 40-m elevation buffer of the
inflection point of the statistical histogram, and calculated
the probability matrix of each photon, which is also called
the normalized density, and is the number of photons in a
rectangular region divided by the maximum density of the
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data. Nie et al. [32] defined density as being the number
of photons in the neighborhood of each photon, where the
neighborhood is an elliptical area centered on the photon.
In high relief areas of terrain, the density is calculated by
the horizontal elliptical nucleus, which does not reflect
the density well. According to the direction of the slope
of the terrain, more ground photons can be included in the
elliptical nucleus. The method of calculating the density
of the elliptical nucleus in the same direction as the slope
can better reflect the density. Zhu et al. [30] counted the
number of photons in the elliptical filter kernel, where
the direction of the elliptical kernel changes according to
the direction of the ground. This method of changing the
direction of the elliptical nucleus was first proposed by
Xie et al. [41].

3) Since the surface photons in PCL data are more closely
distributed in the orbital direction than the vertical di-
rection, many algorithms give different weights to each
photon in the neighborhood, and the weight usually differs
in the along-track direction and the transverse direction.
Li et al. [25] used the anisotropic norm to calculate the
density value of the remaining photons after extracting
the coarse surface using an image processing technique.
In this method, histogram statistics are calculated on the
density values, and a low-pass filter is applied, which is
implemented by a five-point moving average algorithm.
Xie et al. [41] considered the slope factor and changed the
direction of the elliptical filter kernel to be consistent with
the slope. In this way, for an inclined surface, it is possible
to obtain better density results. Sparse data on the slope
surface can, therefore, achieve a greater density, which is
beneficial to the separation of background photons. By
traversing the various directions, it is possible to acquire
the direction with the maximum density, which is the
direction of the best filter kernel. Photons in the filter
kernel are given a linear weight in time and are Gaussian in
height, and the maximum density is considered as the final
density. Herzfeld et al. [42] calculated the density weight
using the radial basis function for an ice surface. Since the
ice surface extends more in the horizontal direction than
the vertical direction, the anisotropic norm is combined
to make the horizontal direction weight greater than the
vertical direction weight.

3© K-nearest neighbor distance feature: The k-nearest neigh-
bor distance is another way to judge discrete levels. It can be
separated according to the discrete differences between sur-
face photons and background photons. That is, the k-nearest
neighbor distance of the surface photons is smaller than that
of the background photons. Xia et al. [50] proposed a method
based on local distance statistics, where they calculated the
mean distance of each photon to its k-nearest photons and
performed histogram statistics on the calculated results. Wang
et al. [24] obtained the probability distribution function of
the distance between each point to its k-nearest neighbor,
and then, according to Bayesian decision theory, calculated
the probability of each point being a background or surface
photon.

4© Local outlier factor (LOF) feature: the LOF is an un-
supervised outlier detection method that computes a score for
a photon, which indicates the local density around the given
photon to its nearest neighbors. Chen et al. [51], [52] utilized the
unbalanced distribution using range search and a multiwindow
size histogram filter to distinguish the surface and background
photons. The LOF value is calculated using the ellipse search
area for the photons.

Chen et al. [55] calculated 12 features, including the k-nearest
neighbor distance, the difference between each photon and the
height quantile of all the photons in a certain size window.
The feature selection technique was then applied by sorting the
importance of the variables using a random forest algorithm.
The three most representative features were then selected based
on the importance level of the variables. Finally, a random forest
classifier was established.

Step 2: Surface detection by separating features

After calculating the features, it is necessary to separate
the surface photons and the background photons, according to
the feature differences. There are different feature separation
methods for different features. For the distribution features, the
separation is usually performed by comparing the difference
between the distributions [28], [39]. For the density, LOF, and
k-nearest neighbor distances, a threshold for the features is
usually set [25], [30]–[32], [40]–[42], [46]–[48], [50]–[52]. In
the case of prior knowledge, Bayesian theory can also be used
for the separation [24]. Some other methods achieve separation
by machine learning [55].

1© Comparative analysis: In 2012, after establishing the
background photon distribution, Magruder et al. [28] divided
all the data into smaller cells, which were processed with the
same method, and they compared the result with the background
photon distribution. The photons were then gradually removed
until the probability distribution function completely matched
the background photons, and all the removed photons were
surface photons. Gwenzi et al. [39] removed the photons beyond
the expected number of background photons by random sam-
pling, and the remaining photons were considered as background
photons.

2© Feature threshold: Brunt et al. [40] applied multiple
statistical methods, and as mentioned earlier, multiple fixed
thresholds were set. Moussavi et al. [31] set the lowermost high
density as the threshold, and the spline curve was used to fit
the lowest density photons. The photons within one to three
standard deviations were considered as background photons,
and were removed. Xia et al. [50] set the mean plus t times
standard deviation according to the k-nearest neighbor distance
statistical result as the threshold. Zhang et al. [48] estimated
the number of photons in the elliptical kernel of the surface
photons based on the average density. If the average density
was greater than this estimated value, the photon in the center
of the ellipse was classified as a surface photon. Tang et al.
[46] set the threshold to the average number of photons of
27 individual elements around the volume element. Li et al.
[25] set the density corresponding to the maximum value of
the histogram as a threshold, and filtered out photons with
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a smaller density. They then recalculated the density for the
remaining photons, and filtered out the high-density background
photons that may exist. Xie et al. [41] removed the background
photons that were far away from the ground according to the
density threshold T. Due to the ground signal photons being
closer to the density center of the photon cloud, the maximum
density difference between each photon and its neighboring
area is then calculated. If the difference is greater than 3T,
it is considered to be a background photon; otherwise, it is
considered to be a surface photon. Herzfeld et al. [42] calculated
two adaptive density thresholds. The first threshold was the
maximum density of the background photon area plus the offset
value, and the second threshold was the percentile that met the
first threshold. Nie et al. [32] set the density threshold based on
a density frequency histogram, and fine surface detection was
achieved. Zhu et al. [30] improved the method of determining
density thresholds. They considered that there are two peaks
in the density distribution histogram, with the smaller being
the peak of the background photons, and the larger being the
peak of the ground signal photons. The Gaussian curves are
fitted according to the two peaks, and the intersection of the two
Gaussian curves is considered to be the density threshold. Ma
et al. [47] calculated the fit error and the root-mean-square error.
When the absolute fit error of the remaining photons is greater
than twice the fit error, these residual photons are classified as
background photons and discarded. Subsequently, an additional
fitting process is used to further discard the background photons.
Chen et al. [51], [52] calculated the histogram of the LOF
value. In this method, the threshold is set as twice the difference
between the LOF minimum and the peak value. Photons less
than the threshold are considered to be surface photons, and the
other are considered to be background photons.

3© Bayes’ theorem: Wang et al. [24] obtained the probability
distribution function of the distance between each point to its
k-nearest neighbors, and then, according to Bayesian decision
theory, calculated the posterior probability of each point being
background or surface photon. In this method, if the surface
photon probability is greater than the background probability, it
is considered to be a surface photon; otherwise, it is considered
to be a background photon.

4© Machine learning: Chen et al. [55] applied a machine
learning method to classify photons after selecting a few impor-
tant features using a random forest classifier, and the established
model was then extended to the whole study area.

C. Subsequent Processing

After the abovementioned processing steps, some background
photons near the surface will still be classified as surface, which
will affect the data accuracy. For example, there can be a large er-
ror in extracting the photons at the top of the canopy and surface
photons. In general, there are several methods for addressing the
problem, which are listed as follows.

1) Confidence interval filter: Popescu et al. [3] selected a
series of 95% confidence interval filters within each hor-
izontal interval window to keep photons within the 95%
confidence interval until the relative change of the total

number of signal points between two adjacent iterations
is <5%.

2) Chan–Vese model: Chen et al. [43] used the Chan–Vese
(CV) segmentation algorithm [56] to obtain potential sur-
face photons after using Brunt’s method to obtain the
initial surface contour.

3) Maximum likelihood probability filter: In order to further
reduce more background points, Farrell et al. [45] adopted
a 1-D maximum likelihood probability filter along the
track, after adopting Brunt’s method.

4) Iterative process: To eliminate the outliers and reduce
the effect of misclassified noise photons, Moussavi et al.
[31] used an iterative process based on cubic spline inter-
polation. In this method, if the photons are within three
standard deviations of the spline fit, they are classified as
surface return; otherwise, they are removed. This process
is repeated three times to ensure that as many background
photons are removed as possible, while still retaining
enough data.

5) Histogram statistic: Nie et al. [32] established a localized
elevation frequency histogram. In this method, a local-
ized elevation frequency histogram is first constructed
by setting the elevation bin size and the distance bin
size. The elevation threshold is then set according to the
local elevation frequency histogram to further eliminate
isolated background photons below the surface and above
the canopy.

IV. RESULTS AND DISCUSSIONS

In the experiments, we used seven methods (see Table II) to
perform surface detection and processing on 12 PCL datasets.
The 12 PCL datasets cover four sensor types (MABEL, ATLAS,
MATLAS, and MBL) and almost all surface types. The methods
we selected are fundamental methods, other methods are im-
proved from those. We reckoned that these methods could reflect
their processing performance. Intuitively, the seven methods can
all extract the surface photons, but there are still differences
between the methods. At the end of this section, we will discuss
variations or improving versions of these methods.

In the following, we introduce seven algorithms and analyze
the effect of each method. In Section IV-A, we describe the
flow diagrams of algorithm. In Section IV-B, we analyze the
processing effects of the different methods on different surface
types and data sources, In Section IV-C, we analyze the advan-
tages and disadvantages of each method. Table Ⅱ summarizes
the steps of the seven methods. And details of the quantita-
tive evaluation of different methods are provided in Sections
Ⅲ–VI. The detailed results are provided in the supplementary
file.

A. Method Description

In this section, we describe the seven typical algorithms in
detail. In addition, we summarize the algorithm and show it in
Table II

1) Histogram based method [40] (HBM): The method is
based on the histograms of the photon data to distinguish



XIE et al.: COMPARISON AND REVIEW OF SURFACE DETECTION METHODS 7613

TABLE II
BRIEF INTRODUCTION TO THE MAIN STEPS OF THE SEVEN METHODS ACCORDING TO THE CLASSIFICATION SCHEME DESCRIBED IN THIS ARTICLE

rough signal photons and noise photons. Assuming that the
background photons are randomly distributed and at the
same time the returned pulse is symmetric. First, generate
photon data of 0.125 s (∼25 m; 625 shots) and histogram
the data at 10-m vertical resolution. Second, calculate the
mean and standard deviation of total bin counts and select
bins with more counts than the mean plus the standard
deviation as potential signal photons. Third, calculate the
mean and standard deviation of the remaining photons
and add bins with more than 15 times standard deviation
of background counts to the potential signal bins. Finally,
for the remaining photons, add any photon within ±10 m
of the signal photons obtained in steps 2 and 3 as the
signal photons. In addition, all photons within ±0.5 m of
the median photon elevation are also considered as signal
photons.

2) Local distance method [50] (LDM): In this method, the
noise points in the data are eliminated by the local distance
statistics method. First, calculate the total distance disti
from each point to the nearest k points around it in the
point cloud. Second, count the frequency histogram of
the local total distance. Finally, set threshold to eliminate
noise points. Since the spatial distribution of the four
research objects in this article is relatively uniform, it
can be assumed that the frequency histogram of the local
total distance disti of the noiseless point cloud is a Gaus-
sian distribution, and its mean and variance are estimated

through the local statistics of the point cloud. If disti is
greater than the sum of its overall mean and t times the
standard deviation, then point i is a noise point.

3) Modified DBSCAN method [48] (MDBSCANM): This ap-
proach makes some improvements on DBSCAN clus-
tering model and then modifies the shape of the search
area. In the first stage, since the density of most clusters
(surface returns) in the horizontal direction is greater than
that in the vertical direction and the photon distribution
in the horizontal direction is linearly and tightly, it is
reasonable to modify the search area from a circle to an
ellipse shape. In the second stage, estimate the clustering
parameters, including a Eps-neighborhood of a point and
the minimum number of points in that Eps-neighborhood.
First, extract some sample data from the test dataset and
calculate the area. Then, calculate the area and the av-
erage point density of the Eps-neighborhood of a point.
If the average point density for clusters is higher than
the average density of the whole data set, the photon
in the center of the ellipse is classified as a surface
photon.

4) Novel filtering model [24] (NFM): Under the assumption
that the noise point is isolated and the neighbors of the
noise are less than that of the topographic point, the
novel filtering model improves the defects of the previous
method in dealing with the background photon inho-
mogeneity. First, because of the inconsistency of noise
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density, the effectiveness of density-based noise detection
is limited. Therefore, it is necessary to adaptively scale the
noise density of the original photon counting point cloud.
Second, we apply the method introduced in [1] to derive
the distance distribution between a point and its k-nearest
neighbor (KNN) in 2-D space, so as to distinguish noisy
photons after adaptive noise scaling. Finally, in order to
divide the data into background and surface photon, we
apply a Bayesian decision theory after determining the
probability of KNN. If the probability of a surface photon
is greater than that of a background photon, it is considered
to be a surface photon. Otherwise, it is considered to be a
background photon.

5) Adaptive directional filter method [41] (ADFM): On the
basis of MDBSCANM [48] modifying the shape of the
search area, ADFM [41] takes the influence of terrain
factor into consideration and traverses each filtering di-
rection to determine the optimal filtering direction of the
filtering kernel. First, define an elliptical region centered
on point p, and determine whether any point q is within
the ellipse. Since the distance between the noise point and
the ground point is very close, in order to make the density
value obtained by statistics more distinguishable, the filter
kernel set the weight according to the distance between
two points. Second, traverse each filtering direction, and
use the direction with the largest density statistics result
(i.e., when the direction of the filtering kernel is consistent
with the direction of the terrain) as the optimal filtering
direction of the filtering kernel. Finally, after calculating
the density value of each point, a threshold T is given to
determine whether each point is a noise point. Due to the
high coherence between the signal and noise of photon-
counting lidar, it is necessary to calculate the maximum
density value of the point cloud within the range of radius
c with any point as the center. Subsequently, the difference
between the maximum density value and the point density
value is calculated. If the difference is greater than the
given threshold value, the point is removed as a noise point.

6) Density-dimension method [42] (DDM): Density-
dimension method utilizes the anisotropic kernel and
radial basis function to calculate the weighted density.
One significant advantage of DDM [42] is its autoadaptive
capability, which enables it to distinguish background and
surface photons in complex environmental conditions.
First, before the density-dimension algorithm is executed,
perform a large-scale signal and noise slabs separation to
define a noise data set and determine the height range of
the ice surface. Second, since the ice surface generally
extends more horizontally than vertically, an anisotropic
kernel is introduced and combined with the radial basis
function to calculate the density field. Finally, determine
autoadaptive threshold to separate noise versus signal
photons and associate signal photons to the ice surface.

7) Improved localized statistics method (ILSM): The last
method is proposed to detect surface photon based on an
improved localized statistics-based algorithm. It involves
two main steps to implement this algorithm. First, divide

the raw data into partial bins and build the elevation
frequency histogram. A buffer zone is then created within
150 m above and below the average elevation value of
the bin to remove the obvious noise photons and contain
the potential signal photons. Finally, in order to further
remove the remaining noise photons, calculate the den-
sity of photons in each direction to get the maximum
density of each photon. Then, generate the local photon
density distribution histogram and detect all potential
peaks of the histogram by local maximum. After that,
Gaussian curve is used to fit the noise peak and signal
peak and the intersection of the two Gaussian curves is
considered to be the density threshold.

B. Evaluation Method

For fair comparison, we have made the ground truth data.
For MABEL data and ATLAS data, confidence evaluation is
officially given in the data. Confidence value [57] is divided
into five levels (0, noise; 1, padding point; 2, low-confidence
point; 3, medium-confidence point; 4, high-confidence point).
On the basis of the official label, we interpret visually the low-
confidence points mainly, and modify these to obtain a more
reliable label. For MATLAS data, the official label contains clear
noise point and signal point, so we directly used it as ground truth
data. For MBL data, the photon label is not announced. Based
on satellite images from Google Earth, the ground truth data
are obtained by visual interpretation completely. The results of
ground truth could be viewed in Fig. 4.

In this article, the qualitative and quantitative analysis are
all conducted. We mainly complete qualitative analysis through
visual observation. Additionally, recall (R), precision (P), and
F-Measure (F) [32] are used as quantitative evaluation indica-
tors. Recall represents how many positive samples are predicted
correctly. Precision (P) indicates how many of the samples pre-
dicted to be positive are correct. F-Measure (F) is the weighted
harmonic average of Precision and Recall. The calculation equa-
tion of the indicators can be referred to as follows:

R =
TP

TP + FN

P =
TP

TP + FP

F =
2P ·R
P +R

where TP represents the signal photons that are detected cor-
rectly; FP represents the noise photons that are detected in-
correctly by algorithm; FN represents the signal photons are
detected as noise photons.

C. Different Methods on Different Surface Types

In this section, we describe how we analyzed the different
surface detection methods both qualitatively and quantitatively.
The result of each dataset detected by each algorithm has list in
Table III–Table VI.
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Fig. 4. Ground truth data of each dataset. The red points represent signal points, while the black points represent noise points. The pictures labeled with 1–3
are MABEL data, labeled with 4–10 are ATLAS data. The 11th picture is MBL data and the12th picture is MATLAS data. More details of datasets could refer to
Table I.

1) For the surface of the ocean, the terrain is relatively gentle.
We selected a set of MABEL ocean data and a set of
ATLAS ocean data. Ocean data, due to the flat terrain, is
less difficult, so all methods have achieved good results.
The three methods HBM [40], ILSM [30], LDM [50], and
ADFM [41] perform better, they perform well in Recall,
Precision, and F-Measure, which means these methods

could detect as many signal photons as possible while
ensuring the correct rate. Other methods, MDBSCANM
[48], NFM [24], and DDM [42], also perform well in
Precision, but unsatisfactory in Recall, which means that
there are a lot of signals that have not been detected. We
noted in the previous section that HBM [40] has a good
segmentation ability on flat terrain. The results of Dataset6
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TABLE III
SEVEN METHODS FOR THE INDICATORS RESULTS OF OCEAN DATA

TABLE IV
SEVEN METHODS FOR THE INDICATORS RESULTS OF SEA ICE DATA

TABLE V
SEVEN METHODS FOR THE INDICATORS RESULTS OF LAND ICE DATA
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TABLE VI
SEVEN METHODS FOR THE INDICATORS RESULTS OF LAND DATA

processed by HBM[40] and DDM[42] are shown in Fig. 5.
LSM sets the vertical and horizontal weights. ILSM [30]
and ADFM [41] add a slope search step, this is conducive
to the detection of the upper and lower edge signals so its
results are good in the case of processing after pulse noise.

2) For the surface of sea ice, the data characteristics are very
similar to those of the ocean. But the sea ice area has
a more complex area that is usually a mixture of ocean
and ice, so the data dispersion of sea ice is higher. The
indicators show that LDM [50], ILSM [30], and ADFM

[41] perform better. The Precision of DDM [42] and LSM
is higher than Recall, which means that the ability of the
finding the accuracy of the signal is better than the ability
to find the number of signals. However, the ADFM [41]
tends to find more signal photons, resulting in a decrease
in the accuracy of the detected signals.

3) For land ice data, the fluctuation is greater than for ocean
and sea ice data, and there are no other features on the
surface, such as vegetation, buildings, etc. We selected
three sets of typical data, Dataset1, Dataset4, and Dataset5.
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Fig. 5. (a) Ground truth data of the Dataset6. (b) Result of HBM. (c) Result of DDM. Both processing results preserve the shape of the surface, however, HBM
contains more signals, and DDM lost many edge signals.

Dataset1 is MABEL data from north of Canada with obvi-
ous steep slope. Dataset4 is ATLAS data from Antarctica
with flat slope. Dataset5 is ATLAS data from Greenland
with steep slope. These three datasets cover all possible
features of land ice.

The indicators of results show that every algorithm
could extract signal photons completely, but three algo-
rithms, LDM [50], ADFM [41], ILSM [30], perform very
well and stable, and F-Measure value of these methods
are all above 0.94. The HBM [40] and MDBSCANM [48]
method have shown a good ability to find ice signals, but
it is unsatisfactory in slope processing, which is obvious
in Dataset5. NFM [24] performs better in land ice, it can
show a relatively stable performance for slope areas. The
detail result of land ice dataset processed by NFM is shown
in Fig. 6. DDM [42] pays more attentions to the accuracy
of the detected signal photons.

Fig. 6. Results of NFM processing of the ATL03 land ice dataset. Area a shows
that the method can avoid breakpoints in areas with large slopes. Area b shows
that the method can process after pulse noise.
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4) For land areas, they are characterized by more complex
types of ground features. In this experiment, we selected
six datasets, including various conditions such as day and
night, whether vegetation is covered, etc. These groups of
data are divided into four groups.

The first group contains Dataset7, which is observed
in night by ATLAS. The characteristic of this group is
that the noise rate is relatively low. Due to lack of noise
photons, it is easier for the algorithm to mistake the ground
object photon as a noise photon. Among all the methods,
ADFM [41] and ILSM [30] performs best, and these
methods score high in Recall, Precision, and F-Measure.
LDM [50], MDBSCANM [48], and NFM [24] lose some
vegetation signals with low signal rates. HBM [40] and
DDM [42] could only detect ground signals, and lose a lot
of vegetation signals.

The second group contains Dataset8, which is observed
in daytime with little vegetation. Six methods score greater
than 0.9 of F-Measure. However, DDM [42] does not
perform well of Recall, which lead to a low F-Measure.

The third group contains Dataset3, Dataset9, Dataset12,
which are observed in daytime with a lot of vegetation
by different sensors. Among all the results, ILSM [30]
and ADFM [41] perform very well in all three datasets.
MDBSCANM [48] and NFM [24] perform well in last
two datasets, but lost many signals in Dataset3, which
means that these two methods are more sensitive to the
parameters of different sensors. LDM [50] could find out
ground signals and few vegetation signals, but lost signals
of the top of the canopy. HBM [40] and DDM [42] could
only detect ground truth, and lost most of the vegetation
signals.

The fourth group contains Dataset11, which is observed
by MBL in the seaside city called Sanya. From the profile
of the data, many building signals can be observed, and
below the building signals, there will be gaps of the ground
signals. This data examines the ability of algorithm to
process discontinuous signals. The experimental results
are similar to the second group. Only DDM [42] does
not perform well in Recall. However, the signals lost by
DDM [42] are the edge signals, and from a qualitative
perspective, DDM [42] have a good result.

D. Method Analysis

In this section, combining the process efficiency (Fig. 7) of
each algorithm and performance on different surface types in
the previous parts, we will deeply analyze the characteristics of
each algorithm.

1) HBM [40] involves selecting a very small interval as
the processing area for each step in the distance along
the track. The vertical histogram statistics are performed
on this interval, and the signal of this area is found by
setting the threshold twice. Because the interval selected
by the method in the direction along the orbital distance
is very small, the method has good adaptability when
it encounters background photon unevenness. From the

perspective of processing efficiency, HBM’s efficiency is
extremely high and only one-hundredth to one-thousandth
of other methods. High efficiency and good processing
capacity for flat areas are the characteristics of HBM.
However, at the same time, because it only searches for
possible surface photons based on the histogram of the
vertical direction of fixed ground distance, the algorithm
does not make good use of the information of vegetation
or buildings. In addition, when the area slope is large,
the vertical histogram will show a waveform with small
peaks and large variances. This makes the surface signal
area wider in the vertical direction and results in more
background photons being classified as surface photons.

2) LDM [50] involves calculating the sum distance of KNN
of each photon, and surface photon detection is performed
at the photon scale. Compared with HBM [40], the photon
boundary found by this method is clearer. Although there
is no design step for slope correction, the method is still
quite satisfactory in the slope area. However, it also has
some defects: 1© in the daytime, the photon density in
the vertical direction is greater than the photon density
in the orbital direction, so the nearest N photons that
the algorithm looks for are mostly vertical photons; and
2© after counting the KNN features of all the photons,

the algorithm adopts the global histogram method, but
for uneven background noise, it cannot achieve a high
processing accuracy.

3) MDBSCANM [48] involves calculating the number of
photons in a certain range of photons as the character-
istic value. Compared with LDM, the search area of the
algorithm changes to an ellipse, which solves the problem
of uneven photon distribution along the orbital and vertical
directions, to a certain extent.

However, this type of method has a unified problem: when
classifying photons, the global histogram method is still adopted.
When the background photons are uneven, the classification ac-
curacy is greatly reduced. What is more, this method is sensitive
to parameters and has poor slope processing capabilities.

4) NFM [24] improves the defects of the previous methods
in the treatment of uneven background photons. In the
preprocessing stage, the homogenized density method
is used to uniformize the area with uneven background
photon. This algorithm retains a relatively wide height
range of signal called padding the signals in ATBD03.
In the feature calculation, the KNN value of the LDM
[50] is still used, but in the feature segmentation section,
Bayesian theory is used, which is innovative. From the per-
spective of processing results, this method shows excellent
performance when processing datasets with vegetation
on the ground. However, the algorithm needs the prior
information, and the accuracy of this information is related
to the accuracy of the segmentation result, which means it
is sensitive to the parameters. In addition, NFM [24] can
still retain few noises far away from the main body of the
signals.

5) ADFM [41] can be seen as an improvement of MDB-
SCANM [48]. Based on MDBSCANM [48], the vertical
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Fig. 7. Calculation time of each method for different data. (a) Situation of sea ice data and ocean data, (b) situation of land ice, and (c) situation of land. All
the methods is programmed using MATLAB, and running using a computer with Intel(R) Core(TM) i9-9900 CPU. It can be seen from the figures that HBM’s
computing power is relatively strong, and the time-consuming is only ∼1/100 of other methods. The calculation time of other methods will vary with the number
of photons in Datasets.

and horizontal weights are set when calculating the feature
value, which better solves the problem of uneven density
distribution in different directions. At the same time, the
step of searching the surface slope is added, so that the
algorithm can better detect areas with steep terrain. And
this method has a good performance in all surface types.
However, searching for the slope in a fixed step size greatly
increases the complexity of the algorithm. Furthermore,
the effect of the improvement is not obvious for the case
of uneven background photon.

6) DDM [42] uses another way of calculating the feature
value. Computationally, this method uses an anisotropic
kernel and radial basis function to calculate the feature

value. The improvement lies in giving weight to the dis-
tance from the center position, and the closer to the center
position, the higher the weight. In terms of threshold set-
ting, this method uses a local threshold, which also solves
the problem of uneven background noise. Compared with
MDBSCANM [48], this method retains the core surface
photons and discards the edge signal photons (we refer to
the middle photons of the vertical direction as the “core
surface photons”, and the photons above and below the
core signal photons as the “edge signal photons”), because
DDM [42] is more demanding when performing feature
segmentation. This feature also leads to the lower Recall
value of this method in all datasets, especially on datasets
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Fig. 8. Results of NFM processing of the land dataset of MABEL. From the
enlarged view, some signal photons above the surface are better preserved.

with vegetation. However, when dealing with simple data
types such as sea ice datasets, land ice datasets, etc., its
qualitative effect is still well with signal continuity and
signal accuracy.

7) ILSM [30] can be seen as a simplification and improve-
ment of ADFM [41]. In terms of preprocessing, it uses
local histogram statistics to select regions that may be sig-
nals. Compared with the preprocessing method of DDM
[42], this method can select data regions without resorting
to external data. For the calculation of the feature value,
ILSM [30] is used to calculate the number of photons in
the fixed ellipse range of each photon, and to set the signal
slope search step. A global histogram is then built and a
threshold set to distinguish the surface photons from the
background photons.

The seven algorithms can all extract surface photons well, but
they perform differently on different aspects, which means that
they perform differently on different types of surface. HBM [40]
shows a better performance when dealing with relatively gentle
surface data such as ocean and sea ice data. DDM [42] can extract
the surface subjects well and has a strong advantage in surface
detection, especially land ice data. NFM [24] has advantages in
land data with vegetation. MDBSCANM [48] and LDM [50]
show better performance in land data. ADFM [41] and ILSM
[30] show a comprehensive performance.

Improved versions or the combination of these methods were
also developed to achieve better results [40], [48], [53], [54],
[57], [58].For instance, The modified histogram based method
(MHBM)[57], the official method of ATL03, could be seen the
improvement of the HBM [40]. It adopted variable bin size
according different surface types, and slope strategy is used in
method. MHBM has the ability to adapt to different surfaces to
a certain extent, and at the same time solves part of the slope
problem. The differential, regressive, and Gaussian adaptive
nearest neighbor (DRAGANN)[53], [54], the official method
of ATL08, also uses the number of points around a point as
feature value like MDBSCAN [48]. This method sets the ratio
between the distance along the track and the elevations, and

to a certain extent solves the problem of the uneven density
of photons in the direction along the track and the elevation,
which is an improvement of MDBSCAN [48]. The modified
OPTICS method (MOPTICSM) [58] combines the advantages
of NFM, MDBSCANN, and OPTICS, which continues homog-
enizing noise photons of NFM, adopts the distance processing
method between two points of MDBSCANM [48], and use
OPTICS clustering method to complete the denoising. The step
of homogenizing noise photons solves the problem of uneven
noise distribution, the step of adopting a horizontal ellipse
searching area solves the problem of uneven distribution in
different directions of photon density, and OPTICS clustering
method performs better than DBSCAN method in parameter
sensitivity. This method performs well when dealing with areas
with vegetation. From the perspective of the development trend
of the method, compared with the original method, the improved
method shows stronger applicability to specific surface types and
research areas.

V. CONCLUSION

In this article, we have reviewed the existing surface detection
methods for photon point cloud data, and summarize the meth-
ods. The full process of all methods could be roughly divided
into three steps as follows.

1) Preprocessing: Image processing, envelope curves, and
histogram statistics are the commonly used methods to
reduce the number of background photons.

2) Surface detection: We summarize three types of methods:
the clustering methods, the feature calculation methods,
and waveforms methods.

3) Subsequent processing: Iterative process, histogram statis-
tics, and CV model are always subsequent processing
methods.

In order to explore the characteristics of different types of
methods, we selected 7 methods and 12 data for experiments.
The seven methods include: HBM [40], LDM [50], MDB-
SCANM [48], NFM [24], ADFM [41], DDM [42], ILSM [30]. In
total 12 datasets we selected contain many typical surface types,
including land ice, ocean, land, and sea ice, from four types
of photon-counting sensors, i.e., MABEL, ICESat-2/ATLAS,
MBL (China), and MATLAS.

We have carried out a quantitative and qualitative evaluation
of the experimental results. After analysis of the result, HBM
[40] showed a better performance for gentle surface data such
as ocean and sea ice. DDM [42] performed well in surface and
surface features detection. NFM [24] has advantages in land
data with vegetation. MDBSCANM [48] and LDM [50] show
better performance in land data. ADFM [41] and ILSM [30]
show a comprehensive performance. If there are no high re-
quirements for surface detection, ADFM [41] and ILSM [30] are
recommended in various surface type. Although the NFM [24]
method has not been widely promoted, we still believe that the
innovation of the method is very novel. With the improvement
of the stability of this method, we think it will still have more
outstanding performance.
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The findings of this review article will help researchers to se-
lect the most appropriate surface detection methods for different
scenarios.
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