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Detection of Urban Built-Up Area Change From
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Abstract—Detection of urban land expansion is important for
understanding the urbanization process and improving urban
planning. Spatio-temporal contextual information derived from
multitemporal high-resolution imagery is useful for highlighting
urban land cover changes. This article proposes a new method for
detecting urban built-up area change from multitemporal high spa-
tial resolution imagery by combining spectral and spatio-temporal
features. A multiband temporal texture measured using pseudo
cross multivariate variogram (PCMV) is adopted to quantify the
local spatio-temporal dependence between bitemporal multispec-
tral images. The PCMV textures at multiple scales, bitemporal
spectral features, and normalized difference vegetation indices are
together input to an improved one-class random forest classifier for
urban built-up area change mapping. The proposed method is eval-
uated in urban built-up area change detection using multitemporal
Sentinel-2 images of Tianjin area acquired from 2015 to 2019. It
is also compared with three feature combinations and an existing
postclassification comparison method based on one-class support
vector machine. Experimental results demonstrate that the pro-
posed method outperformed the traditional ones, with increases of
2.15%–7.38%, 2.07%–5.45%, 1.93%–6.76%, and 5.98%–13.11%
in overall accuracy. Moreover, the proposed method also achieves
the best performance using the bitemporal Sentinel-2 images over
the east of Beijing area. The proposed method is promising as a
simple and reliable way to detect urban built-up area change with
multitemporal Sentinel-2 imagery.

Index Terms—Built-up area change, improved one-class random
forest (iOCRF), multiband temporal texture, multitemporal data,
pseudo cross multivariate variogram (PCMV).

I. INTRODUCTION

URBANIZATION process, including population growth
and urban land expansion, has been given much focus in

recent years [1]. To meet the needs of human life and production,
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urban areas are now expanding at twice their rates of population
growth [2]. Urban land expansion is closely related to urban
morphology, land utilization efficiency, economic development,
and ecological environment [3]–[5]. The impact of urban land
expansion on biochemical, hydrological, and climate changes
at different scales has been a widespread concern [6], [7].
Therefore, timely and accurate information about urban land
expansion is widely required by the scientific community, gov-
ernment sectors, and the public.

The increasing availability of remote sensing data of different
resolutions has made it possible to detect urban land expansion
on different scales [8], [9]. Low- and medium-resolution satel-
lite images, such as MODIS and Landsat images, have been
exploited in detecting and monitoring urban land changes across
large areas during the last three decades [1], [10]–[13]. However,
the limitation in spatial resolution of these images makes these
data only suitable for detecting urban land expansion in large
scales, and are not able to capture urban land changes at fine
scales [14]–[16]. Thus, higher spatial resolution data, such as
SPOT-5 and Sentinel-2 images with 10–20 m resolutions, are
used to monitor urban land expansion at detailed levels [16]–
[19]. In particular, Sentinel-2 satellites launched by the European
Space Agency collect multispectral images with high spectral
(13 bands) and spatial resolutions (10, 20, and 60 m) [15]. Two
satellites (Sentinel-2A and 2B) are in orbit with a time revisit of
five days [20]. The Sentinel-2 is found to provide the improved
data to map and monitor human settlement [20], urban land cover
[21], and imperviousness [22], with respect to Landsat derived
product. The increased spatial details, temporal resolution, and
thematic contents offered by Sentinel-2 data have the potential
for detecting urban land expansion at a fine scale.

To detect urban land expansion at fine scales using high spatial
resolution data, it is important to include spatial and temporal
information, in addition to multitemporal spectral data [17],
[23]. Guo et al. [24] proposed a joint framework for change
detection by combining convolutional sparse analysis to achieve
spatial utilization and temporal spectral unmixing. The addi-
tion of spatio-temporal information from multitemporal data is
conducive to improve the accuracy of urban land change de-
tection. For example, some studies showed that spatio-temporal
contextual information, which represents temporal dependence
of spectral signature in a local neighborhood, obtained from
multitemporal data provides additional discriminative capacity
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for detecting land cover changes [25]–[29]. Papadomanolaki et
al. [17] presented a deep learning framework for urban land
expansion from a multitemporal Sentinel-2 dataset by inte-
grating spatial features learned using a U-Net architecture and
temporal change pattern learned using recurrent networks. Im
and Jensen [25] developed a change detection method based
on temporal contextual information between two-date images
using correlation, slope and intercept in a small neighborhood
and decision tree classification. Jin et al. [27], [28] used multi-
temporal texture to quantify local temporal correlation between
bitemporal images of the same bands. Moya et al. [29] presented
a three-dimensional gray-level co-occurrence matrix (GLCM)
texture from a pair of images in the identification of collapsed
buildings. Gueguen et al. [30] used the local mixed information
based change detector to analyze the temporal co-occurrences
and adopted a region-based approach for consistent urbanization
detection of large scenes.

In the literature, most existing methods quantify spatio-
temporal dependence between bitemporal images of the same
spectral band [27], [28]. In this case, an appropriate spec-
tral band needs to be selected for generating the texture and
structural images. As a result, band selection may have an
impact on detection results. On the other hand, the correla-
tion across different bands is discarded [31]. However, the
spatio-temporal contextual information derived from multiple
bands at two dates (e.g., bitemporal multispectral images) may
be more useful to highlight different land cover changes. A
spatio-temporal feature named multiband temporal texture mea-
sured by pseudo cross multivariate variogram (PCMV) was
proposed in our previous study [32], [33]. The multiband tem-
poral texture was preliminarily evaluated in the detection of
forest burned area using bitemporal Landsat TM images [32].
Besides, multiband temporal texture derived from bitempo-
ral high spatial resolution data, e.g., SPOT-5 and Sentinel-2
images, was evaluated in the detection of urban land change
[33].

To take advantage of the spectral and spatio-temporal contex-
tual information from high spatial resolution images for urban
land change detection, an appropriate change detection method
is required [34]. There are two problems to be considered. First,
the combination of spatio-temporal features and spectral features
may produce a high-dimensional dataset and affect the classifi-
cation performance, i.e., “dimensionality disaster” [35]. In this
case, apart from using additional feature reduction methods to
reduce the data dimensionality [29], land cover classification
or extraction methods insensitive to highly dimensional data
are needed. Second, since built-up area change is the only
target class of interest in this study, a one-class classification
method that focuses on a specific class is needed, such as
one-class support vector machine (OCSVM) [36] and one-class
random forest (OCRF) [37]. The OCRF uses the probability
distribution of target class samples to simulate an artificial
outlier (i.e., samples of nontarget class), and then transforms
the one-class classification task into a two-class classification
[37], [38]. However, the OCRF may misestimate the probability
distribution of nontarget class samples for high-dimensional
data [39]. Therefore, a one-class classification method, which

Fig. 1. Flowchart of the proposed urban built-up area change detection
method. The modules in the gray boxes are described in detail in the full text.

is insensitive to data dimensionality, would be appropriate and
efficient in urban land change detection.

To address the aforementioned problems, we proposed a
method for the detection of urban built-up area change using
the multiband temporal texture measured by PCMV [32] and
one-class classification [39]. The ability of multiband temporal
texture in quantifying spatio-temporal information and the ef-
fectiveness of one-class classification in the detection of urban
built-up change were evaluated.

II. METHODS

In this study, a method of detecting urban built-up area change
from multitemporal high spatial resolution imagery by including
the PCMV multiband temporal texture was proposed. First, the
PCMV texture [40] was extracted from bitemporal Sentinel-2
imagery. Then, the PCMV textures obtained were combined
with bitemporal spectral features and normalized difference veg-
etation indices (NDVIs) in the detection of urban built-up area
change. The built-up area change was detected by classifying the
combined dataset (i.e., bitemporal spectral features, bitemporal
NDVIs, and multiband temporal textures) using a one-class clas-
sification method. Specifically, an improved one-class random
forest (iOCRF), a recently proposed one-class classifier, [39]
was used. The flowchart of the proposed method is shown in
Fig. 1 and is described in detail in the following sections.

A. Multiband Temporal Texture by PCMV

Remote sensing images acquired at different dates in the
same geographical area usually show a certain spatio-temporal
dependence (or correlation) [26]–[29]. An appropriate method
of quantifying spatio-temporal correlation between bitemporal
images is thus required. In the existing studies, pseudo cross-
variogram (PCV) γPCV

12 (h) was originally proposed to quantify
the spatial cross dependence between two spatial variables [41],
[42], which is defined as

γPCV
12 (h) =

1

2
E[(z1(x)− z2(x+h)]2 (1)
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Fig. 2. PCMV multiband temporal texture calculated from multispectral images acquired on two different dates, using a moving local window w with a lag
distance h.

where h is a distance vector, and z1 and z2 denote two spatial
variables. For remote sensing applications, these two spatial
variables represent the digital numbers or spectral reflectance
values from two spectral bands of an image. The PCV quantifies
spatial cross dependence between two different bands. However,
if the same spectral band acquired at two different dates is used
in PCV, the PCV expresses temporal dependence of the same
spectral band [27].

It is worth noting that variation across different bands is dis-
carded when using a single spectral band of bitemporal images
in PCV. Therefore, the PCV is extended to PCMV [32], which
represents the semivariance of the cross-increments between
two-date multispectral images as

γPCMV
12 (h) =

1

2
E[(z1(x)

− z2(x+h))M(z1(x)− z2(x+h))T ] (2)

where γPCMV
12 (h) represents the PCMV at a lag distance vector

h. z1 and z2 are pixel vectors from two multispectral images
acquired on dates t1 and t2, respectively. (.)T is the transpose of
the matrix. M is a symmetric positive definite matrix used as
metrics in the calculation of dissimilarities. Such metrics can
be: the identity matrix, the inverse of the variance-covariance
matrix [40].

The experimental PCMV is estimated by averaging the mul-
tivariate distance squared

γPCMV
12_exp (h) =

1

2N(h)

N(h)∑

i=1

[(z1(xi)

− z2(xi+h))M(z1(xi)− z2(xi+h))T ] (3)

where N(h) is the number of pixel pairs with a certain lag distance
vector h, and xi is the location of pixel.

As mentioned previously, different metrics of M could be
used in the calculation of PCMV in (3). For simplicity, M =
I (I is the identity matrix) was used in the existing study [32],
[33]. The experimental PCMV using M = I is the sum of the
experimental PCVs for each pair of bands on two different dates.
However, different spectral bands in the multispectral images
have different importance values or contributions to PCMV. It
would be more reasonable to assign different weights to different

bands. For example, the variables with high variability receive
less weight than variables with low variability [43]. Therefore,
in this study, M = C-1 (the inverse of the variance-covariance
matrix C) is used in the calculation of the PCMV [44]. For
two multispectral images in this study, C is estimated by the
pooled covariance matrix [45]. The pooled covariance matrix
is the weighted average, such as mean value, of the covariance
matrices of two multispectral images.

The multiband temporal texture measured using PCMV is
calculated in a local neighborhood (see Fig. 2). Specifically, a
PCMV texture is calculated in a local moving window for a
specific lag distance h (including size and direction).

The value of PCMV obtained within a local window for a
specific lag distance h is assigned to the central pixel of the
window. Thus, window size w and lag distance h (including
size and direction) are two key parameters for the calculation
of PCMV texture. The appropriate window size for texture
calculation is determined by trial and error to maximize the
accuracy of classification [46] or by the semivariograms method
[47]. The lag distance h can be measured with one or more sizes
in different directions. The average of texture values from all
directions of h, such as four directions (NS, EW, NE-SW, NW-
SE), is commonly used as the omnidirectional texture. However,
the textures from an individual direction or the omnidirectional
texture usually show a significant edge effect in texture measures
[48]. In contrast, the minimum of texture values from different
directions of the lag distance vector is less sensitive to the edge
effect [49]. Thus, the minimum of PCMV values from these four
directions of h is used as the multiband temporal texture value
in this study.

By analyzing (3), the multiband temporal texture value
measured using PCMV quantifies spatio-temporal correlation
between bitemporal multispectral images. Specifically, if the
spectral signature of a local area appears to remain the same
over time, there is a strong temporal correlation between the
bitemporal multispectral images for the area. Thus, a low PCMV
value for this area will be obtained using (3). In contrast, if the
spectral signature of a local area changes significantly over time,
because of either change in the land cover type or phenological
variation of vegetation, there is a weak temporal correlation
between multispectral images in the local area. In this case,
a high PCMV value for this area will be obtained using (3).
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The PCMV texture uses the contextual variations in pixel values
within a moving window to reflect local spatial information like
most existing texture measures, such as GLCM. The GLCM
texture could only be derived from a single image at one time
and two GLCM texture bands are needed for characterizing
the changes between bitemporal images. However, the PCMV
texture quantifies the local spatio-temporal variation between
bitemporal multispectral images at one time and highlights the
change intensity directly.

B. Change Detection With iOCRF

In this study, the PCMV multiband temporal texture is used
in the detection of urban built-up area change. The obtained
PCMV textures with different window sizes and lag distances
are combined with bitemporal spectral features and NDVIs in
the detection of built-up area change. Different from the existing
studies that only use a single-scale texture, the PCMV textures
at multiple scales, i.e., multiple window sizes and lag distances
are adopted, considering that multiscale textures may provide
more information to discriminate urban land change from other
change and nonchange types. In addition, bitemporal NDVIs are
used to reduce the impact of vegetation changes on the detection
of built-up area change. Since all changes in the study area are
highlighted by the multiband temporal texture, in particular, it
is found that the built-up area change and vegetation change all
have high texture values. The inclusion of bitemporal NDVIs
will reduce the confusion between built-up area change and
vegetation change, thus improving the detection accuracy. How-
ever, the combination of multiple-scale PCMV textures, spectral
features, and NDVIs may result in the high dimensionality of
data.

Since the urban built-up area change is the only target class
of interest in this study, a one-class classification method is
selected, as in the existing studies [50]. Only samples of the
target class (i.e., urban built-up area change) are used in train-
ing of one-class classification, instead of using samples of all
classes (both urban built-up change and other classes) in the
conventional multiclass classification. In addition, considering
that the high dimensionality of data combining different features
may affect the classification performance, and the spectral and
texture features generally have different data ranges, iOCRF
is adopted to classify the combined dataset (i.e., bitemporal
spectral features, NDVIs, and multiband temporal textures) in
the detection of urban built-up area change. This is because the
iOCRF is insensitive to high-dimensionality data and normal-
ization in image stacking is not required.

The iOCRF is a modified version of OCRF [37] and can be
considered as a special case of random forest (RF), where the
labeled samples of target class and the samples of nontarget class
estimated from unlabeled samples are used in RF classification
[39]. A key component of iOCRF is to properly estimate training
samples of nontarget class from unlabeled samples. Given that
the RF classification has strong robustness for training samples
containing some false class labels, a small number of mislabeled
samples have a limited impact on classification result [51]. Thus,
the samples randomly selected from unlabeled samples, which

include some samples of target class, are initially considered as
samples of nontarget class in iOCRF. These randomly selected
samples of nontarget class and the labeled samples of target
class are used in the initial classification using RF. After the
initial classification is obtained, those highly reliable pixels of
nontarget class (e.g., with posterior probabilities higher than
90%) are selected as new training samples of nontarget class.
These newly selected samples of nontarget class and the training
samples of target class manually selected are then used in iOCRF
for final classification.

In addition, to analyze the contributions of different features
(i.e., spectral feature, NDVI, and multiband temporal texture) to
the classification of built-up area change, feature importance of
different features in the iOCRF classification are computed by
out of bag (OOB) accuracy using RF-based feature importance
measure [52]. The OOB data are some observations that are not
included in the bootstrap sample for training a tree in RF. Their
predicted values from the tree of each feature are permuted in
the OOB data. Then, the feature importance was calculated by
the difference of OOB errors before and after the permutation
and obtained by averaging over all trees [52]. The larger the
difference, the more important the feature.

C. Evaluation

The proposed method was evaluated using accuracy measures
produced from confusion matrix to assess the change detection
results. The producer’s accuracy (PA), user’s accuracy (UA), the
overall accuracy (OA), and the F1 score were used for accuracy
assessment [53]. The F1 score is usually used as an accuracy
measure of a dichotomous model [54] and is suitable for one-
class classification method. The F1 score is the harmonic mean
of precision (i.e., UA) and recall (i.e., PA), and its value increases
with greater precision and recall, which is derived as follows:

F1 = 2 · precision · recall
precision + recall

. (4)

To fully validate the effectiveness of the proposed method,
three different feature combinations were used for comparison:
1) bitemporal spectral features; 2) bitemporal spectral features
and bitemporal NDVIs; and 3) bitemporal spectral features,
NDVIs, and single-band temporal texture features measured by
PCV [27]. For the calculation of single-band temporal texture,
an appropriate band should be selected. In this study, principal
component analysis was conducted on the multispectral image
of each date and the first principal component was used in the
calculation of single-band temporal texture. For a comprehen-
sive comparison, the OCSVM was used for urban built-up area
change detection by the postclassification comparison method
[55]. The built-up areas of each year were extracted using the
OCSVM classifier, and then the change from non-built-up areas
to built-up areas was detected from bitemporal images.

III. STUDY AREA AND DATA

A. Study Area

Two study areas were selected as shown in Fig. 3(a). One area
is in Tianjin, the third largest megacity in China. Tianjin has 16
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Fig. 3. (a) Geographic location of two study areas. (b) False color composite of multitemporal Sentinel-2 multispectral images dataset in Area 1. (c) False color
composite of bitemporal Sentinel-2 multispectral images in Area 2 (Bands red, near infrared, and green as R, G, B color composite).

districts, including six central districts, four ring districts, Binhai
New District, and five outer suburbs. The area covers the central
and ring districts, and parts of the Binhai New District and outer
suburbs. The main land cover types in the area are built-up area,
vegetation, bare soil, and water body. Along with rapid eco-
nomic development, Tianjin urban area has been dramatically
expanding in the past three decades. The second area is in the
east of Beijing, which mainly covers Beijing’s administrative
subcenter, Tongzhou District and develops rapidly these years.

B. Data

Multitemporal Sentinel-2 multispectral images from 2015
to 2019 were used in Area 1 [see Fig. 3(b)]. And bitemporal
Sentinel-2 multispectral images acquired in 2015 and 2018 were
used in Area 2 [see Fig. 3(c)]. A cloud-free image was selected
for each year. The images used were acquired in August or
September, when the vegetation flourished and bare soil area was
less. The use of images in summer could reduce the confusion
between built-up area and bare soil. Ten spectral bands of
Sentinel-2 images containing bands 2–8, 8a, 11, and 12, with
spatial resolutions of 10 and 20 m, were used.

The Sentinel-2 images used are Level-1C data after geo-
metric correction. These Level-1C data were preprocessed to

generate the bottom-of-atmosphere corrected reflectance, i.e.,
Level-2A data, after atmospheric correction. Sen2Cor, a Level-
2A processor in ESA’S sentinel application platform (SNAP),
was used to correct for the atmosphere effects on Level-1C
products [56] (http://step.esa.int/main/snap-supported-plugins/
sen2cor/). Four spectral bands of 20 m were then resampled
to 10 m using Sen2Res model implemented in the SNAP
toolbox [57] (http://step.esa.int/main/snap-supported-plugins/
sen2res/). The Sentinel-2 images acquired in 2016–2019 in Area
1 and the 2018 image in Area 2 were all coregistered to their
corresponding 2015 images. The root mean square errors of reg-
istration are less than 0.1 pixels. The image size of the Sentinel-2
images is 8000×8000 pixels in Area 1 and 2500×2500 pixels in
Area 2.

Both the training samples of urban built-up area change
and the test samples for two classes were selected by visual
interpretation of bitemporal images (see Table I). Since urban
built-up area change is the only target class, training samples
for urban built-up area change were selected. The test samples
for both the target class samples and the nontarget class samples
were randomly selected. Since urban built-up area change (target
class) occurred in a small portion of urban area, the nontarget
class samples were selected as roughly twice of the target
class samples.

http://step.esa.int/main/snap-supported-plugins/sen2cor/
http://step.esa.int/main/snap-supported-plugins/sen2res/
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Fig. 4. Two portions of Sentinel-2 images of 2015 [(a) and (e)] and 2016 [(b) and (f)], PCV single-band temporal texture images [(c) and (g)], and PCMV
multiband temporal texture images [(d) and (h)] generated from these bitemporal images (M = C-1, w = 5×5, h = 0) in an urban area and a suburban area. Parts
A–G are seven selected details of bitemporal images and temporal texture images in these areas.

TABLE I
PIXEL NUMBERS OF THE TRAINING AND TEST SAMPLES FOR FOUR

BITEMPORAL IMAGES

IV. RESULTS AND DISCUSSION

A. Analysis of Multiband Temporal Texture

The multiband temporal textures measured by PCMV were
computed from Sentinel-2 multispectral images between every
two years. To understand how the PCMV texture highlights
land cover changes, two portions of PCMV texture images from
images of 2015 and 2016 in Area 1 were selected for analysis (see
Fig. 4). For comparison, the PCV single-band temporal texture
images of the same areas were also selected and shown in Fig. 4.
These two portions represent multiband temporal textures in two
different scenarios. One portion is in an urban area containing
buildings and urban vegetation [see Fig. 4(a)], whereas the other
portion is in a suburban area that is mainly covered by vegetation,
bare soil, and water body [see Fig. 4(e)].

From bitemporal spectral images shown in Fig. 4(a) and (b),
most of the change areas in this portion are urban land change.
It is found that all urban land expansions in this portion are
highlighted by high values in two different temporal texture
images [see Fig. 4(c) and (d)]. However, nonchange areas are
shown differently in these two temporal texture images. For
example, Part A is changed from bare land to built-up area.
This area is highlighted by high values in both single-band and
multiband temporal texture images. Parts B and C are nonchange
areas. The stable urban built-up area in Part B has slightly lower
values in the multiband temporal texture [Fig. 4(d)] than that of
the single-band temporal texture [Fig. 4(c)]. Another unchanged
area in Part C also shows very low values in the multiband
temporal texture, whereas it is significantly highlighted by high
values in the single-band temporal texture, which is confused
with the change area.

In the suburban area, the change areas mainly include changes
between non-built-up classes, i.e., vegetation, bare land, and
water [see Fig. 4(e) and (f)]. Three local areas of cropland
were selected in temporal texture images (Parts D, E, and F),
which show different texture values. The areas in Parts D and
E are changed from bare soil to vegetation. These change areas
are highlighted more uniform and complete in the multiband
temporal texture image [Fig. 4(h)] than in the single-band tem-
poral texture image [Fig. 4(g)]. Part F is vegetation change with
different brightness. This area is significantly highlighted in both
temporal texture images. To distinguish built-up area change
and vegetation change, it is necessary to make a distinction
of vegetation change by combining bitemporal NDVIs in the
detection of built-up area change. Part G is a stable water body
area. The boundary of water shows high values in the single-band
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TABLE II
ACCURACY RESULTS OF BUILT-UP AREA CHANGE DETECTION WITH FOUR BITEMPORAL IMAGES IN AREA 1 USING FOUR DIFFERENT FEATURE COMBINATIONS

Numbers in bold represent the highest accuracy values for each group. OA: overall accuracy; PA: producer’s accuracy; UA: user’s accuracy.

temporal texture [Fig. 4(g)], whereas it shows low values in the
multiband temporal texture [Fig. 4(h)]. In general, the PCMV
texture is more effective in highlighting land cover change than
in the single-band temporal texture.

B. Results of Built-Up Area Change Detection

Bitemporal Sentinel-2 images pairs were selected to evaluate
the effectiveness of the proposed method in the detection of
urban built-up area change in two study areas. The bitemporal
image pairs in Area 1 consisted of bitemporal images of two
successive years from 2015 to 2019. Specifically, the multiband
temporal textures of multiple scales were adopted. Five win-
dow sizes (i.e., 3, 5, 7, 9, 11) and two lag distances h = 0
and 1 were used to compute the texture values in this study.
Thus, 32 features, including ten multiband temporal textures,
20 spectral bands of two dates, and two NDVIs, were stacked
into a combined dataset to classify urban built-up area change.
In addition, the other three feature combinations were used for
comparison. The first comparative feature combination included
20 spectral bands. The second comparative feature combination
included 22 features, i.e., 20 spectral bands and two NDVIs.
The third comparative feature combination included 32 features,
i.e., 20 spectral bands of two dates, two NDVIs, and ten PCV
single-band temporal textures. The ten single-band temporal
textures of multiple scales were computed with five window
sizes (i.e., 3, 5, 7, 9, 11) and two lag distances h = 0 and 1. The
parameter determination and nontarget sample selection for the
iOCRF classification were followed to Shi et al. [39].

The detection accuracies of the proposed method and three
comparative feature combinations in Area 1 are listed in Ta-
ble II. First, the OAs and F1 scores using bitemporal spectral
features and NDVIs are similar or slightly higher than those
using spectral features alone, whereas the accuracies using the
proposed method are higher than those two feature combina-
tions. Although the inclusion of bitemporal NDVIs has little
effect on the detection of built-up area change, the bitemporal
NDVIs are helpful to reduce the impact of vegetation changes
highlighted by the PCMV texture on built-up area change.

From Table II, the proposed method with the inclusion of
multiband temporal texture performs better than three compar-
ative feature combinations for all these four pairs of bitemporal
images in OAs and F1 scores. For these four bitemporal image
pairs, the OAs using the proposed method are 2.15%–7.38%
higher than using the bitemporal spectral features, 2.07%–5.45%
higher than using the bitemporal spectral features and NDVIs,
and 1.93%–6.76% higher than those of including PCV single-
band temporal texture, respectively. In addition, the computation
of the PCV texture is highly affected by the band selected. Not
all image pairs have obvious improvement with the inclusion
of PCV texture. The accuracies of classification with the in-
corporation of multiband temporal texture (92.45%–94.98% in
OAs) are more robust than the single-band temporal texture
(86.78%–93.05% in OAs).

For the PAs and UAs of target class (urban built-up area
change) (see Table II), it is found that the PAs of target class
using the proposed method are all the highest for these four
bitemporal image pairs, which vary from 82.98% to 92.19%.
There are some differences in the UAs of target class, although
the UAs (92.26%–94.27%) are not far apart for four bitemporal
image pairs. Specifically, the PAs and UAs for 2015–2016 and
2018–2019 image pairs are similar. The PAs and UAs of the
target class using the proposed method are about 5.6%–13.5%
and 1.4%–10.7% higher than using bitemporal spectral features
and NDVIs and with inclusion of single-band temporal texture.
However, for 2016–2017 and 2017–2018 image pairs, although
the PAs of the target class using the proposed method are higher
than those two feature combinations (7.5%–11.4%), some of the
UAs of the target class using the proposed method are slightly
lower (1.2%–2.1%). Besides, the PAs and UAs of the target
class using the proposed method are more balanced than those
using the comparative feature combinations. Taking the first two
image pairs as an example, there are 0.1% and 4.1% differences
between PAs and UAs for the proposed method, whereas the
differences are 4.3% and 12.8% for the method with inclusion
of single-band temporal texture and 2% and 16.7% when using
bitemporal spectral features and NDVIs.
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Fig. 5. Portions of Sentinel-2 images of (a) 2015, (b) 2016, (f) 2018, and (g) 2019, and their corresponding detection results of urban built-up area change using
three different feature combinations: (c) and (h): the “Spectral + NDVI” combined dataset in iOCRF; (d) and (i): the “Spectral + NDVI + PCV” combined dataset
in iOCRF; (e) and (j): the proposed “Spectral + NDVI + PCMV” combined dataset in iOCRF. Black denotes detection results of built-up change area and white
denotes detection results of the other change and nonchange areas. Parts A–D are four selected details of built-up change areas for comparison.

Two portions of the detection results of 2015–2016 and
2018–2019 image pairs in Area 1 were selected as examples
to visually compare three different feature combinations (see
Fig. 5). For the portion of detection results using different feature
combinations shown in Fig. 5(c)–(e), the classification results
with the incorporation of two different temporal textures in the
iOCRF classification perform better than using bitemporal spec-
tral features and NDVIs. For example, for the built-up change
area in Part A, some built-up change areas are underestimated
using bitemporal spectral features and NDVIs (e.g., white areas
in red polygon) [see Fig. 5(c)]. There is also more overestimation
(e.g., black areas in blue polygon) in classification using bitem-
poral spectral features and NDVIs [see Fig. 5(c)]. Although the
inclusions of two temporal textures (single-band and multiband)
in iOCRF classification produce better results [see Fig. 5(d)
and (e)], overestimation and underestimation are reduced more
including multiband temporal texture. For example, the built-up
change area in Part B is more complete in classification result
with the inclusion of multiband temporal texture than the single-
band temporal texture, as well as less overestimation in the
blue polygon.

For the portion of detection results shown in Fig. 5(h)–(j), the
result with inclusion of multiband temporal texture performs
better than using bitemporal spectral features and NDVIs and
the inclusion of single-band temporal texture. The results of this
portion [see Fig. 5(f) and (g)] are different from those of the
portion in Fig. 5(a) and (b) that the additions of two different
temporal textures all perform better. For example, for the built-up
change area in Part C, the detection result with the inclusion of
multiband temporal texture [Fig. 5(j)] has less underestimation
(e.g., white areas in red polygon) than that of the single-band
temporal texture [Fig. 5(i)]. Another built-up change area in
Part D is also extracted more completely using the proposed

method [Fig. 5(j)], compared with those from two comparative
feature combinations. Besides, the overestimation in the blue
polygons is significantly reduced in classification with the inclu-
sion of multiband temporal texture than those from the other two
feature combinations.

The comparison of detection results from different feature
combinations demonstrated that the proposed method using
the PCMV texture and iOCRF classification produced more
accurate built-up area change results with less noise [see Fig. 5(e)
and (j)]. However, the result with the incorporation of single-
band temporal texture for the 2018–2019 image pair [Fig. 5(i)]
does not show the same improvement compared with that for
the 2015–2016 image pair [Fig. 5(d)]. Thus, the inclusion of
multiband temporal texture in iOCRF classification performed
more robustly than the single-band temporal texture in different
image pairs. These results are consistent with the accuracies
listed in Table II.

The detection accuracies of different feature combinations for
bitemporal Sentinel-2 images in Area 2 are listed in Table III.
The proposed method with the inclusion of PCMV texture
performs better than three comparative feature combinations.
The OA using the proposed method increases 3.28%, 3.12%,
and 2.65% over those of three comparative feature combinations,
respectively. The PA and UA are also the highest for the proposed
method. These results of the proposed method in this study area
achieved the best performance, which is the same as that in Area
1. This indicated that the proposed method has a generalization
ability in different study areas.

For the comparative method using postclassification compar-
ison based on OCSVM classifier, the same test samples (as pre-
sented in Table I) were used for validation. To reduce the impact
of training samples on the extraction of built-up areas in different
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TABLE III
ACCURACY RESULTS OF BUILT-UP AREA CHANGE DETECTION WITH BITEMPORAL IMAGES IN AREA 2 USING FOUR DIFFERENT FEATURE COMBINATIONS

Numbers in bold represent the highest accuracy values for each group. OA: overall accuracy; PA: producer’s accuracy; UA: user’s accuracy.

TABLE IV
ACCURACY RESULTS OF BUILT-UP AREA CHANGE DETECTION WITH BITEMPORAL IMAGES USING THE OCSVM-BASED POSTCLASSIFICATION COMPARISON

OA: overall accuracy; PA: producer’s accuracy; UA: user’s accuracy.

years, training samples for each year were randomly selected in
the invariant built-up area from multitemporal images. In the
classification, ten spectral bands and NDVI of each image were
stacked into a combined dataset to classify the built-up area.
The detection accuracies of the comparative method are listed in
Table IV. For the four bitemporal image pairs in Area 1, the OAs
using the proposed method (see Table II) are 5.98%–13.11%
higher than those using this comparative method. And the OA
using the proposed method (see Table III) increases 8.85% for
the bitemporal images in Area 2. The PA and UA are also higher
than this comparative method. The proposed method based on
multitemporal image classification extracts built-up area change
directly and is not affected by the built-up area extraction of
each image. These results demonstrated the effectiveness of the
PCMV texture and iOCRF classification in the detection of urban
built-up area change.

To understand the contributions of different features to the
iOCRF classification in the proposed method, i.e., spectral fea-
tures, NDVIs, and PCMV textures of multiple scales, feature
importance of different features was calculated (see Fig. 6).
In general, all three types of features show varying degrees
of importance in urban built-up change classification. For the
PCMV textures, feature importance scores for the textures with
h = 0 are higher than those with h = 1. The textures with larger
window sizes (i.e., 7, 9, and 11) have higher importance scores
in classification than the textures with smaller window sizes
(i.e., 3 and 5). In addition, feature importance scores of spectral
features and NDVI from T2 image are higher than those from
T1 image. The RGB bands, the first vegetation red edge band,
the shortwave infrared bands and NDVI from T2 image and
the shortwave infrared bands from T1 image have high feature
importance scores in the classification.

C. Analysis of Built-Up Area Changes Over Multiple Years

To further validate the proposed method and to analyze the
urbanization, urban built-up area change detection results from

Fig. 6. Feature importance of the proposed “Spectral + NDVI + PCMV”
combined dataset in iOCRF classification.

five-year Sentinel-2 images in Area 1 using the proposed method
were combined to generate an annual urban land change re-
sult. It should be noted that most built-up area changes were
detected in a specific year. But in some pixel locations, urban
built-up area changes were extracted for multiple times, e.g.,
two, three, or four years. Since the period of study is relatively
short (i.e., five years), it is not possible to have multiple urban
changes.

To analyze these pixels detected as urban built-up area change
for multiple years, an example of multiple urban land changes
detected is shown in Fig. 7. The detection results for multiple
years were stacked and represented in different colors for anal-
ysis. By observing the multitemporal Sentinel-2 images of this
area from 2015 to 2017 and the very high spatial resolution
images collected from Google Earth, it was found that the area
had been under construction in the past two years. The image
in 2016 shows the status of construction. The buildings under
construction are easily confused with built-up area in classifica-
tion. Therefore, using multitemporal images of two successive
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Fig. 7. Built-up area change detection result of an example of multiple urban land changes, the corresponding Sentinel-2 images from 2015 to 2017, and very
high spatial resolution images acquired from Google Earth.

years may lead to misclassification and multiple extractions
before the construction of buildings is completed. In this case,
since built-up area change is assumed to occur in a certain year,
the detection result from 2015–2016 Sentinel-2 images is not
accurate. The time of urban built-up area change detected both
from 2015–2016 and 2016–2017 images needs to be calibrated
to the latest year of extraction, i.e., built-up area change from
2016 to 2017.

Therefore, to generate the annual mapping result of built-up
area changes over these years in the study area, a postprocessing
step was carried out to correct the built-up area changes extracted
in multiple years. Since these areas were mainly multiyear
changes of built-up area, changes extracted at an earlier time
might actually only be the intermediate process of becoming
built-up area. Therefore, the change time for these areas ex-
tracted in multiple years was calibrated to the latest detection
year. In addition, there are some small connected components
as noises in the detection results. It was found that most of these
small areas are smaller than ten pixels by visual inspection. Thus,
the areas less than ten pixels were considered as noises and
masked out in mapping. The mapping result over the study area
after the above postprocessing steps is shown in Fig. 8.

From Fig. 8, it is found that the built-up area changes mainly
occurred in the central districts, four ring districts, and the Binhai
New District. The central districts have relatively fewer built-up
area changes, which are evenly distributed across the region.
There are more urban land changes occurred in the four ring
districts outside the boundary of the central districts than inside
the central districts. Besides, with the development pattern of
two main urban zones, i.e., the central districts and the Binhai
New District, there are more built-up area changes detected in
the Binhai New District than the other outer suburbs, especially
in the northeastern coastal area of Binhai New District. An-
other area with significant urban land changes is a newly built
Beijing-Tianjin cooperation demonstration zone, located in the
northwest of Binhai New District. Moreover, the surrounding

regions of these two main urban zones are developing in the
east-west direction. The non-built-up areas in the ring districts
between these two zones are changing rapidly to built-up areas.
In general, about 5.2% of the total areas have been detected as
built-up area changes in the study area over these years, and
most areas are not affected by urban land expansion.

D. Discussion

In this study, a multiband temporal texture measured using
PCMV was proposed and evaluated in the detection of urban
built-up area change using multitemporal Sentinel-2 multispec-
tral images. The proposed method combines the multiband
temporal textures with bitemporal spectral features and NDVIs
in the iOCRF classification. The proposed method was compared
with three comparative feature combinations and a postclassi-
fication comparison method based on OCSVM for validation.
The experimental results demonstrated that the urban built-up
area change was extracted more accurately using the proposed
method. The proposed method achieved better performance
than the use of bitemporal spectral features and NDVIs, which
demonstrated that the addition of multiband temporal texture in
the classification improved the accuracies of detection results.
The proposed method performed better and more robustly than
the incorporation of PCV single-band temporal texture by ex-
perimenting in different image pairs. The proposed method also
outperformed the OCSVM-based postclassification comparison
method, which is affected by the built-up area extraction results
of each image.

The advantages of the proposed method can be summarized
as follows. First, unlike general textures that only reflect spatial
information of a single image, the multiband temporal tex-
ture in this article quantifies local spatio-temporal dependence
from bitemporal multispectral images. The multiband tempo-
ral texture is derived simultaneously from all available bands.
Any number of input bands from bitemporal images could
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Fig. 8. Mapping result of urban built-up area changes using the proposed method with four bitemporal Sentinel-2 image pairs from 2015 to 2019 in Area 1. The
2015 image is shown as background.

be employed to extract the PCMV texture, in particular when
the optimal spectral band to detect the changes of interest is
not known. The experiments demonstrated the PCMV texture
highlights land cover changes with different texture values and
benefits for built-up area change detection than the PCV single-
band temporal texture [27]. In addition, the multiband temporal
textures with different window sizes and lag distances exhibit
different spatio-temporal information of land cover changes at
multiple scales. The combination of these PCMV textures at
multiple scales provides complementary information. There-
fore, instead of selecting a texture at an appropriate scale with the
best performance, multiple-scale PCMV textures were used in
this study.

Second, the proposed method based on multitemporal image
classification is appropriate for including the PCMV texture
and can detect built-up area change directly. The experiments
demonstrated that the joint use of spectral features and PCMV
textures improved the built-up change detection. The postclas-
sification comparison method can only use multiple features
obtained from each image for classification and cannot use any
multiband temporal texture [55]. The classification of built-up
areas in prechange and postchange images will affect the change
detection [58].

Third, since the built-up area change is the only target
class of interest, the one-class image classification in the
proposed method, i.e., iOCRF, is easier to be implemented

than the conventional multiclass classification methods. It was
also found that the OCSVM classifier cannot be integrated
into the proposed method. The iOCRF classifier is insen-
sitive to high-dimensionality data, which is especially suit-
able for the classification of multitemporal multispectral im-
ages and the combination of multiple features [39]. More-
over, the iOCRF classifier has the ability to quantify fea-
ture importance [52]. From these experimental results, these
three types of features (spectral feature, NDVI, and multiband
temporal texture) all played an important role in the change
classification.

Although the proposed method produced very promising re-
sults, there are still some problems to be solved in the future.
The multiband temporal texture highlights all kinds of land
cover changes, but not just the target built-up area change.
Different land cover changes with similar texture values ex-
ist and are easily confused. For example, the use of images
containing buildings under construction, especially for areas
under construction in the past several years, can easily lead to
misclassification and multiple extractions. Bare soil and built-up
area with similar spectral signatures are likely to be confused
in the classification. In addition, by comparing the detection
results obtained from different image pairs, the differences in
data quality, training samples selected for classification could
also lead to different detection results. Therefore, the methods
of detecting built-up area change using multiband temporal
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texture and the postprocessing method for analyzing built-up
area changes in multiple years will be studied in the future.

Although the multiband temporal texture was evaluated in the
detection of urban built-up area change, the proposed method
will be further evaluated using more high spatial resolution
images over a longer period or in other urban areas. Moreover,
the multiband temporal texture will be also evaluated in the
situations that other land cover changes are of interest.

V. CONCLUSION

In this article, a simple and reliable method for detection
of urban built-up change using the PCMV multiband temporal
textures and iOCRF classification was proposed. The PCMV
texture quantifies local spatio-temporal dependence between
bitemporal multispectral images. The urban built-up area change
is detected by classifying the combined dataset of spectral fea-
tures, NDVIs, and multiband temporal textures obtained using
the iOCRF classifier. The proposed multitemporal image clas-
sification method based on iOCRF focuses on the target class of
built-up area change, and is suitable for including the multiband
temporal texture and insensitive to the data dimensionality. The
experimental results demonstrated that the proposed method
outperformed three comparative feature combinations and the
OCSVM based postclassification comparison method for all
the bitemporal Sentinel-2 image pairs in two study areas. The
detection results in five successive years were processed to
generate an annual urban land change result and were analyzed.
More studies are needed to further evaluate the performance of
the proposed method in other study areas and other changes
of interest.
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