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Abstract—Radio frequency interference (RFI) is a risk for mi-
crowave radiometers due to their requirement of very high sen-
sitivity. The Soil Moisture Active Passive (SMAP) mission has an
aggressive approach to RFI detection and filtering using dedicated
spaceflight hardware and ground processing software. As more
sensors push to observe at larger bandwidths in unprotected or
shared spectrum, RFI detection continues to be essential. This
article presents a deep learning approach to RFI detection using
SMAP spectrogram data as input images. The study utilizes the
benefits of transfer learning to evaluate the viability of this method
for RFI detection in microwave radiometers. The well-known pre-
trained convolutional neural networks, AlexNet, GoogleNet, and
ResNet-101 were investigated. ResNet-101 provided the highest
accuracy with respect to validation data (99%), while AlexNet
exhibited the highest agreement with SMAP detection (92%).

Index Terms—Deep learning, microwave radiometry, radio
frequency interference (RFI), transfer learning.

I. INTRODUCTION

RADIO frequency interference (RFI) detection in mi-
crowave brightness temperature data continues to be a

problem of interest and several techniques have been developed
to detect the presence of RFI in radiometer measurements, e.g.,
[1]−[10]. Soil Moisture Active Passive (SMAP) is the first
spaceflight mission to use onboard digital signal processing
dedicated to generating information to enable RFI detection and
filtering [11]. The RFI detection algorithms in the SMAP ground
processing are drawn from this previous work and include energy
detectors in both time and frequency referred to as the pulse
and cross-frequency detectors, the kurtosis method, which is
a test for normality and polarimetric approaches, which search
for anomalies in the third and fourth Stokes parameters [4], [12],
[13]. These methods work best to filter RFI that is sparse in time
and/or frequency. They improve the quality of measurements but
at a cost of increased uncertainty or noise equivalent differen-
tial temperature due to removal of contaminated pixels, which
reduces the time-bandwidth product.

Broadband radiometry enhances sensitivity by reducing in-
strument noise; thus, as upcoming sensors desire observations
at much larger bandwidths than that of the SMAP radiometer
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in unprotected or shared spectrum, RFI detection and filtering
remains a necessity, e.g., [14], [15]. Indeed onboard RFI de-
tection is being considered for future missions, for example,
the second generation of polar orbiting meteorological satellites
(MetOp-SG) as well as the Copernicus Imaging Microwave
Radiometer mission [16], [17].

Increasing bandwidths lead to an increase in the number
of spectral channels. Future instrument concepts include hy-
perspectral imagers and sounders that offer benefits such as
increased precision and accuracy of products as well as ex-
tended spectral coverage [18], [19]. Thus, with the potential
deluge of data from new sensors, conventional RFI detection
and filtering may not be the only option. A new class of RFI
detection algorithms includes intelligent approaches based on
machine learning techniques. For example, the authors of [20]
have used deep learning techniques to detect RFI in 2-D time
ordered radio astronomy data and the authors of [21] have
used deep learning to detect RFI in global navigation satellite
system signals. Here, deep learning is used to demonstrate RFI
detection on spectrograms produced by the earth orbiting SMAP
microwave radiometer. The work in this article was done as a
proof of concept to determine the feasibility of deep learning
for RFI detection using real-world data. With the advent of
graphics processing unit (GPU) technology for space use and
the growing number of channels in digital receivers, it may be
advantageous to run a deep learning algorithm on a GPU rather
than conventional algorithms on a microprocessor.

II. METHODOLOGY

Deep learning [22] is a type of machine learning where
the model learns to perform classification tasks directly from
images, text, or sound [23], [24]. In this work, RFI detection
is investigated using supervised learning based on SMAP spec-
trograms. The model is trained using labeled datasets as inputs
and the training process is done iteratively until the expected
output is generated. Convolutional neural networks (CNNs)
have been successfully exploited in image classification and
most commonly used in this type of application [25], [26].
Transfer learning [27] is the process where a pretrained network
is fine-tuned; the learned features are transferred to a new task
using a smaller number of training images and is usually much
faster. The CNN could be trained using simulated RFI; however,
SMAP measurements were chosen for this proof of concept
experiment. Although millions of spectrogram images can be
produced from SMAP data, transfer learning is utilized for this
application to produce results in a timely manner for study.
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Fig. 1. Algorithm workflow.

To use deep learning and transfer learning for RFI detection,
the problem is defined as an image classification one where
spectrograms are the input images to be classified as having RFI
or not having RFI. In this article, the benefits of transfer learning
are leveraged and the pretrained CNNs AlexNet [25], GoogleNet
[28], and ResNet-101 [29] were used for feature learning and
classification. These networks were previously trained on more
than a million images from the ImageNet [30] database to
classify images into 1000 categories including nature, animals,
and everyday objects.

The transfer learning approach applies knowledge of one type
of problem to a different but related problem. In order to use
an existing CNN such as AlexNet to detect objects not trained
in the original network, it can be retrained through transfer
learning. The last few layers of the network were replaced and
then retrained with images of spectrograms derived from SMAP
data. In the proposed method here (see Fig. 1), the pretrained
network was loaded using Matlab, labeled input images were
loaded to a datastore that stores the file paths to read the image
data into memory as needed and the image size converted to that
required by the existing network. The last layers of the CNN that
learn features specific to the input dataset were replaced and the
network was then trained using 80% of the input spectrogram
images. The network was validated using 20% of the input data
and the results were deployed to classify new images.

A. Data Acquisition for Input Training Images

Each SMAP footprint in the Level 1A data contains an 8
(1.2-ms samples) × 16 (1.5-MHz channels) spectrogram of
antenna counts or average power [31]. The passband shape is
equalized by applying independent gain and offset calibration
coefficients to each of the 16 frequency channels [32]. The
spectrograms were converted to images, with normalized color
scales, and used as inputs to the deep learning algorithm imple-
mented in Matlab.

Supervised training requires a-priori labeling of the images;
in this case, “no RFI” and “RFI.” RFI cases were taken from all
parts of the globe including low level (5−10 K), moderate level
(10−100 K), and high level (>100 K) RFI as well as different
types of RFI such as pulsed, CW, and wideband. Ground truth is
difficult to establish when using real-world data; thus, conditions
were set where it is reasonably certain that RFI is present in
the footprint. The SMAP ground processing algorithm, which
detects and filters RFI, attempts to estimate the RFI strength. RFI
level is determined from the difference of nonfiltered and filtered

data. However, when RFI is very strong (typically > 400 K),
100% of the spectrogram is blanked resulting in a reported
null value for the filtered footprint. In these cases, RFI level
cannot be directly determined. Also, if more than 50% of the
spectrogram is blanked by the algorithms, it is reasonably certain
that RFI exists in that footprint regardless of the difference of
the nonfiltered and filtered data. Therefore, spectrograms were
labeled as “RFI” on the condition that either the RFI level for
the footprint was over 5 K [−20 dB interference to noise ratio
(INR)] as estimated by the SMAP ground processing algorithms
or that the SMAP ground processing algorithms blanked more
than 50% of the spectrogram.

To be confident that the RFI-free cases were indeed not
contaminated, RFI quiet parts of the globe were used for these
samples. Footprints over Australia, Antarctica, the Arctic, and
the Southern part of the Indian Ocean were used with the
condition that the RFI level was less than 2 K and the number
of pixels flagged was less than 50% of the spectrogram. The
training input data consisted of 2507 images labeled “RFI” and
2507 images labeled “no RFI” with 80% used for training and
20% for validation. Orbits different to those used for obtaining
training samples were used to test the trained networks.

B. Training the Network

CNNs consist of convolution and pooling layers that extract
features from the image inputs followed by a classification layer
that uses the features to classify the input image. In transfer
learning, most of the convolutional part is unchanged and the
new classifier replaces the classification layer. The last learnable
layer was replaced with a fully connected (FC) layer with the
number of outputs equal to the number of classes in the input
dataset. In this case, the number of classes is two since the
objective is to classify images as “RFI” or “no RFI.” The first
layer of the network is the image input layer that specifies the
image size. The training images were resized and additional
augmentation prevented the network from overfitting. Random
translation and reflections of the spectrograms were performed
which represent shifting RFI in time and frequency. Once train-
ing was completed, accuracy was determined by classifying the
validation images with the trained network.

In this study, three well-known CNN architectures, AlexNet,
GoogleNet, and ResNet-101, have been analyzed for classifi-
cation precision and training time. These pretrained networks,
which have already learned to extract features from images of
nature, were used as a starting point to learn the new task of RFI
detection using SMAP data as inputs. Transfer learning was
first done using AlexNet since this network is one of the faster
networks. Once the settings for training were established, the
other networks, which are known to be more accurate but with
longer prediction times, were used to check for better accuracy
and to see if RFI detection results improved.

AlexNet contains 25 distinct layers that includes five convo-
lutional layers and three FC layers in which a rectified linear unit
(ReLu) activation function is applied after every convolutional
and FC layer. Layer 1 is the input layer to which the images are
fed. Layers 2-22 are the convolution, ReLu, and Max Pooling
layers where feature extraction occurs. The last three layers



6400 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 2. (a)−(c) are examples of RFI-free images over Australia, where (a) is
over land and (b) and (c) are coastline footprints. The bottom images, (d)−(f),
are examples of RFI contaminated footprints over Japan, the United Kingdom,
and Spain, respectively.

include the FC layer that maps the extracted features to each of
the two output classes in this experiment (RFI; no RFI), followed
by the softmax layer where the probability is assigned to the
input image for each output class and lastly the classification
layer returns the output class of the input image. The first two
FC layers have 4096 neurons and the third has 1000. GoogleNet
and ResNet-101 are 22 layers and 101 layers deep, respectively.
Both contain an FC layer of 1000 neurons.

The input image size for AlexNet is 227 × 227 × 3 and
224 × 224 × 3 for the other two CNNs used. During the transfer
learning process, only the last three layers were modified to suit
the RFI classification problem.

III. EXPERIMENTS

The general hypothesis is that the object-recognition capa-
bilities of the CNN will detect RFI features in the spectrogram
amidst the random variations of natural thermal emission, much
like detecting a specific object in a busy image. The RFI-free
images over uniform scenes are essentially random fields with
normally distributed values. Spectrograms with RFI tend to have
features concentrated in time or frequency and in some cases
have broad time-frequency features that can mimic geophysical
features such as coastlines. Nonuniform scenes, e.g., coastlines,
impose a systematic variable background on the spectrogram
over time, which, as it turns out, can be mistaken for RFI.
Therefore, two groups of experiments with different training
datasets were run. The first group included RFI-free coastlines in
the training set. The second group excluded RFI-free coastlines
in the training set and concentrated on using RFI-free data from
uniform scenes. Fig. 2 shows some examples of RFI-free (a−c)
and RFI-contaminated (d−f) footprints. Fig. 2(a) shows a natu-
ral, uniform scene and (b) and (c) are examples of nonuniform
coastal crossings. Fig. 2(d) shows RFI continuous in time and
limited in frequency; Fig. 2(e) shows an RFI signal chirped in
frequency and (f) shows RFI with less distinct time-frequency
definition.

Including coastlines in the RFI-free training set [e.g., Fig. 2(b)
and (c)] can result in missed detections of RFI such as Fig. 2(f)
because it is similar to (c). On the other hand, training the CNN

TABLE I
RESULTS SHOWING THE ACCURACY FOR EACH NETWORK AS WELL AS THE

TRAINING TIMES

Note: Each network was trained twice: dataset 1 contained coastlines in the RFI-free
images while dataset 2 did not.

TABLE II
RESULTS SHOWING THE CONFUSION MATRIX FOR EACH NETWORK FOR THE

VALIDATION DATASET

Note: The true class indicates that the true classification and the predicted class is that
of the trained network. Dataset 1 contained coastlines in the RFI-free images, while
dataset 2 did not.

using data with RFI such as that shown in Fig. 2(f) can produce
false alarms along coastlines. To complete the experiment, the
two trained networks were then tested with data taken from
orbits over Europe and the Middle East to test RFI detection
performance.

IV. RESULTS

A. Accuracy of the Trained CNNs

In this section, the performance of the trained CNNs to iden-
tify RFI is presented. Table I shows the results of a comparative
analysis with respect to training time and the accuracy using
validation data. Each network was trained with 80% of the
labeled training dataset and the remaining 20% was used to test
for accuracy. The results show that AlexNet had the least training
time of the three and ResNet-101 took the longest. Each network
was trained twice, using datasets with and without coastlines
in the RFI-free images. The training times were slightly less
using the second dataset and accuracies were slightly better
for GoogleNet and ResNet-101. All networks in both training
cases achieved over 96% accuracy. Table II shows the confusion
matrix for each trained network. The lower left and upper right
of the off-diagonal represent the probability of false alarm and
probability of missed detection respectively. In order to test these
networks for RFI detection, an orbit over Europe and another
over the Middle East were used. These orbits were different to
the orbits used for the training data extraction.

B. Test Orbits

The orbits over Europe and the Middle East were chosen as
test cases for the trained networks based on the types of RFI
seen in these locations of the world. The pass over Europe
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Fig. 3. Spectrograms from the orbit over Europe showing typical RFI in this
pass (a), (b), and (c). The RFI is either sparse in time or frequency. Spectrograms
from the orbit over the Middle East, (e), (f) and (g) indicate wideband RFI.

consisted mostly of pulsed RFI, which is sparse in time and
frequency, while the RFI over the Middle East was mostly
wideband and more persistent in time and frequency. Fig. 3
shows the spectrograms of sample footprints from these orbits.
The example spectrograms over Europe show RFI that is narrow-
band and pulsed, wideband pulsed, and narrowband continuous.
The spectrograms over the Middle East contain wideband RFI
concentrated over a large portion of the footprint with one RFI
example [Fig. 3(g)] that looks very similar to a coastline feature.
The feature in Fig. 3(g) was identified as RFI-contaminated
since multiple detectors in the SMAP algorithms flagged several
pixels and the footprint was anomalously high in brightness
temperature. This highlights the problem that the deep learn-
ing detector faces when identifying RFI-contaminated images
versus RFI-free geophysical features.

Parts of both orbits with RFI concentration were tested us-
ing the trained networks and the RFI detection results were
compared to SMAP RFI detection. Since the SMAP ground
processing contains numerous detectors with a combined false
alarm rate of ∼6% [13], the same conditions for creating the
RFI contaminated footprints for training data were used as the
conditions for positive SMAP RFI detection. Thus, if a footprint
had an RFI level greater than 5 K or the SMAP algorithms
blanked more than 50% of the spectrogram, then that footprint
was positively identified as RFI contaminated and compared to
the binary results from the trained networks.

C. RFI Detection Results

For the Europe orbit, 19 405 footprints were tested and 4088
footprints fit the SMAP detection criteria. For the orbit over the
Middle East, 98 467 footprints were tested and 3113 footprints
were detected by the SMAP detection. Table III shows how
well the trained networks detected RFI over the two test orbits
compared to SMAP detection. All the networks had similar
detection agreement rates for the Europe orbit. This indicates
that the deep learning algorithm has high performance for
detecting pulsed and narrowband RFI. The networks showed
lower performance for detecting RFI over the Middle East where
wideband signatures are more prevalent. However, the detection
agreement increased when coastlines were excluded from the

TABLE III
RESULTS SHOWING THE DETECTION AGREEMENT WITH SMAP DETECTION

FOR EACH NETWORK

RFI-free training dataset. This increase was more prominent for
the test orbit over the Middle East where AlexNet showed the
highest detection agreement with SMAP detection.

D. Europe Orbit

Fig. 4(a) shows the horizontal polarization brightness tem-
peratures for part of the orbit over Europe that was tested.
RFI shows up as hot spots throughout the image. Any value
greater than 330 K can automatically be considered as RFI
since this is the geophysical limit for brightness temperature
measurements. The results of the deep learning algorithm (with
coastlines in the RFI-free training dataset) are shown in Fig. 4(b).
The RFI detected footprints were omitted and appear gray in
the image. The results compared to SMAP detection are shown
in Fig. 4(c). The red pixels indicate deep learning and SMAP
detection agreement of RFI contaminated footprints with gray
showing agreement of RFI-free footprints. Blue shows deep
learning detection but no SMAP detection, and yellow shows
SMAP detected footprints not detected by deep learning. Of
the 19 405 footprints tested in this orbit, 4088 fit the SMAP
detection criteria stated in Section II-A. The deep learning
algorithm has a 97.58% (3989 footprints) agreement with these
SMAP detected footprints, depicted as red in Fig. 4(c). The deep
learning algorithm detected an additional 3418 footprints as RFI
contaminated which are blue in Fig. 4(c).

Not all the additional footprints were false detections. Manual
inspection revealed low level pulsed sources less than 5 K. Some
were false alarms. Since SMAP has an FAR of∼6%, this implies
that about eight spectrogram pixels are flagged on average in
the absence of RFI by the SMAP detection algorithms. Deep
learning detected 256 footprints (1.3% of total tested footprints)
that had 10 or fewer pixels detected by the SMAP algorithms.
These footprints can be considered false alarms. When AlexNet
(no coastlines) was used for testing, agreement with SMAP
detection increased to 98.85%, but the number of footprints
detected as possible false alarms also increased to 1053 or 5.4%
of the tested footprints.

E. Middle East Orbit

Fig. 5 shows the results of a similar analysis over the Middle
East. Using the training network AlexNet, the deep learning
algorithm has 88.31% (2749 footprints) agreement with SMAP
detection (3113 footprints). The agreement increased to 92.23%
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Fig. 4. (a) Horizontal polarization brightness temperature for the test footprints
over Europe. The color scale was limited to values from 180 to 300 K. Footprints
with brightness temperature equal to or lower than 180 K appear dark blue
and those that are 300 K and above are dark red. Footprints detected by the
deep learning algorithm using AlexNet (b) were removed from the images. A
comparison of SMAP detection and deep learning are shown in (c).

(2871 footprints) when AlexNet (no coast) was used. The num-
ber of false alarm detections also increased from 551 (0.6%)
to 4470 (4.54%) footprints (see Table IV). When Fig. 5(c) is
examined, there appears to be footprints detected by the deep
learning algorithm concentrated along the coasts that do not
match SMAP detection. Random mismatches occur throughout
the orbit as well. There are 8119 additional footprints (shown

Fig. 5. (a) Horizontal polarization brightness temperature for the test footprints
over the Middle East. (b) Footprints detected by the deep learning algorithm
using AlexNet (no coast) were removed from the images. (c) A comparison of
SMAP detection and deep learning.

TABLE IV
RESULTS SHOWING THE FOOTPRINTS CONSIDERED FALSE ALARMS FOR

RETRAINED ALEXNET WITH DIFFERENT INPUT TRAINING SETS
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Fig. 6. Power spectral density of the normalized baseband signals measured
with the K-band recording system deployed at Platform Harvest.

in blue) detected by deep learning that do not match the SMAP
detection criteria imposed. Footprints that appear as yellow in
Fig. 5(c) are deep learning missed detections. These test cases
indicate that the deep learning algorithm is directly affected by
the input training data. The deep learning algorithm provided
very good detection for RFI that is localized in time or frequency
since RFI data has very distinct features when compared to
RFI-free data.

This study produced a lower detection rate for broadband RFI
as indicated by the results of the Middle East test orbit. This
orbit contained RFI, which was mostly broadband in nature and
even contained RFI with characteristics similar to geophysical
features. This allowed for higher missed detections or higher
false alarms depending on whether coastlines were included in
the input training data.

V. APPLICATION TO A NEW INSTRUMENT

In this section, the SMAP-trained networks were used to
detect RFI in data produced by a second, unrelated, instrument.
Over the period of August 2−6, 2017, a reflectometry experi-
ment took place at Platform Harvest located about 10 km off the
coast of central California [33]. Direct and reflected signals from
DirecTV, a US-based direct broadcast satellite (DBS) service
provider, were measured with a K-band system [34]. The K-band
system included an RF front end with two commercial reflector
antennas and low-noise block-down converters and a digital back
end designed to collect 200 MHz of bandwidth from 18.6 to
18.8 GHz. Of particular interest are ocean reflections that can
affect sensors in this frequency range. The global precipitation
measurement (GPM) microwave imager (GMI) has seen RFI
caused by ocean reflections from DBS signals at 18.7 GHz which
is a shared allocated band [35].

Fig. 6 shows the normalized power spectral density of the
direct and reflected DBS signals measured by the K-band system
with INRs estimated at 10 and−8 dB, respectively [34]. The INR
is relatively high; thus, the deep learning detector is expected to
work well. Fig. 7 shows a time slice of the normalized variance

Fig. 7. Normalized variance of the baseband signals after spectral subbanding
measured with the K-band recording system deployed at Platform Harvest.

Fig. 8. Example spectrograms of the reflected DBS signal (a) and RFI-free
data (b) tested by SMAP-trained deep learning networks.

of the direct and reflected signals after spectral subbanding. The
reflected signal retains a similar shape to the direct signal, but
the power level is much lower. The time frequency power for
the reflected signal was converted to spectrogram images as was
done with SMAP data in this study.

The K-band digital back end provided data products including
power for 16 spectral subbands for both direct and reflected
signals with a time resolution of approximated 328 µs. Spectro-
grams were created using 11 (328-µs samples) × 16 (12.5-MHz
channels) for an elapsed time of 3.6 ms and total bandwidth of
200 MHz, which approximately matches the total integration
time and bandwidth of the GMI 18.7-GHz channel [36].

Approximately, 70 s of data were used to create 19 194 images
for test. Data without RFI was obtained by placing absorber in
front of the antenna of the K-band system. Spectrograms for the
no-RFI case were created similarly with 10 s of absorber data
providing 2636 images.

A spectrogram with the reflected DBS signal is shown in
Fig. 8(a), which shows distinct features of the RFI occurring
continuously and concentrated in frequency. Fig. 8(b) is an
example of spectrogram data without RFI taken by the K-band
system. The SMAP-trained networks in Table III were used
to test these RFI contaminated and RFI-free images. All the
networks classified 100% of the images with reflected DBS
signals as RFI contaminated. This is not surprising since the DBS
signal is easily identifiable in the images. Half of the networks
classified 100% of the noncontaminated images as RFI-free.
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TABLE V
RESULTS SHOWING THE CLASSIFICATION OF RFI-FREE IMAGES FROM THE

K-BAND SYSTEM

The other networks falsely classified seven (0.27%) or less of
the RFI-free images as RFI contaminated. See Table V for the
results of this classification.

This classification experiment demonstrates that networks can
be trained with data from one sensor or several data sources
and used to detect RFI in other data sources. The deep learning
algorithm learned features of different types of RFI seen in
SMAP data and was able to correctly detect these features from
the K-band system dataset.

VI. CONCLUSION

In this article, a transfer learning approach for RFI detection
using SMAP detection was presented. In this approach, the last
few layers of pretrained networks were replaced and retrained
with a smaller dataset. These results were then used to classify
images from two test orbits of SMAP data. Three well-known
pretrained CNNs, AlexNet, GoogleNet, and ResNet-101, were
investigated for accuracy and RFI detection. All networks pro-
vided very similar accuracy results for the validation datasets;
however, AlexNet provided the best results when used for RFI
detection on other test orbits.

The algorithm had high performance for detecting RFI local-
ized in time or frequency and lower performance for broadband
RFI. RFI-free data is usually broadband and vary smoothly over
long time-scales, while RFI can appear as high-intensity pixels
localized in time/frequency data. RFI can also have broadband
features and vary over time-scales longer than a footprint. The
results show that classification is highly dependent on the type of
input data. Training data that used geophysical features such as
coastlines produced more missed detections of broadband RFI,
while training data without them sometimes mistook coastlines
for RFI.

The trained networks were also used to detect DBS signals
measured by a K-band system demonstrating that the trained
networks can identify RFI in data from other systems. The work
in this article presents the initial step to applying deep learning
for detection of RFI in radiometer data. To provide better per-
formance for detection of all types of RFI, the training dataset
requires more input training data, representative of all types of
RFI and geophysical features. To provide better detection espe-
cially for RFI with broadband features, the pretrained network
can be retrained with a data subset with improved ground truth
such as simulated data. Future work includes the development of
a comprehensive set of simulated and real-world data of RFI and
RFI-free spectrograms with varying RFI resolution and INR to

train a network from scratch. Performance factors to be evaluated
include detection capability and energy efficiency. The use of
CNNs to detect RFI is an attractive alternative to conventional
techniques given the large amount of radiometer data that will
exist in the coming decades.
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