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Abstract—Traditional radar space-time adaptive processing
(STAP) cannot efficiently suppress heterogeneous clutter because of
a small number of independent and identically distributed training
snapshots. In the article, we propose a new STAP approach ex-
ploiting structure-aware two-level block sparsity (STBS) of radar
echoes, namely STBS-STAP. It enhances the performance on clutter
suppression and target detection with limited training snapshots.
The clutter angle-Doppler profile always appears in a continuous
diagonal clustering structure and the radar echoes at the adjacent
range cells commonly share the same sparse pattern. STBS-STAP
employs STBS, i.e., both the diagonal clustering structure and
the common sparsity property, to acquire a precise clutter co-
variance matrix estimation. Thus, the new STBS-STAP achieves
better performance on clutter suppression compared with existing
STAP methods with a small number of training samples. Besides,
STBS-STAP achieves superior target detection performance due
to the precise estimation of the statistical properties of the clutter.
The superiority of STBS-STAP is verified by experiments on both
simulated data and measured Mountain-Top data.

Index Terms—Block sparsity, radar clutter suppression, space-
time adaptive processing (STAP), structure-aware two-level block
sparsity-based STAP (STBS-STAP).

I. INTRODUCTION

A S ONE of the main tasks of airborne radars, target detec-
tion needs high signal-to-clutter-plus-noise ratio (SCNR)

[1], [2]. However, the radar echoes of targets are usually much
weaker than those of clutter contributions. It may significantly
deteriorate the target detection performance if the clutter is not
suppressed [3], [4].
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Space-time adaptive processing (STAP) is an efficient tech-
nique to suppress clutter in the airborne radar and has been
investigated more than a few decades [6], [7]. STAP can provide
a significant SCNR increase in strong clutter environments, and
it is beneficial to the subsequent target detection [8]–[14]. In
other words, the better the clutter suppression performance of
STAP is, the more benefits the subsequent detector gets.

For STAP techniques, it is essential to obtain the clutter
covariance matrix (CCM) estimation by utilizing target-free
training snapshots, which need to be independent and identically
distributed (IID) [15]. The clutter suppression performance is
decided by the precision of the estimated CCM, which depends
on the quantity of IID training snapshots in the conventional
STAP methods.

Assume that there areN array elements in the radar system,M
pulses are received in a coherent processing interval (CPI). It has
been proven that at least 2MN IID training samples are needed
for the sample matrix inversion (SMI) method to guarantee its
SCNR loss is not larger than 3dB in comparison with the optimal
performance [15]. In heterogeneous clutter environments, the
quantity of IID training snapshots may be limited.

Several partially-adaptive STAP approaches have been pro-
posed to tackle the problem of a small number of training
samples. The diagonal loaded SMI (LSMI) STAP method can
achieve the near-optimal performance with only 2P training
samples [16], [17], where P �MN represents the quantity
of interfering sources. Besides, the required quantity of training
snapshots is reduced to twice of clutter rank while maintaining
good performance in rank-reduction methods, e.g., the multi-
stage Wiener filter [18]. However, the rank-reduction approaches
are sensitive to the rank parameter. An inappropriate rank selec-
tion will cause the performance loss on clutter suppression.

Sparse property of the radar echoes has been employed in
STAP techniques [19]–[24] to enhance the performance on clut-
ter suppression with limited training samples. In [19], two differ-
ent sparsity-based approaches are proposed to estimate CCM by
leveraging the low-rank and sparse-structure properties. In [20],
a sparsity-based STAP method using orthogonal frequency divi-
sion multiplexing waveform significantly reduces the quantity of
training snapshots without sacrificing the performance on clutter
suppression. In [21], Wang et al. developed a STAP method
to obtain the clutter subspace with fewer training samples by
utilizing the sparsity of the signal. In [23], based on subspace
tracking, a fast sparsity-based STAP method is developed, it
improves the robustness in clutter subspace estimation due to
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the utilization of the low-rank information of CCM. In [24], to
reduce the effect of gain/phase errors, the authors reformulate
the STAP problem by a joint optimization issue and develop a
robust approach to eliminate the clutter.

The block sparsity is employed for existing sparsity-based
approaches to improve the estimation accuracy of sparse signals.
According to existing literatures, the two categories of applica-
tions of the block sparsity are summarized as follows.

1) Common Sparsity: it is called the model of multiple
measurement vectors (MMVs) as well [25]–[30]. The
positions of dominant elements of the multiple signals are
almost the same in MMV models. In [25], a STAP method
based on sparse Bayesian learning using multiple training
samples is proposed and achieves satisfactory clutter sup-
pression performance with fast implementation. In [29]
and [30], Sun et al.derived two sparsity-based methods to
obtain the clutter profile in the angle-Doppler domain (i.e.,
the clutter angle-Doppler profile). The common sparsity
is used in the methods to eliminate the pseudo-peaks
appearing at different range cells.

2) Clustering Property: It is also referred to as group sparsity
[31]–[34]. The clustering property can be employed to
effectively reconstruct the group sparse signals, in which
the nonzero entries have a clustered structure. The typical
algorithms based on group sparsity include the group
Lasso (GLASSO) [31], the block orthogonal matching
pursuit [32], and the sparse recovery with Markov random
field (MRF) [34].

However, existing sparsity-based STAP approaches only uti-
lize one of the two kinds of the block-sparsity properties.
Note that in [35]–[37], several methods based on hierarchical
Bayesian framework are proposed to reduce the recovery error
of the sparse signals by employing two kinds of block sparsity.
In [38], the two kinds of block-sparsity properties are fused to
enhance the imaging quality of polarimetric through-wall radar.
This implies that the two kinds of the block sparsity contain
different types of information of sparse signals. They can be
utilized together to further reduce the estimation error of the
sparse vectors. However, the clustering property employed in
[35]–[38] does not contain any spatial structure information
about the sparse signals.

It is well known that in the angle-Doppler domain (of the
STAP application), a clutter ridge is observed according to the
coupling of the spatial dimension and the Doppler dimension.
Therefore, the clutter is presented as the special diagonal clus-
tering structure when the array is in the side-looking configura-
tion, leading to the block sparsity of the clutter angle-Doppler
profile. Meanwhile, the radar echoes at the adjacent range cells
commonly share the same sparse pattern. In other words, the
common sparsity pattern still exists at the adjacent range cells
in STAP applications.

In the article, a new STAP algorithm by exploiting structure-
aware two-level block sparsity (STBS), referred to as STBS-
STAP, is proposed. In the new STBS-STAP, an MRF [39] is
employed to describe the dependence between a support index
and its neighbors. Specifically, the weighted eight-neighbor
strategy based on the MRF is designed to capture the diagonal
clustering structure in the angle-Doppler domain. Then, we

Fig. 1. Observed scene of airborne STAP radar.

modify the smooth Gaussian function to capture the contribution
of the common sparsity. In general, STBS-STAP combines the
special diagonal clustering structure and the common sparsity
to acquires more accurate clutter angle-Doppler profile and
subsequent CCM.

As a result of obtaining an accurate CCM estimation, the new
STBS-STAP outperforms existing STAP methods in terms of the
performance on clutter suppression and target detection based
on limited training snapshots.

It should be noted that the basic concept of two-level block
sparsity in STAP applications is proposed in our previous
conference paper [5]. On top of [5], the model of two-level
block sparsity is significantly improved to enforce the diagonal
clustering structure of the clutter profile. New derivation of
STBS-STAP is given and its extensive analyses are conducted.
The superiority of the new STBS-STAP over existing STAP
methods is demonstrated with extensive experiments based on
both simulated data and measured Mountain-Top data.

We also note that, the sparsity-based STAP has been recently
extended to various application scenarios, such as: STAP in the
extremely heterogeneous environment where only one training
sample is available [40], [41], STAP for different radar system
[42]–[45], and STAP methods to solve the problem of off-grid
[46]–[48]. The optimization problems in [40]–[48] are different
from that in this article since here we focus on the performance
improvement of clutter suppression and target detection for
the ordinary airborne radar via the STBS when a few training
samples are available. Therefore, the methods in these papers
are not applied to evaluate the performance of the proposed
STBS-STAP.

The rest of this article is organized as follows. In
Section II, the signal model is reviewed. In Section III, the
STBS for STAP applications is formulated and STBS-STAP is
proposed. The performance and running time of STBS-STAP are
assessed by experiments based on simulated data and measured
data in Section IV. Conclusion is given in Section V.

II. SIGNAL MODEL

The observed scene of an airborne radar system is illustrated in
Fig. 1 [49]. The aircraft flies in thex-direction.H and v represent
the height and the velocity of this aircraft, respectively. We use
d to denote the inter-channel spacing. The triangle Sk denotes
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the kth clutter scatterer. ψ stands for the crab angle as shown in
Fig. 1. In this article, ψ = 0 is assumed, i.e., the side-looking
configuration is considered.

The clutter component is modeled as the superposition of Nc

clutter scatterers for each range cell. For the kth clutter scatterer,
the azimuth angle is denoted as ϕk

c , θkc is the elevation angle.
The normalized Doppler frequency fkd,c and spatial frequency
fks,c corresponding to the kth clutter scatterer are described as
[27]

fkd,c =
2v

λfr
cosϕk

c cosθ
k
c

fks,c =
d

λ
cosϕk

c cosθ
k
c (1)

for k = 1, 2, . . . , Nc. In (1), λ and fr denote the wavelength and
the pulse repetition frequency (PRF), separately. The superscript
of k is the index of the clutter scatterer, the subscript c, d,
and s denote the clutter, the Doppler dimension and the spatial
dimension, respectively.

Suppose that the radar system consists of N array elements,
M pulses are received in a CPI. The space-time steering vector
corresponding to the k-th clutter scatterer is defined by

v
(
fkd,c, f

k
s,c

)
= vd

(
fkd,c

)⊗ vs

(
fks,c

)
(2)

where ⊗ denotes the operator of Kronecker product,
vd(f

k
d,c) = [1, exp(j2πfkd,c), . . . , exp(j2π(M − 1)fkd,c)]

T

is the M × 1 temporal steering vector, vs(f
k
s,c) =

[1, exp(j2πfks,c), . . . , exp(j2π(N − 1)fks,c)]
T stands for

the N × 1 spatial steering vector. Then for the lth range cell,
the received clutter plus noise is described [24]

x(l) = x(l)
c + x(l)

n =

Nc∑
k=1

αk
cv

(
fkd,c, f

k
s,c

)
+ x(l)

n (3)

where αk
c is the complex reflectivity corresponding to the kth

clutter scatterer, x(l)
n denotes the Gaussian noise. The subscript

n represents the noise. The superscript of l represents the index
of the range cell.

By discretizing the angle-Doppler domain into Ns ×Nd

grids, whereNs andNd denote the discretized size of the spatial
dimension and Doppler dimension, respectively. (3) is rewritten
as

X = ΨΘ+B (4)

where X = [x(1),x(2), . . . ,x(L)] denotes the NM × L train-
ing snapshot matrix, L denotes the quantity of training snap-
shots, Θ = [θ(1),θ(2), . . . ,θ(L)] ∈ CNdNs×L represents the
clutter profile matrix, B = [b(1), b(2), . . . , b(L)] ∈ CNdNs×L

refers to the complex Gaussian noise matrix where the mean
is zero. Note that we useK to denote the clutter sparsity of θ(l).
Ψ ∈ CNM×NdNs with NM < NsNd represents the overcom-
plete dictionary. Specifically, Ψ consists of all these space-time
steering vectors in the angle-Doppler domain, expressed as

Ψ =
[
v
(
f1
d
, f1

s

)
, . . . ,v

(
f1
d
, fNs

s

)
, . . .

v
(
fNd

d
, f1

s

)
, . . . v

(
fNd

d
, fNs

s

)]
. (5)

Fig. 2. Intuitive representation of the STBS in the range-angle-Doppler do-
main. The colorized lattice represents the clutter area, while the white lattice
means the nonclutter area. In the angle-Doppler domain, the clutter presents a
special diagonal clustering structure. Across the adjacent range cells, the clutter
profiles share the common sparsity pattern.

When the clutter profile estimation {θ̂(l)|l = 1, 2, . . . , L} are
acquired, the estimated CCM is obtained from [19], [27], [50]

R̂ =

NdNs∑
i=1

∣∣∣θ̂i

∣∣∣2v (
f id, f

i
s

)
v
(
f id, f

i
s

)H
+ σ2I (6)

where (·)H and |·| denote the operators of conjugate transpose

and modulus, respectively. |θ̂i|2 = 1
L

∑L
l=1 |θ̂

(l)

i |
2

, where θ̂
(l)

i

is the ith entry of the clutter profile estimation corresponding
to the training snapshot. I is the identity matrix, σ2 is a small
loading parameter which represents the noise level. Note that
the accuracy of R̂ is decided by the accuracy of the clutter
profile estimation θ̂i. In the light of the minimum noise variance
principle, the STAP filter is acquired from the problem

min
w

wHR̂w s.t. wHvt (fd,t, fs,t) = 1 (7)

where fd,t denotes the normalized Doppler frequency, fs,t is
normalized spatial frequency of the target, respectively. The
subscript t represents the target. vt(fd,t, fs,t) denotes the target
steering vector. The STAP weight vector is calculated [46], [51]

ŵ =
R̂

−1
vt

(
fd,t, fs,t

)

vt

(
fd,t, fs,t

)H

R̂
−1
vt

(
fd,t, fs,t

) . (8)

III. PROPOSED STAP ALGORITHM BASED ON STBS

In this section, the STBS in the STAP application is first
formulated. Then, the corresponding STAP algorithm, namely
STBS-STAP, is proposed.

A. Formulation of the STBS in STAP Applications

An intuitive representation of STBS for STAP applications is
presented in Fig. 2 in the range-angle-Doppler domain. In the
angle-Doppler domain, there exists the clutter ridge because of
the movement of the aircraft. Thus, it is an inherent property that
the clutter profile presents a special diagonal clustering structure
when the array is in a side-looking configuration. The diagonal
clustering structure is considered as a kind of the block sparsity
[52]. Besides, at the adjacent range cells, the clutter profiles
share the common sparsity pattern, namely another kind of the
block sparsity.
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Fig. 3. Illustration of the weight of interaction. The green shaded lattice
denotes the support index under test and the blue shaded lattices are its 8
neighbors.

In the following, we formulate the STBS of clutter profiles in
detail.

1) In the angle-Doppler domain, the clutter appears in a
special diagonal clustered sparse fashion.: We denote the set
of indices of the nonzero elements of θ(l) as the support set
Λ(l), namely,Λ(l) contains positions corresponding to the clutter
component in θ(l). We use Λ̄(l), namely the complementary set
of Λ(l) to denote support set corresponding to nonclutter area
in θ(l). An indicator vector τ ∈ ZNdNs×1 is defined to signify
whether the clutter area contains the support index i, and τ is
composed of 1 and -1, i.e., τΛ(l) = 1 and τ Λ̄(l) = −1.

The MRF is an efficient tool to measure the interaction be-
tween the support index and its neighbors [39], [53] and has been
widely used in ISAR imaging [53] and target detection [54].
Here, the MRF is employed to measure the diagonal clustering
property of the clutter angle-Doppler profile. Specifically, the
interaction between the support index and its neighbors captured
by the MRF is described by [39]

p (τi| τNi
) ∝ exp

⎛
⎝∑

j∈Ni

γi,jτiτj

⎞
⎠ (9)

where Ni denotes the set of eight-neighbor for the support
index i, {γi,j , ∀j ∈ Ni} is the weight of interaction between
the support index i and its neighbor j.

In STAP applications, different from the clustering pattern
employed in through-wall radar imaging applications such as in
[38], the clustering property of the clutter angle-Doppler profile
is identified as a special pattern, i.e., the diagonal clustering
structure. As such, the weighted eight-neighbor strategy based
on the MRF for {γi,j , ∀j ∈ Ni} is designed to enhance the diag-
onal clustering property. Note that the weighted eight-neighbor
strategy is one of the variants of the second-order neighborhood
system in [53]. The illustration of {γi,j , ∀j ∈ Ni} is shown in
Fig. 3.

For a support index i, the values of {γi,j , ∀j ∈ Ni} are as-
signed by solving the following formulas:
⎧⎨
⎩

∑
j∈Ni

γi,j = 1

γi,j ≥ 0, ∀j ∈ Ni

γi,3 = γi,6 > γi,1 = γi,2=γi,4 = γi,5=γi,7 = γi,8

. (10)

The first equation limits the overall weight from the neighbors
of the support index i, the second formula defines that the weights

are nonnegative, and the relationship between weights are il-
lustrated by the last formula. Specifically, we empirically set
γi,6 = 2γi,1. It means that in the eight neighbors of the support
index i, the weights of diagonal support indices are twice as
large as those of nondiagonal support indices. Here, we introduce
weight ratio to denote the ratios of weights of diagonal neighbors
to those of nondiagonal neighbors. Therefore, the weight ratio

is 2 here. Then, we can have γi,j = { 0.2, j = 3, 6
0.1, j = 1, 2, 4, 5, 7, 8

.

Apparently, the weighted eight-neighbor strategy utilizes more
information than the first-order neighborhood system in [55],
[56].

2) At adjacent range cells, the clutter angle-Doppler profiles
possess a similar sparse pattern, i.e., the common sparsity [57].
As shown in Fig. 2, the common sparsity at the adjacent range
cells illustrates that the support set of nonzero elements of θ(l) is
supposed to be identical for l = 1, 2, . . . , L, while the dominant
entries of θ(l) may change for different l = 1, 2, . . . , L. In the
light of the common sparsity across multiple clutter profiles,
we use Λcomm to denote the common support set. It means
Λcomm = Λ(l) for l = 1, 2, . . . , L, and accordingly τΛcomm

= 1
and τΛ̄comm

= −1. The subscript comm denotes the common
sparsity.

Here, we focus on the selection of the support indices of
the clutter component, namely the support set Λ which satis-
fies τΛ = 1. When Λ is identified, the accurate estimation of
the clutter angle-Doppler profile θ̂ is accordingly acquired by
performing the least squares approach. It also means that the
support set Λ, which satisfies both diagonal clustering property
and common sparsity, is vital to the CCM estimation and the
subsequent clutter suppression.

Same as in [38], we employ the probabilistic graph
model developed in [58], [59] to combine the two kinds of
block sparsity. Then, we describe the relationship between
{θ(1),θ(2), . . . ,θ(L)}, τi and τNi

as a joint distribution

p
(
θ
(1)
i , . . . , θ

(L)
i , τi, τNi

)
∝ p (τi| τNi

)

L∏
l=1

p
(
θ
(l)
i

∣∣∣ τi
)
.

(11)
By maximizing the above joint distribution, the estimation of

τi is obtained by:= {
τ̂i = 1, εi > β
τ̂i = −1, εi ≤ β

(12)

where

εi = 2
∑
j∈Ni

γi,jτj

+
L∑

l=1

log
[
p
(
θ
(l)
i

∣∣∣ τi = 1
)/

p
(
θ
(l)
i

∣∣∣ τi = −1
)]
. (13)

Instead of setting β= 0 as in [38], in this article, the threshold
β is determined by an adaptive approach to meet the requirement
of the clutter sparsity of τ and will be shown in Section III-B.

Next, we indicate the relationship between the clutter profile
θ(l) and indicator vector τ and measure the contribution of the
common sparsity. Note that θ(l)i presents a nonzero coefficient
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when τi = 1 and tends to be a zero value when τi = −1. To
reduce the parameters of the approximation function in [38], we
introduce and modify a smooth Gaussian function to approxi-
mate the contribution of the common sparsity, i.e.,

L∑
l=1

log
[
p
(
θ
(l)
i

∣∣∣ τi = 1
)/

p
(
θ
(l)
i

∣∣∣ τi = −1
)]
. (14)

The modified smooth Gaussian function is defined by

f
(
θ
(l)
i

)
= ρ

⎡
⎣1− 2 exp

⎛
⎝−

θ
(l)
i

(
θ
(l)
i

)∗

2δ2

⎞
⎠
⎤
⎦ (15)

where (·)∗denote the operators of conjugate. It is approximately
given by

f
(
θ
(l)
i

)
=

⎧⎨
⎩

ρ,
∣∣∣θ(l)i

∣∣∣ 
 δ

−ρ,
∣∣∣θ(l)i

∣∣∣ � δ
(16)

where ρ is the scale parameter to balance the diagonal clus-
tering pattern and common sparsity in STBS. It is empirically
set to 0.2/L according to the value of γi,j in (10). δ is the
only parameter to determine the quality of approximation. It
is determined by an adaptive approach that is defined by (20) in
the next subsection. Then, (13) is rewritten as

εi = εi,clus + εi,comm (17)

where

εi,clus = 2
∑
j∈Ni

γi,jτj (18)

εi,comm =

L∑
l=1

f
(
θ
(l)
i

)
. (19)

In (17), εi,clus captures the contribution of the eight-neighbor
support set, i.e., the special diagonal clustering structure. The
subscript clus denotes the clustering property. εi,comm de-
notes the contribution of the common sparsity. Meanwhile,
the weighted eight-neighbor strategy, i.e., the employment of
{γi,j , ∀j ∈ Ni} enhances the diagonal clustering property of
the clutter angle-Doppler profile. In other words, both the two
kinds of block-sparsity properties are considered in εi and they
are fused to determine τi = 1 or τi = −1.

B. New STBS Based STAP Algorithm

In this section, we propose a new STAP approach (STBS-
STAP) by employing the STBS. The new STBS-STAP enhances
the performance on clutter suppression based on a small number
of training snapshots. It combines the common sparsity and
the special diagonal clustering structure to acquire the accurate
CCM estimation.

In Algorithm 1, we elaborate the steps of STBS-STAP and
describe it in Algorithm 1.

The dictionary matrix Ψ in (4) is coherent in STAP ap-
plications [51] and the SSCoSaMP(L1) approach is robust to
the coherence between columns of the dictionary matrix [60].

Algorithm 1: STBS-STAP.

Input: {x(l)|l = 1, 2, . . . , L},Ψ,K.
Initialization: θ(l) = 0NdNs×1, for l = 1, 2, . . . , L.
1: Λ(l) = SSCoSaMP(L1)(x(l),K) , for
l = 1, 2, . . . , L.

2: Λvote = vote({Λ(l)|l = 1, 2, . . . , L},K) , where
vote({Λ(l)|l = 1, 2, . . . , L}) obtains the collection of
K elements that possess the highest scores in the light
of their appearance in {Λ(l)|l = 1, 2, . . . , L}.

3: set τΛvote
= 1, τ Λ̄vote

= −1 and calculate
�

θ
(l)

Λvote
= (ΨΛvote

)†x(l) for l = 1, 2, . . . , L.

4: compute εi in (17) by using {
�

θ
(1)

,
�

θ
(2)

, . . . ,
�

θ
(L)

}
and τNi

for i ∈ {1, 2, . . . , NdNs}, if εi > β, τ̂i = 1 ,
else τ̂i = −1.

5: Λnew ={the set of positions which correspond to ‘1’
in τ̂}.

6: θ̂
(l)

Λnew
= (ΨΛnew

)†x(l) , then the smallest NdNs −K

coefficients of θ̂
(l,new)

are forced to be zeros, for
l = 1, 2, . . . , L.

Output: θ̂
(l)

Λnew
, for l = 1, 2, . . . , L.

Therefore, SSCoSaMP(L1) is utilized to acquire the tempo-
rary support sets {Λ(l)|l = 1, 2, . . . , L} corresponding to the
clutter area in step 1. In step 2, to combine the information
of multiple range cells and eliminate the effect of the mea-
surement noise, the voting support set Λvote is obtained by
the operation of voting. Λvote obtains the collection of K el-
ements with the highest scores according to their appearance
in {Λ(l)|l = 1, 2, . . . , L} [5], [61]. Subsequently, the indicator
vector τ is set to τΛvote

= 1 and τ Λ̄vote
= −1 in step 3. By

performing the least squares approach, we obtain the tempo-

rary estimation
�

θ
(l)

Λvote
= (ΨΛvote

)†x(l) , where (·)† denotes the
operation of pseudoinverse.

Step 4 is the key part of the new algorithm. Based on

{
�

θ
(1)

,
�

θ
(2)

, . . . ,
�

θ
(L)

} and τNi
, we calculate εi in (17) by

combining the diagonal clustering property and common spar-
sity. Then we determine the indicator vector in (12) for i ∈
{1, 2, . . . , NdNs}. The employment of the common sparsity
reduces the influence of the measurement noise. The utiliza-
tion of the diagonal clustering property decreases the required
number of training samples. The support indices that satisfy both
clustering property and common sparsity are selected. Note that
the parameter δ and β in (16) and (12) are adaptively determined
by

δ = thre_ind

(
�

θ
(l)

,K

)

β = thre_ind (ε,K) (20)

where ε = [ε1, ε2, . . . , εNdNs
] and thre_ind(z,K) obtains the

Kth largest magnitude of the coefficients of z
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We select the support index i that satisfies τ i = 1 to form the
new support set Λnew in step 5. Therefore, Λnew is acquired by
combining STBS. Then, we obtain the clutter profile estimation
by performing the least squares approach with the new support

set Λnew in step 6. The smallest NdNs −K entries of θ̂
(l)

are
forced to be zero to guarantee the sparsity of solutions.

In the following, we discuss the differences between STBS-
STAP and existing methods.

1) STBS-STAP combines both the special diagonal clustering
property and the common sparsity, while existing STAP meth-
ods based on SRMMV [30] and GLASSO [31] only utilize
one of the two properties. Note that the two properties contain
different types of information of sparse signals. Specifically,
the employment of the common sparsity reduces the impact of
the measurement noise. The diagonal clustering property is
utilized to reduce the required training snapshots. Accord-
ingly, STBS further enhances the performance on clutter
suppression based on limited training snapshots in STAP
applications.

2) Different from the two-level block sparsity employed for
through-wall radar imaging in [38] and ISAR imaging [36],
STBS-STAP enforces the special diagonal clustering struc-
ture of the clutter profile present in STAP applications. The
weighted eight-neighbor strategy is employed to capture the
continuous diagonal structure of the clutter ridge. As such,
STBS-STAP can obtain a more precise support set corre-
sponding to the clutter area, thereby improving the estimation
accuracy of CCM. In addition, the contribution of common
sparsity is captured by the modified smooth Gaussian function
in STBS-STAP instead of step functions in [38]. It reduces the
number of parameters that need to be tuned.

3) Unlike BOMP [32] and GLASSO [31] that need a vector of
block partition in advance, STBS-STAP does not need the
prior information of the block partition.

IV. EXPERIMENTAL RESULTS

In the following, STBS-STAP is compared with state-of-the-
art sparsity-based approach, such as MFCSBL [25], SRMMV
[30], and GLASSO [31], and the classical LSMI method [16]
in terms of the performance on clutter suppression and target
detection by using the simulated data and measured Mountain-
Top data.

A. Simulation Results

In this section, the improvement factor (IF) performances of
different approaches are evaluated

IF =

∣∣∣ŵHvt

(
fd,t, fs,t

)∣∣∣2
/

ŵHRŵ

vt

(
fd,t, fs,t

)H

vt

(
fd,t, fs,t

)/
tr (R)

(21)

where R represents the true clutter-plus-noise covariance ma-
trix, and tr (.) denotes the trace operator. The IF value is defined
as the SCNR improvement of radar echoes by using the STAP
filter.

Assume a side-looking uniform linear array consists of 14
antenna elements where 16 pulses are received in a CPI. Other
system parameters are listed as follows: PRF is 3000 Hz, wave-
length is 0.2 m, the inter-channel spacing is half wavelength, the
height and the velocity of the platform is 10 km and 150 m/s. The
clutter-to-noise ratio (CNR) is 40 dB. In the simulation part, the
clutter fluctuations are considered and modeled by the Gaussian
model [62]. In this Gaussian model, the clutter bandwidth is
set to 400 Hz. We discretize the angle-Doppler domain into
Ns = 48 spatial bins and Nd = 48 Doppler bins. Besides, the
added noise follows the complex Gaussian distribution.

For the proposed STBS-STAP, we set the clutter sparsity to
K = 40. For GLASSO, the size of the block partition is 2. The
loading factor in (6) is set to the noise power.

The true Capon spectrum of the clutter corresponding to
the cell under test (CUT) is illustrated in Fig. 4(a). The es-
timated clutter profiles of STBS-STAP, SRMMV, GLASSO,
and MFCSBL are depicted in Fig. 4(b)–(e) with 20 training
samples. We normalize the maximum intensity value of all the
clutter profiles to 0 dB, then the image intensity of the clutter
profiles is plotted on a [−20, 0] dB scale. It is shown in Fig. 4(b)
that the clutter angle-Doppler profile estimated by STBS-STAP
approximates the true Capon spectrum better. The reason is that
the new STBS-STAP acquires precise support set of the clutter
area by combining the common sparse pattern and the clustering
property. In addition, the underlying diagonal clustering struc-
ture of the clutter profile is further enhanced by the designed
weighted eight-neighbor strategy in STBS-STAP. With regard
to the clutter profiles estimated by SRMMV and MFCSBL in
Fig. 4(c) and (e), several superfluous nonzero coefficients exist.
Besides, more support indices of the clutter ridge are missing in
Fig. 4(e) compared with the true Capon spectrum. In Fig. 4(d),
there are massive spurious entries in the clutter profile obtained
by GLASSO.

In Fig. 5, the IF value in terms of the Doppler frequency is
illustrated to evaluate different algorithms. The IF values are
acquired by fixing the normalized spatial frequency to 0.26.
We consider two cases in Fig. 5, i.e., L = 8 and L = 20. The
optimal IF curve, referred to as OPT, is obtained when the
true CCM is known. As shown in Fig. 5, STBS-STAP achieves
superior IF performance. The IF value of STBS-STAP is closer
to the optimal case than other methods even with eight training
samples. It means that the radar echoes can obtain higher SCNR
improvement after passing through the STAP filter formed by the
new STBS-STAP. The reason is that the new STBS-STAP ob-
tains more accurate estimation of the clutter profile by exploiting
the property of the diagonal clustering structure and the common
sparsity at the adjacent range cells, namely the STBS. MFCSBL
yields poorer IF performance than STBS-STAP. Compared with
STBS-STAP, the IF values of SRMMV and GLASSO are lower.
The reason is that SRMMV and MFCSBL only take common
sparsity into consideration and GLASSO only utilizes clustering
property. The two properties contain different types of informa-
tion of sparse signals. Therefore, the performances of MFCSBL,
SRMMV, and GLASSO degrade due to the underutilization of
block sparse information. In Fig. 5(b), the IF values of different
methods are improved with 20 training snapshots. STBS-STAP
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Fig. 4. True Capon spectrum and estimated clutter profile in the range CUT. (a) True Capon spectrum. (b) Estimated clutter profile using STBS-STAP.
(c) Estimated clutter profile using SRMMV. (d) Estimated clutter profile using GLASSO (e) Estimated clutter profile using MFCSBL. The clutter profile estimated
by STBS-STAP is closest to the true Capon spectrum. In Fig. 4(c) and (d), several superfluous nonzero coefficients in the clutter profiles exist. In Fig. 4(e), more
support indices of the clutter ridge are missing.

Fig. 5. IF curve comparison with (a) 8 training samples (b) 20 training samples. The IF performance of STBS-STAP is better than MFCSBL, SRMMV, GLASSO
and LSMI.

also achieves superior IF performance. Besides, we find the IF
performance of LSMI is unsatisfactory because of the severely
lack of training samples.

In addition, it is illustrated in Fig. 5 that STBS-STAP acquires
a narrower notch than MFCSBL, SRMMV, and GLASSO in the
mainlobe clutter region. Intuitively, it achieves higher SCNR im-
provement after passing the STAP filter formed by STBS-STAP
for targets that are close to the clutter ridge in the angle-Doppler
domain. It means STBS-STAP provides the better detection
performance even the targets are close to the clutter ridge. The
reason is that STBS-STAP obtains more accurate support set

estimation by employing STBS, leading to a more accurate CCM
estimation. Therefore, the filter formed by STBS-STAP leads
to better performance on the clutter suppression and the target
detection.

Next, several simulations are conducted to illustrate the ro-
bustness of the new SBTS-STAP to related parameters. The IF
values of STBS-STAP in terms of the weight ratio, the clutter
sparsity and different CNR values are shown in Fig. 6 by using
eight training samples. The parameters in these simulations are
same as before. From Fig. 6(a), we find that the IF performance
of STBS-STAP with weight ratios ranging from 1.5 to 2.5 is
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Fig. 6. IF curve in terms of (a) weight ratios in diagonal neighbors to those in nondiagonal neighbors (b) clutter sparsity (c) clutter-to-noise ratio. From (a), we
find that the IF performance of STBS-STAP with weight ratios ranging from 1.5 to 2.5 is better than that when the weight ratio is ranging from 3 to 4. It is shown
in (b) that the new STBS-STAP outperforms SRMMV and GLASSO when the clutter sparsity is larger than the true sparsity, i.e., around 30. From (c), we find that
STBS-STAP achieves superior clutter suppression performance under different CNR scenarios.

TABLE I
RUNNING TIME OF DIFFERENT METHODS (S)

better than that when the weight ratio is ranging from 3 to 4.
The reason is that larger weight ratios means that we can obtain
less information from nondiagonal neighbors. The information
loss results in the performance degradation when weight ratio
is too large. Therefore, we empirically set the ratio to be 2 as
described in Section III-A. In Fig. 6(b), the IF values versus the
clutter sparsity of different methods are demonstrated. Note that
MFCSBL is independent on the parameter of the clutter sparsity
and accordingly, the IF performance of MFCSBL is not included.
Fig. 6(b) shows that STBS-STAP achieves better IF performance
than SRMMV and GLASSO when the clutter sparsity is larger
than the true sparsity, i.e., around 30. Besides, GLASSO exhibits
robust performance to the clutter sparsity. In Fig. 6(c), the IF
performances versus CNR of different methods are shown in
the scenario. From Fig. 6(c), we find that the IF performance
of STBS-STAP is close to the optimal case when CNR changes
from 10 to 50 dB. SRMMV achieves similar IF performance
to STBS-STAP. The IF values of MFCSBL and GLASSO are
lower than STBS-STAP when CNR is 30–50 dB. In other words,
STBS-STAP achieves superior clutter suppression performance
when CNR varies. The reason is that the new STBS-STAP
obtains more accurate estimation of the CCM by exploiting the
property of the diagonal clustering structure and the common
sparsity across the adjacent range cells, namely the STBS. In
general, Fig. 6 proves again the superiority of STBS-STAP.

In the following, the running time of calculating CCM of
different methods is given in Table I. Two operation modes are
given in Table I, i.e., parallel computing and serial computing.
The results are acquired by averaging from 50 Monte Carlo
simulations in a computer environment with MATLAB 2019b,
Intel Xeon platinum with 28 cores, 512GB RAM. From Table I,

we find that the running time of STBS-STAP is slightly higher
than that of SRMMV and MFCSBL with eight training samples
in the mode of serial computing. The computational burden
of STBS-STAP mainly results from SSCoSaMP(L1), which is
utilized to acquire the initial support set corresponding to clutter
area in step 1. The reason why we use SSCoSaMP(L1) here is
that it exhibits superior performance when the sparse model with
an overcomplete dictionary is observed [60]. The enforcement
of STBS actually costs little computational resources. Though
the running time is slightly higher, STBS-STAP achieves the
better estimation of the clutter profile and better IF performance
than MFCSBL, SRMMV, and GLASSO as shown in Figs. 4
and 5. Besides, the computational complexity of STBS-STAP
increases linearly with the scale of the problem. Note that we
can use the parallel computing toolbox of MATLAB to estimate
the clutter profiles corresponding to each training sample in
STBS-STAP, SRMMV, and GLASSO. The employment of the
parallel computing reduces the running time at the cost of more
computing resource. MFCSBL is designed to estimate the clutter
profiles from multiple training samples collectively [25] and
its computational cost cannot be further reduced by parallel
computing. From Table I, we find that the running time of
STBS-STAP is less than that of MFCSBL in the mode of parallel
computing.

Moreover, MFCSBL yields much poorer detection perfor-
mance than STBS-STAP with measured Mountain-Top data. In
particular, the detection performance of STBS-STAP is 6.66dB
higher than that of MFCSBL based on measured data when 12
training samples are available (more results can be found in the
next subsection). GLASSO costs less time but achieves unsat-
isfactory IF performance. Though LSMI costs minimal time, it
yields the worst IF performance. In general, it is acceptable to
have a slightly higher computational burden according to the
benefits obtained by STBS-STAP.

B. Experimental Results on Measured Data

In the following, the measured Mountain-Top data is utilized
to compare the new STBS-STAP with existing state-of-the-art
methods, such as, SRMMV, GLASSO, and MFCSBL. The
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Fig. 7. Performance of (a) structure-aware two-level block sparsity-based space-time adaptive processing, (b) SRMMV, (c) group Lasso, (d) loaded sample matrix
inversion, and (e) MFCSBL methods based on two training samples. The numbers in (a)–(c) indicate the output power difference between the detected target range
cell with the largest output power and range cell with the second largest output power. The larger this difference is, the better the detection performance is. It is
depicted in (a)–(e) that STBS-STAP achieves the better detection performance than SRMMV and GLASSO. In (d) and (e), the target is not detected because the
target range cell does not have the largest output power.

Mountain-Top data is collected from a stationary multiple el-
ement array which is configured to emulate an airborne radar
[63]. The radar system is composed of 14 elements and 16
pulses in one CPI. The target with the normalized Doppler
frequency of 0.25 has been detected in the 147th range cell
through preprocessing [64]. For STBS-STAP, we set the clutter
sparsity to K = 50. The size of the block partition in GLASSO
is 4. Other parameters are the same as the simulation part. The
training snapshots are selected around the CUT, excluding four
guard cells. For MFCSBL, the training sample selection strategy
in [65] is employed according to [25].

Figs. 7 and 8 show the range detection performances of
different approaches. The maximum value of each curve is
normalized to 0 dB. The output power difference between the
range cell corresponding to the detected target (which has the
largest output power) and the range cell with the second largest
output power is labeled in each subfigure. For the convenience
of description, we simply refer to the above difference as the
output power difference. Note that the performance on target
detection is better if the output power difference is larger.

First, the range detection performances using two training
samples are depicted in Fig. 7. We find the output power dif-
ference of STBS-STAP is larger than that of other methods
even though the training samples are severely limited. This
indicates that STBS-STAP achieves better performance on target
detection and clutter suppression with a small number of training
samples. Besides, GLASSO achieves the worse performance
but still better than SRMMV. The target is not detected by
using MFCSBL and LSMI due to severely lack of training
snapshots.

TABLE II
DIFFERENCES BETWEEN OUTPUT POWER OF TARGET RANGE CELL AND NEXT

HIGHEST POWER PEAK BASED ON MOUNTAIN-TOP DATA

Next, we use 22 training samples to evaluate STBS-STAP and
other methods in terms of the range detection performance as
illustrated in Fig. 8. STBS-STAP also achieves the better target
detection performance. The reason is that STBS-STAP employs
multi-level information of the clutter, i.e., STBS. Accordingly,
STBS-STAP acquires the accurate CCM estimation with limited
training snapshots. On the contrary, the STAP methods based
on SRMMV, GLASSO, and MFCSBL suffer from deteriorative
performance due to the underutilization of block sparse informa-
tion of clutter profiles, especially when the training snapshots
are not enough. Specifically, we find that MFCSBL achieves
poorer detection performance than the new STBS-STAP, e.g.,
the detection performance of MFCSBL is 6.19 dB lower than
that of STBS-STAP with 22 training samples.

To compare these approaches distinctly, the output power
difference results of three cases, i.e.,L = 2,L = 12 andL = 22,
are given in Table II. We can observe that as the quantity of
training snapshots increase, the output power difference of each
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Fig. 8. Performance of of (a) structure-aware two-level block sparsity-based space-time adaptive processing, (b) SRMMV, (c) group Lasso, (d) loaded sample
matrix inversion, and (e) MFCSBL methods based on 22 training samples. The numbers in (a)–(e) indicate the output power difference between the detected target
range cell with the largest output power and range cell with the second largest output power. The larger this difference is, the better the detection performance is.
It is depicted that STBS-STAP achieves the better detection performance than other methods.

method is improved except for SRMMV when L = 2. STBS-
STAP achieves better detection performance than SRMMV and
GLASSO in different situations. LSMI and MFCSBL do not
detect the target using two training snapshots. All these results
clearly illustrate that STBS-STAP achieves much superior per-
formance on target detection and clutter suppression.

V. CONCLUSION

The performance on clutter suppression of conventional STAP
degrades due to the inaccurate CCM estimation based on a small
number of training snapshots.

In STAP applications, the clutter ridge presents a diagonal
clustering structure in the angle-Doppler domain, it is a kind of
special block sparse information of the clutter. Meanwhile, the
clutter signals at the adjacent range cells commonly possess the
same sparse pattern. It means the common sparsity of the clutter
profiles is another kind of block sparsity.

In the article, we proposed a new STAP algorithm by utilizing
STBS of the clutter component, namely STBS-STAP. In the
new STBS-STAP, the underlying special diagonal clustering
structure is captured by a MRF with the weighted eight-neighbor
strategy. The smooth Gaussian function is modified to capture
the contribution of the common sparsity. Then the diagonal
clustering structure and the common sparsity are fused in STBS-
STAP to acquire precise CCM estimation. As such, the combina-
tion of the special diagonal clustering structure and the common
sparse pattern improves the performance on clutter suppression
and target detection with a small number of training snapshots.
Specifically, the employment of the special diagonal clustering

structure reduces the required number of training snapshots. The
utilization of the common sparsity eliminates the impact of the
measurement noise.

Experimental results based on both the simulated data and
measured Mountain-Top data show that the new STBS-STAP
outperforms state-of-the-art sparsity-based STAP methods, such
as SRMMV, GLASSO, and MFCSBL in terms of the perfor-
mance on clutter suppression and target detection with the slight
increase of computational complexity. Meanwhile, STBS-STAP
achieves superior detection performance for targets that are close
to the clutter ridge in the angle-Doppler domain. It signifies that
STBS-STAP is promising in heterogeneous environments with
a small number of training samples.
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