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Multilabel Remote Sensing Image Annotation With
Multiscale Attention and Label Correlation

Rui Huang

Abstract—Deep-learning-based multilabel image annotation is
receiving increasing attention in the field of remote sensing due to
the great success of deep networks in single-label remote sensing
image classification. Compared with those low-level features, the
features extracted by the convolutional neural network (CNN) are
more informative and can alleviate the problem of semantic gap.
However, the CNN model tends to ignore the smaller objects when
objects of different sizes exist in an image. In addition, how to ef-
ficiently leverage the correlation among multiple labels to enhance
annotation performance remains an open issue. In this article, we
propose an end-to-end deep learning framework for multilabel
remote sensing image annotation. The framework is composed
of a multiscale feature fusion module, a channel-spatial attention
learning module, and a label correlation extraction module. The
multiscale features from different layers of a CNN model are first
fused and refined by using a channel-spatial attention mechanism.
Then, the label correlation information is extracted from a label
co-occurrence matrix and embedded into the multiscale atten-
tive features to increase the discriminative ability of the resulting
image features. The experiments on two benchmark datasets
demonstrate the superiority of the proposed method in comparison
with the state-of-the-art methods.

Index Terms—Attention mechanism, convolutional neural
network (CNN), label correlation, multilabel image annotation,
multiscale features, remote sensing image.

1. INTRODUCTION

ITH the rapid progress of sensor technology, a large
number of remote sensing (RS) images have represented

amajor resource for land-cover monitoring, urban planning, dis-
aster forecasting, and many more. RS image annotation, which
is to associate one or several semantic labels with an image, can
provide a comprehensive understanding of the image content.
Compared with the pixelwise classification of RS images, image
annotation just tells us whether the interesting objects exist in the
image and thus helps to quickly acquire the images of interest.
In recent years, the image scene classification technique [1] has
been an active topic in the context of RS analysis. In particular,
as an RS image usually involves multiple object classes and
can be simultaneously assigned to different land-cover class
labels, multilabel RS image annotation has received increasing
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Fig. 1. Example images of the scene label and object labels. (a) Scene label:
bridge. object labels: cars, buildings, pavement, trees, water. (b) Scene label:
bridge. object labels: buildings, cars, dock, grass, pavement, ship, tree, water.

attention and has been applied to many applications, such as at-
mospheric conditions classifications [2], [3] and land cover/land
use investigation [4].

Fig. 1 illustrates the difference between single- and multi-
label image annotation. Scene labels from single-label image
annotation usually describe the whole picture with only one
relatively general label, such as river, forest, and bridge. How-
ever, multilabel image annotation uses more specific object-level
labels to represent the image, The object-level labels provide
important cues for understanding a scene more deeply. For
example, pavement has a large probability to appear when cars
and buildings exist. In contrast, we cannot infer such clues from
the scene label.

Although in multilabel RS image annotation, much effort has
been spent to develop better scene understanding, there are many
challenging problems. Two main issues are semantic feature
representation and label correlation exploitation [5].

High-resolution RS images contain complex spatial and
geometric information of objects with varying scale properties.
The most used low-level features (color, texture, shape, etc.)
cannot represent high-level semantics, and there is a well-known
semantic gap between low-level features and high-level semantic
concepts. Recently, since convolutional neural networks (CNN’s)
are able to extract informative features through adaptive image
learning, deep learning models have become generic image
descriptors. However, the representational power of CNNs
needs to be improved especially in situations where objects of
different sizes exist. In those cases, smaller objects tend to be
misidentified.

In multilabel learning, label correlations are helpful to in-
fer multiple object labels and, thus, improve the classification
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performance. Some works have been done to exploit label cor-
relations, but how to efficiently make use of label correlations is
still an open issue. In CNN-based image annotation systems, la-
bel correlations are often modeled by recurrent neural networks
(RNNs). However, the chain propagation fashion of the RNN
affects the efficiency of label prediction. Moreover, the RNN
only considers the correlation between adjacent labels, while
the correlation between nonadjacent labels is ignored [6].

To address the above problems, we propose an end-to-end
deep learning framework for multilabel RS image annotation in
this article. The framework consists of three modules involving
multiscale feature fusion, channel-spatial attention learning,
and label correlation extraction modules. To identify objects
of various sizes, multiscale features from different layers of a
CNN are fused, and the resulting feature maps are adaptively
refined through the channel-spatial attention module. In the label
correlation extraction module, a label co-occurrence matrix is
constructed and concatenated with the refined image features
from the channel-spatial attention module. Then, the joint em-
bedding features are generated by several full connection (FC)
layers. The main contributions of our work can be summarized
as follows.

1) We propose an end-to-end deep learning framework for
multilabel RS image annotation. The framework that con-
sists of a multiscale feature fusion module, a channel-
spatial attention learning module, and a label correlation
extraction module has better performance than some state-
of-the-art methods.

2) The framework uses a cascade fusion strategy to integrate
the multiscale feature maps and a channel-spatial attention
mechanism to refine the fused feature. The multiscale
attentive feature has better representation ability for clas-
sification and can help to detect objects of different sizes.

3) The label correlation information is extracted from a la-
bel co-occurrence matrix and integrated with the refined
image features through a two-step fusion, which can help
improve generalization performance.

II. RELATED WORKS

In multilabel annotation, there are two key steps, namely,
feature extraction and multilabel classification. In the feature ex-
traction stage, researchers have developed different handcrafted
features to describe object properties of color, texture, shape,
and so on [7]-[11]. These global or local features are usually
integrated by bag of visual words, which is an intermediate
feature representation and can help to bridge the semantic
gap [12]-[14]. However, the discriminative capability of low-
level features is limited. In the classification stage, class labels
are predicted for each instance based on the extracted features.
Classical algorithms of ML-KNN [15] and Rank-SVM [16] do
not perform well in the presence of high-dimensional image
features. Recently, graph theory and sparse representation have
been introduced to multilabel RS image annotation and retrieval
and have shown promising performance [17]-[19].

With the important advances in deep learning theory, deep-
learning-based algorithms have provided an attractive solution
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to the problem of multilabel image annotation. In these deep
learning frameworks, CNN models are usually applied as image
descriptors, and classification is done by using different net-
works. Wang et al. [20] proposed a CNN-RNN framework for
multilabel image classification where the RNN model learns a
joint image-label embedding from the CNN features for label
prediction. Differently, Zeggada er al. [21] fed these features
into a radial basis function neural network (RBFNN) with a
multilabeling layer. In [22] and [23], autoencoder neural net-
works instead of CNNs acted as feature extractors, and canonical
correlation analysis and a multilabel conditional random field
were adopted for classification. In addition, some works intro-
duce an attention mechanism into the CNN-RNN framework
to improve network performance. Hua ef al. [24] added a class
attention learning layer to explore features with respect to each
category. Sumbul and Demir [25] proposed a novel multiatten-
tion mechanism to learn scores for each local descriptor. In [26],
a self-attention process was used to learn semantic dependencies
and spatial relevance of features simultaneously. In the field of
RS, Stivaktakis et al. [27] adopted a dynamic data augmentation
to improve the performance of a CNN framework when a limited
number of training samples are available. In [28], a two-branch
neural network, which consists of an image branch and a label
branch, was proposed to deal with RS image classification.
In [29], dual-level semantic concepts were applied for multi-
label RS image annotation, and an attention mechanism was
introduced for salient object detection. Besides, semisupervised
learning [30] and zero-shot learning [31] are adopted for solving
the problem of high cost of data labeling. The influence of loss
function [32], [33] on multilabel classification is also worth
studying. In [32], label occurrence is calculated and introduced
into the loss function to deal with the imbalance between positive
and negative training samples. In [33], the binary cross-entropy
function is improved by introducing scalable neighbor discrim-
inative loss to embed a graph structure into the network.

Label correlation is an important cue for multilabel classi-
fication, but only a few works have considered exploiting the
correlations in the CNN-based image annotation frameworks.
In the CNN-RNN framework presented in [20], the memory
mechanism of the RNN was used to predict labels in an ordered
prediction path. To model label correlations, label co-occurrence
matrices were used in [33]-[35]. Ji et al. [34] calculated a
parameter based on the co-occurrence matrix and introduced
it into the loss function. Zhang et al. [35] fed the label co-
occurrence matrix into two convolutional layers and two fully
connected layers to learn label correlation. With the emergence
of graph convolution network, a label graph structure is explored
in [36]-[39].

III. METHODOLOGY

As illustrated in Fig. 2, the overall network architecture of
our proposed approach is composed of three components: a
multiscale feature fusion module, a channel-spatial attention
learning module, and a label correlation extraction module. We
will describe the three modules in detail.



HUANG et al.: MULTILABEL REMOTE SENSING IMAGE ANNOTATION WITH MULTISCALE ATTENTION AND LABEL CORRELATION

Multi-scale feature fusion module

6953

© : Concatenate

® : Dot multiplication

Prediction labels

Q
g
<
=
=]
o
53
ak
7
w

§ 300[q AUOD)

| Label co-occurrence

Fig. 2.
module, and a label correlation extraction module.

A. Multiscale Feature Fusion

There are different-sized objects in RS images. Furthermore,
the size of the same object class may change owing to the distinct
spatial resolution of images and their inherent appearance. The
top-level features of CNNs with rich semantic information and
larger receptive fields are useful to identify larger objects. But
the feature extraction mechanism tends to ignore the informa-
tion of small-sized objects. Since the features of the first few
layers have rich spatial information and smaller receptive fields,
which help to find smaller objects, the combination of outputs
of different layers is a natural solution to recognize objects
of varying size [40]-[42]. The multilevel features present an
effective image representation with different scale information.

In the proposed method, we choose VGG16 to extract image
features. The feature maps of Conv block 3, Conv block 4, and
Conv block 5 of VGG16 can act as three-level image descrip-
tors. First, the low-level features are convolved by a standard
convolution layer and concatenated with the mid-level features.
Then, the obtained features are convolved and concatenated with
the high-level features. Through the cascade strategy of fusing
multiscale features, the geometric and semantic properties of
objects are kept simultaneously. Supposing that the input image
is denoted as X, the three-level features are formulated as
follows:

FLS = VGGconVS (X)
FL4 - VGGconv4 (X)

FL5 = VGGconVS (X) (1)

These features at three scales will be concatenated in channel
dimension to obtain the multiscale feature Fys. The process can
be summarized as follows:

Fus = [FLs; g ([FLa; 9 (F13)])] (2)

where ¢(-) denotes a composite function of three consecutive
operations including a 2 x 2 convolution with a stride of 2,
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Framework of our method for multilabel RS image annotation. It consists of a multiscale feature fusion module, a channel-spatial attention learning

batch normalization (BN), and a rectified linear unit (ReLU).
The number of filters of the convolution layer is 64 and 128 for
Fi3 and F14, respectively. In our case, the sizes of Fi3, F14,
F15,and Fypg are 32 x 32 x 256, 16 x 16 x 512, 8 x 8 x 512,
and 8 x 8 x 640, respectively.

B. Channel-Spatial Attention Learning

To exploit both spatial and channelwise attention, we adopt
an attention learning mechanism named convolutional block
attention module (CBAM) [43]. The CBAM is a simple and
efficient attention module and has shown superior performances
on some benchmark image classification datasets. It consists
of a channel attention module and a spatial attention module.
The channel attention module learns to find “what” to focus
on and the spatial attention module concentrates on discov-
ering “where” is attractive. First, the channel attention map
is learned from the input feature map by using max-pooling
and average-pooling with a shared multilayer perceptron (MLP)
network. The channel attention values are broadcasted along the
spatial dimension of the input feature map through elementwise
multiplication. Second, the spatial attention map is learned from
the channel-refined feature map by utilizing max-pooling and
average-pooling with a convolution layer. Finally, the refined
feature map is obtained by broadcasting the spatial attention
information along the channel dimension of the channel-refined
feature map.

In our case, the multiscale feature map Fyg is fed into
the CBAM, and the channel attention map is first obtained as
follows:

M.(Fus) = o (Mlp (AvgPool (Fus))

+ Mlp (MaxPool (Fus))) 3)

where o denotes the sigmoid function, M [p refers to the shared
MLP with one hidden layer, and AvgPool and M axPool de-
note average pooling and max-pooling operations, respectively.
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Fig. 3. Label co-occurrence matrix of the UCM multilabel dataset.

Then, the multiscale feature map Fisg is refined by the chan-
nel attention map M. (Fys) along the spatial dimension. The
process can be formulated as

Fig = M:(Fus) ® Fus 4)

where ® denotes elementwise multiplication. In the multipli-
cation process, the attention value of the channel attention is
broadcasted. Subsequently, the spatial attention map is learned
from the above channel-refined feature map as

M (F{s) = o (Conv ([AvgPool(Fys);

MaxPool (Fys)])) %)

where o denotes the sigmoid function and Conv represents a
convolution operation with the filter size of 7 x 7. The final
refined feature map is obtained as follows:

Fopam = My (Fyyg) @ Fyg. (©6)

Through the CBAM, important features are focused and un-
necessary features are suppressed. Furthermore, to exploit the
global contextual information, the refined feature map Fopam
is squeezed into a channelwise descriptor Fgap by using the
global average pooling (GAP) [44].

C. Label Correlation Extraction

We use the label co-occurrence matrix to model the label
correlation. Let C' € R7*? be the matrix, where ¢ is the number
of class labels. Each entry C(i, 7) in the matrix is the number of
the 7th label and the jth label appearing together (1 < 7,5 < ¢,
1 # j). The co-occurrence matrix is further normalized to the
range [0, 1] as follows:

C'(i,j) = {O’ C(i.j)~Min(C(-4)) Z:j
Max(C (-3)) M (), ¢ 7

)

Fig. 3 shows the normalized label co-occurrence matrix of
the UCM multilabel dataset. The depth of the color indicates the
possibility of two labels appearing at the same time. The darker
the color is, the greater the possibility of the co-occurrence is,
and vice versa. It is noted that the matrix shows global label
correlation without considering local label correlation, which is
helpful to boost the classification.
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Different from [33]—[35], the information in the label co-
occurrence matrix is integrated into the refined image features
through two fusion steps. In the first step, we flatten the nor-
malized label co-occurrence matrix L., into an N x 1 vector
and concatenate the vector with Figap obtained in the previous
subsection. After BN, the concatenated vector is fed into two
FC layers followed by ReL.U, and a new feature vector Fic is
obtained. F1,¢ is an adaptive label correlation feature, which can
represent the global label correlation to some extent and change
with different image samples. F1,c contains the label correlation
information, which is enhanced by the image features. The
number of units in the FC layers is 64 and 128, respectively. In the
second step, the image descriptor vector Fgap is concatenated
with F1,c and fed into two FC layers. The activation functions
of the two layers are ReLU and sigmoid, respectively. The final
image feature vector enhanced with label correlation is obtained,
and label prediction is then estimated based on it. The number of
units of the first FC layer is set to 128. Dropout with a probability
equal to 0.5 is added before each FC layer to prevent overfitting.
This process is summarized as follows:

Fic = ReLU (Fc (ReLU (Fe ([Flatten (C") ; Faap)))))
g = o (Fc (ReLU (Fe ([Laar; Fic))))) (8)

where y is the predicted label.

IV. EXPERIMENTS

In this section, we conduct experiments to investigate the
performance of our proposed method on two multilabel RS
image datasets. The experiments consist of two parts: evaluating
different modules of the proposed method and comparing the
proposed method with some other state-of-the-art multilabel
image annotation methods.

A. Datasets

1) UCM Multilabel Dataset: The UCM dataset [12] is ex-
tracted from the aerial imagery contributed by the U.S. Geolog-
ical Survey National Map. It contains 2100 images, which are
divided into 21 categories at the scene level. These categories are
corresponding to different land cover and land use types. Each
category has 100 images with a size of 256 x 256 x 3 and a
spatial resolution of 0.3 m. In the UCM multilabel dataset [17],
there are a total of 17 object-level labels, including airplane,
bare-soil, buildings, cars, chaparral, court, dock, field, grass,
mobile-home pavement, sand, sea, ship, tanks, trees, and water.
Each image is assigned with one or more (up to seven) labels.
Fig. 4 shows some examples of the UCM multilabel dataset, and
Fig. 6(a) gives the details of the dataset at the object level.

2) AID Multilabel Dataset: The AID dataset [45] was pub-
lished in 2017 by Wuhan University. It consists of 30 categories
at the scene level. Each category has 220—420 images with a
size of 600 x 600 x 3 and a spatial resolution varying from 0.5
to 8 m. The multilabel dataset [46] generated from the AID
dataset contains 3000 images with multiple object labels. There
are a total of 17 object-level labels: bare-soil, airplane, building,
car, chaparral, court, dock, field, grass, mobile home, pavement,
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Fig.4. Samples of the UCM multilabel dataset from different scenes. The labels at the scene level and object level are as follows. (a) Airplane: airplane, buildings,
cars, grass, and pavement. (b) Baseball diamond: bare-soil, buildings, grass, and pavement. (c) Beach: cars, pavement, sand, sea, and trees. (d) Buildings: bare-soil,
buildings, and trees. (e) Chaparral: bare-soil and chaparral. (f) Dense residential: buildings, grass, pavement, and trees. (g) Freeway: bare-soil, cars, and pavement.
(h) Harbor: dock, ship, and water. (i) Intersection: bare-soil, buildings, cars, grass, pavement, and trees. (j) Medium residential: bare-soil, buildings, cars, grass,
pavement, and trees. (k) Overpass: bare-soil, pavement, and grass. (1) Tennis court: bare-soil, buildings, cars, court, grass, and trees.

Fig. 5. Samples of AID multilabel dataset from different scenes. The labels at the scene level and object level are as follows. (a) Airplane: airplane, buildings,
cars, bare-soil, grass, pavement, and trees. (b) Bare land: bare-soil, buildings, cars, pavement, trees, and water. (c) Baseball field: bare-soil, buildings, cars,
court, grass, pavement, and trees. (d) Bridge: bare-soil, cars, grass, pavement, trees, and water. (e) Center: bare-soil, buildings, cars, grass, pavement, and trees.
(f) Church: buildings, cars, grass, pavement, and trees. (g) Commercial: buildings, cars, court, grass, pavement, and trees. (h) Dense residential: buildings, cars,
grass, pavement, and trees. (i) Industrial: bare-soil, buildings, cars, grass, pavement, and trees. (j) Railway station: bare-soil, buildings, cars, grass, pavement,
trees, and water. (k) School: bare-soil, buildings, cars, grass, pavement, and trees. (1) Viaduct: bare-soil, buildings, cars, grass, pavement, and trees.
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Fig. 6. Number of images per object-level label in the two datasets. (a) UCM multilabel dataset. (b) AID multilabel dataset.
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TABLE I
SOME STATISTICS OF EXPERIMENTAL DATASETS

Object  Scene

Data set ~ Samples labels labels LC LD
UcM 2100 17 21 3.334  0.196
AID 3000 17 30 5.152 0.303

sand, sea, ship, tank, tree, and water. Fig. 5 shows some visual
examples of the AID multilabel dataset. Fig. 6(b) gives the
number of images associated with each object-level label.

Some statistics for the two dataset are listed in Table 1. Here,
LC denotes the label cardinality, which calculates the average
number of class labels associated with each sample, and LD
represents the label density, which is the cardinality normalized
by the number of labels.

B. Evaluation Metrics

To investigate the performance of our proposed method
from multiple perspectives, we choose three example-based
metrics and three label-based metrics, including precision,
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cars

Visualization results of four images from the UCM dataset. Red indicates the areas that our model focuses on when predicting the corresponding labels.

recall, and F1 score for evaluation. Suppose that there is a
test set D = {(x;,y;)|1 <i <n}, where the binary vector
Vi = [Yi1, Yizs - - -, Yig]T € {0,1}7 is the ground-truth label of
the ith test sample. y;; = 1 and 3;; = 0 correspond to the
presence and absence of the jth label for sample x;, respec-
tively. Let §; = [§i1, §i2, - - -, Uig]” € {0,1}9 denote the pre-

dicted label vector for sample x;, Y = [y1,¥2,.-.,yn]L =
Li,15,...,1;] € R"*? denote the ground truth label ma-
trix’ and YA‘ = [ylﬂyQ? M 3yn]T = [117 123 AR lq] 6 Ran de-

note the predicted label matrix. Then, the six metrics can be
computed as follows:

N 1< ijmj‘
Z |Yz| yil P == Z ;
yl q j=1 1‘7
LNl
|yz HYz ‘ ‘
~islnal g 15D
2P RE 2PLRL
Flg— —E28E — py . Z0L0L
= Py + Rg " PL+ Ry ©)
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Models Pr(%) Rp(%) F1g(%) Pr(%) R (%) F1,(%)

VGG16 8227 £ 1.77 82.86 = 1.94 8256 £ 1.75 81.73 £2.38 73.61 £236 7745 £ 2.16
VGG16+attention 86.24 £ 1.05 87.65 £ 1.26 86.93 £ 1.07 89.07 £ 246 83.29 £ 196 86.07 £ 2.01
VGG16+attention+multi-scale fusion  90.34 £ 1.27  92.63 = 0.71 91.46 £ 0.78 93.83 + 1.01 91.85 £ 2.04 92.82 £ 1.24
Proposed Method 90.54 +£ 1.11 9298 £ 1.00 91.74 £ 0.77 93.73 £ 1.04 92.75 + 1.34 93.23 £+ 0.82

where the subscripts £/ and L indicate that the corresponding
metric is obtained from the perspective of examples or labels.

In addition, the hamming loss is calculated to evaluate the
number of misclassified instance-label pairs, i.e., a relevant label
is not predicted or an irrelevant label is predicted

1 n R
HL = > lyiAyi (10)
=1

where A denotes the symmetric difference between two sets.

C. Implementation Details

In our proposed method, VGG16 is used to extract features
from images. The weights of VGG16 are pretrained on Ima-
geNet [47]. The other components are initialized by the Xavier
uniform initializer [48]. We train the deep neural network with
the Adam optimizer [49], and the learning rate is initially set
to 0.001 with a decay factor of 0.9 every ten epochs. Other
parameters of the optimizer are set as recommended: 1 = 0.9
and (B3 = 0.999. Binary cross-entropy loss (BCE) function is
adopted as the loss function and is calculated as follows:

n q
Lece = — Y _ Y _yijlogii; + (1 —yij)log (1 — §i;) .

i=1 j=1

(1)

The model is implemented on Tensorflow and is trained on

NVIDIA GeForce GTX 1080 Ti GPU. We train the model for

100 epochs with a batch size of 32. The original images are

resized to 256 x 256 x 3. To reduce the risk of overfitting, we

adopt various data augmentation technique, where images can
be flipped, rotated, and shifted.

D. Evaluation for Model Components

Our proposed multilabel annotation framework is composed
of three modules, including multiscale feature fusion, channel-
spatial attention learning, and label correlation extraction mod-
ules. To evaluate the effectiveness of different modules, we
compare our method with the following approaches.

1) VGGI6: The original CNN is used as the image descriptor

and followed by two FC layers for classification.

2) VGGI6 + attention: The image features generated from
VGG16 are refined by the attention mechanism of CBAM
and then fed into the FC layers.

3) VGGI6 + attention + multiscale fusion: The multiscale
features from different layers of VGG16 are fused before
they are refined by the attention module.

We run all these methods on the UCM multilabel dataset and
the AID multilabel dataset. In each dataset, we randomly select
80%, 10%, and 10% of images for training, validation, and test,
respectively. The final results are averaged over ten realizations
and listed in Tables Il and III . The best results are shown in bold.
For all metrics, the higher the value, the better the evaluation is.

From the comparison of VGG16 and VGG16 + attention,
we can conclude that the CBAM significantly improves the
multilabel RS image annotation performances. The six metric
values rise 6.46% and 7.97% on average on the UCM and AID
datasets, respectively. Particularly, R, values increase by 9.68%
on the UCM dataset and 13.7% on the AID dataset.

The effectiveness of multiscale feature fusion can be eval-
uated through the comparison between VGGI16 + attention
and VGG16 + attention + multiscale fusion. By introducing
multiscale feature information, the latter method achieves better
performances in terms of all the six metrics. Specifically, the
score of Ry obtains increments of 8.56% on the UCM dataset
and 8.14% on the AID dataset.

The proposed method generally outperforms the other three
methods, which indicates the effectiveness of integrating the
three modules. Compared with the three methods, the average
gains are 12.42%, 5.95%, and 0.34% on the UCM dataset,
13.26%, 5.30%, and 0.41% on the AID dataset, respectively.

E. Comparisons With State-of-the-Art Methods

For a comprehensive evaluation, we compare the proposed
method with the following state-of-the-art multilabel annotation
methods.

1) ML-KNN: This method uses VGG16 for feature extraction

and ML-KNN [15] for classification.

2) Gardner [3]: This method uses VGG16 for feature extrac-
tion and three FC layers with dropout for classification.

3) CNN-RNN [20]: This method combines CNN and RNN
networks. The CNN is used to extract visual features and
the RNN is used to model label correlation.

4) RBFNN [21]: This method uses the pretrained VGG16 for
feature extraction and the RBFNN for classification.

5) Stivaktakis [27]: This method employs a dynamic data
augmentation technique for CNN architecture to solve the
problem of a small amount of data.

6) Zhu [29]: This is a deep learning framework using dual-
level semantic concepts, where scene labels are used to
guide multilabel classification.

7) ML-GCN [36]: This method uses the pretrained Resnet-
101 for feature extraction and graph convolution neural
network for label correlation extraction.
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TABLE III

COMPONENT EFFECTIVENESS EVALUATION OF THE PROPOSED METHOD ON THE AID DATASET (MEAN% =+ STD%)

Models Pr(%) Re(%) Flp(%) Pr(%) R1(%) F1.,(%)
VGG16 80.44 + 1.84 80.38 £1.91 80.41 & 1.81 7198 +3.02 5238 +2.27 60.60 + 2.01
VGG16+attention 86.73 £ 1.29 86.04 + 1.53 86.38 + 1.36 77.51 £ 420 66.08 £ 1.62 71.26 + 1.50
VGGl 6+attention+multi-scale fusion  90.63 £+ 0.89  90.44 4+ 0.79 90.53 + 0.67 80.37 £ 2.15 7422 £ 1.67 77.15 4+ 1.40
Proposed Method 91.03 + 1.31 91.88 + 1.06 91.44 £+ 0.35 81.37 = 2.56 74.60 &= 1.48 77.79 + 0.69
TABLE IV
COMPARISONS OF THE PROPOSED METHOD WITH STATE-OF-THE-ART METHODS ON THE UCM DATASET (MEAN% =+ STD%)

Models Py (%) Re(%) Fl1g(%) PL(%) R1(%) F1.,(%) HL

ML-KNN 86.82 £ 1.09 88.16 £ 0.96 8749 + 099 87.60 + 1.94 87.68 £ 2.27 87.63 + 1.84 0.06 £+ 0.00
Gardner [3] 88.29 £ 0.57 84.51 129 86.35 = 0.74 88.66 £ 2.97 79.22 + 1.99 83.64 + 1.83 0.06 £ 0.00
CNN-RNN [20] 7479 +£ 250 79.88 +2.60 75.12 £2.22 65.70 £ 423 6247 + 4.15 61.22 + 3.80 0.11 £ 0.01
Stivaktakis [27] 85.16 + 0.93 87.45 + 1.21 86.29 + 0.68 87.96 + 1.02 84.48 + 0.92 86.18 4+ 0.81 0.06 £+ 0.00
RBFNN [21] 88.37 £ 1.27 87.75 £ 1.55 88.05 £ 1.10 9240 + 143 87.79 + 1.57 90.02 + 1.28 0.05 + 0.00
Zhu [29] 91.75 + 0.83 91.65 £ 0.76  90.62 + 0.62 9296 + 0.98 92.60 + 0.52 92.66 + 0.47 0.04 £+ 0.00
ML-GCN [36] 90.03 + 1.47  90.70 £ 3.05 90.25 +£2.00 9246 + 1.50 90.17 £+ 5.17 91.21 + 3.00 0.04 £+ 0.00
Proposed Method ~ 90.54 + 1.11 9298 + 1.00 91.74 + 0.77 93.73 + 1.04 92.75 £+ 1.34 93.23 + 0.82 0.04 £ 0.00

TABLE V
COMPARISONS OF THE PROPOSED METHOD WITH STATE-OF-THE-ART METHODS ON THE AID DATASET (MEAN% =+ STD%)

Models Py (%) Re (%) Fl1p(%) Pr(%) Ri(%) F1,(%) HL

ML-KNN 83.82 £ 090 84.65 £ 0.86 8423 +0.84 6496 £290 6647 £226 65.69 & 239 0.09 £ 0.00
Gardner [3] 86.15 £ 1.12 82.46 + 1.36 84.26 + 0.83 7630 £ 1.31 57.87 £1.16 65.80 &£ 0.75 0.08 £ 0.00
CNN-RNN [20] 84.06 £ 2.73 85.01 &+ 144 8234 +£1.60 5690 + 5.63 5572 +3.64 5411 +3.81 0.10 + 0.01
Stivaktakis [27] 87.69 £ 0.56 87.92 £ 0.61 87.79 +£0.28 73.40 £2.76 6645 £ 1.80 69.74 £ 196 0.07 £ 0.00
RBFNN [21] 88.52 £ 1.13  86.56 & 1.31 87.52 + 098 78.78 £ 3.59 64.16 £ 1.82 70.70 &+ 2.29 0.07 £ 0.00
Zhu [29] 89.72 £ 0.44 88.41 £ 0.65 87.49 + 0.18 80.89 £+ 1.84 74.08 £ 3.11 76.50 & 2.39 0.07 £ 0.00
ML-GCN [36] 89.69 £ 1.99 8948 + 1.67 89.58 +1.57 7891 £2.55 75.06 £429 7690 4+ 3.18 0.06 £ 0.00
Proposed Method  91.03 + 1.31 91.88 + 1.06 91.44 + 0.35 81.37 + 2.56 74.60 +£ 1.48 77.79 &+ 0.69 0.06 + 0.00

In the experiments, we randomly divide the UCM dataset and
the AID dataset such that 80% images are training samples, 10%
images are validation samples, and 10% images are test samples,
respectively. On each dataset, each method is run ten times to
get the average performance. All seven metrics are computed,
and the average metric values are listed in Tables IV and V. The
best results are shown in bold. For the hamming loss, the lower
the value, the better the evaluation.

From the tables, we can see that the proposed method achieves
the best performance on the whole. On the UCM multilabel
dataset, shown in Table IV, the proposed method ranks in first
place among the seven comparing methods except that the Zhu
method [29] outperforms it in the Pr metric. Among the meth-
ods, CNN-RNN performs poorly because the chain propagation
fashion of the RNN is not good at utilizing the label correlation.
The methods ML-KNN, Gardne [3], and Stivaktakis [27] show
comparable performances, which are inferior to the methods
of RBFNN [21], ML-GCN [36], and Zhu [29]. On the AID
multilabel dataset, shown in Table V, a decrease in the per-
formance of each method can be observed, especially in the
three label-based metrics. It is because the AID dataset is more

challenging for classification than the UCM dataset. However,
the proposed method also competes with the other methods in
all metrics except the R, metric. The above experimental results
suggest that our proposed method can significantly improve the
multilabel RS image annotation performances.

F. Per-Class Case Studies

Tables VI and VII show the class-specific annotation results
(F1 score) of the UCM dataset and the AID dataset, respectively.
The best results in each category are shown in bold. As shown
in Table VI, the results of the proposed method outperform
the compared methods in most classes (11/17 in terms of F1
scores). For all the 17 categories except for the bare-soil class,
the proposed method obtains more than 83% on the F1 score.
Especially, the F1 score of the proposed method reaches 100% on
the classes of airplane, dock, and ship. As shown in Table VII,
the results of the proposed method outperform the compared
methods in half of classes (9/17 in terms of F1 scores). In
particular, the F1 score of the proposed method in the class
airplane is significantly ahead of the second-best method by
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TABLE VI

PER-CLASS F1 SCORES FROM EIGHT METHODS ON UCM DATASET (MEAN% =+ STD%)

6959

Labels ML-KNN Gardner [3] |CNN-RNN [20]|Stivaktakis [27]|[RBFNN [21]| Zhu [29] |ML-GCN [36](Proposed Method
airplane 91.25 +£ 526 |91.81 £2.92| 8.16 + 10.44 | 96.09 £1.30 {99.70 £ 0.91{100.00 4+ 0.00| 95.38 £+ 2.73 | 100.00 + 0.00
baresoil 73.33 + 4.45|65.88 +£3.95| 51.07 &+ 6.17 | 74.17 £ 0.92 |70.83 + 2.45|78.23 + 3.64 | 75.30 = 4.59 | 76.95 + 1.56
buildings 85.42 + 2.06 | 82.56 + 1.81| 71.95 + 3.22 | 79.12 + 1.60 [86.65 + 1.96| 87.98 + 2.12 | 83.56 + 2.84 | 89.79 + 1.03
cars 81.30 + 3.20 |1 83.02 + 1.40| 80.81 + 2.33 | 83.24 + 0.52 [84.74 + 3.20| 85.52 + 1.47 | 88.74 + 1.75| 89.46 + 1.39
chaparral 99.05 + 1.84|92.53 £ 1.73 | 90.17 4+ 6.02 | 91.88 £ 3.87 [98.58 £ 1.77/ 93.59 + 1.57 [95.02 &= 5.20 | 99.57 + 1.24
court 65.51 £ 10.55(19.17 £ 10.09| 0.00 4 0.00 | 56.03 + 4.82 [81.79 &+ 9.91| 87.05 4 3.99 |86.23 £ 16.03| 89.28 + 4.09
dock 99.05 £ 1.84|99.60 £ 1.20 | 90.42 4+ 9.14 | 100.00 £ 0.00{99.26 £ 1.49]99.52 + 1.43 (99.63 £ 1.06 | 100.00 = 0.00
field 96.66 + 3.3999.23 + 2.31| 75.87 4+ 6.70 | 96.17 £ 5.04 [95.05 £ 6.99| 94.37 + 1.73 | 98.75 & 3.58 | 87.53 £+ 1.33
grass 83.82 +2.40|81.74 + 1.74 | 75.87 £ 4.20 | 84.87 + 1.41 [82.27 + 3.59/89.13 + 1.26 | 86.64 + 2.73 | 88.33 + 1.45
mobilehome| 87.24 + 7.00 | 82.09 + 7.61 | 24.85 + 21.27 | 87.95 £ 6.54 |94.86 + 5.70{100.00 + 0.00| 84.78 + 8.26 | 95.36 + 3.98
pavement 90.78 + 1.55|94.23 + 0.43 | 89.18 4+ 1.64 | 89.93 + 0.85 [91.91 + 1.57/93.29 + 0.81 [91.76 £ 0.95| 92.77 + 0.86
sand 80.65 + 4.16 | 73.01 + 2.29|55.23 4+ 11.81 | 74.50 + 3.62 [84.14 + 3.75| 88.86 4+ 2.52 |1 90.20 + 5.93 | 93.63 + 1.98
sea 89.00 + 7.76 | 96.80 + 1.60 | 80.35 + 10.30 | 94.12 + 0.00 [97.96 + 2.67|98.70 + 3.91 | 97.45 + 3.23 | 99.52 + 1.36
ship 99.05 + 1.8496.80 + 1.60 | 87.17 £ 6.18 | 100.00 + 0.00 [98.78 + 1.89| 98.66 + 2.89 |99.63 + 1.06 | 100.00 + 0.00
tanks 77.65 + 12.84|81.69 £ 12.76| 8.26 & 11.18 | 74.34 £+ 7.39 [87.15 + 9.62| 95.32 + 2.88 |87.55 & 13.47| 83.40 + 9.98
trees 84.21 +2.90|87.60 & 1.08 | 77.70 £ 2.90 | 83.96 + 1.56 [85.73 &+ 1.74| 87.86 & 1.87 | 88.13 £ 1.26 | 89.59 + 1.74
water 91.23 £+ 7.09 | 83.79 £ 3.87 | 66.53 + 10.29 | 89.13 £ 2.98 [93.10 £ 2.32| 97.06 + 2.36 [ 94.45 4= 3.99 | 94.60 £ 2.46
TABLE VII
PER-CLASS F1 SCORES FROM SIX METHODS ON AID DATASET (MEAN% =+ STD%)

Labels ML-KNN Gardner [3] |Stivaktakis [27]| RBFNN [21] [ML-GCN [36]|Proposed Method

airplane 65.05 + 11.27|75.65 + 8.18 | 72.75 + 8.37 |76.97 + 14.62|80.34 + 16.50, 92.36 + 4.53

baresoil 7191 + 1.84 (7144 £ 1.33| 7427 +£ 1.87 |73.74 + 2.02|75.36 + 4.13 | 77.98 + 1.59

buildings 94.05 + 1.35(94.53 £ 0.39| 9340 £ 0.46 |95.41 + 0.88|94.17 = 0.41 | 95.65 + 0.48

cars 90.23 4+ 1.05(93.10 £ 0.74 | 92.77 £ 0.47 |92.73 + 1.05|92.85 + 1.38 | 94.43 + 0.59

chaparral  [28.03 4+ 10.36| 0.00 £ 0.00 | 9.45 £ 9.48 |22.31 + 16.71|34.37 £+ 19.95| 41.03 + 6.28

court 49.31 4+ 6.17 [22.52 £+ 8.63| 57.98 + 3.14 | 54.85 4+ 6.48 | 67.37 + 8.39| 58.93 + 4.56

dock 57.54 + 10.77|61.75 + 5.38| 62.60 + 2.80 [68.42 + 10.63|/70.52 + 6.25| 68.19 + 3.17

field 59.78 4+ 7.67 |58.73 £+ 3.64 | 48.06 + 4.29 | 67.52 + 8.07|73.38 + 5.99 | 76.96 + 2.50

grass 91.98 4+ 0.95(92.75 + 0.9 5| 9245 £ 0.72 | 93.46 + 1.23|94.00 £+ 1.10| 95.43 + 0.40

mobilehome| 0.00 4+ 0.00 | 0.00 £ 0.00 | 0.00 £ 0.00 | 0.00 £ 0.00 | 0.00 £ 0.00 0.00 £ 0.00

pavement | 95.82 £+ 1.38 |196.23 + 0.70| 95.41 + 0.30 | 96.76 4+ 0.41 | 97.18 £+ 0.94| 98.07 + 0.21

sand 76.97 4+ 6.42 [55.85 + 4.15| 78.40 + 3.35 | 83.05 + 6.12|89.78 &+ 3.54| 90.56 + 0.99

sea 72.57 + 9.67 |58.83 £+ 5.47| 88.72 + 4.32 | 81.30 + 6.23 | 89.20 + 6.43| 89.00 + 3.62

ship 56.51 + 11.20/67.78 + 4.18 | 68.75 + 4.35 | 69.29 + 5.67 | 71.50 + 5.56 | 69.54 + 4.98

tanks 64.07 4+ 8.66 [72.43 £ 9.96| 73.37 £ 4.62 |92.14 + 4.99|91.67 £ 7.08 | 79.93 + 4.37

trees 93.53 + 1.15|94.89 + 0.53| 94.91 + 0.55 | 94.36 + 1.51 |94.31 + 0.82| 94.50 + 0.28

water 58.93 4+ 4.41|94.89 + 3.37| 63.77 + 2.75 | 62.48 £ 4.21 |75.62 + 2.70| 71.94 £+ 1.13

12.02%. However, the F1 score of each method on the AID
dataset is generally lower than on the UCM dataset, especially
for the classes of chaparral and mobile-home. The possible
reason lies in the fact that the samples with the two labels in
the AID dataset are relatively few [as illustrated in Fig. 6(b)].
The networks cannot be fully trained due to the lack of training
samples. In addition, the images collected from different sources

with varying spatial resolutions make the classification more
difficult.

G. Annotation Case Studies

Table VIII displays the annotation results of three images
from the UCM dataset. The comparison is made among all
the eight methods except for CNN-RNN. In the table, the
ground-truth labels and the labels predicted by each method

are listed. The correct predictions are shown in green, the false
positive predictions are shown in red, and the false negative
predictions are shown in blue. Compared with other methods,
the proposed method is the only one that can correctly predict
the corresponding labels of three images.

H. Visualization

In order to verify the effectiveness of our model for detecting
objects of different sizes in an image, we conduct a visualization
analysis on four images of the UCM dataset. The feature maps
are shown in Fig. 7. It can be observed that the proposed model
can highlight the discriminative regions of objects and identify
them accurately. For example, there are airplanes, cars, and
pavement in the first image. The scale of these objects changes
largely, but the model can locate them well.
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TABLE VIII
ANNOTATION RESULTS OF THREE IMAGES FROM THE UCM DATASET

Samples from the
UCM multi-label
data set

| y

Ground truth sand, tanks, bare-soil

bare-soil, trees, cars,
pavement, buildings

bare-soil, trees, grass,
pavement, buildings

sand, tanks, bare-soil,

bare-soil, trees, grass, bare-soil, trees, cars,

ML-KNN i o
pavement pavement, buildings pavement, buildings, grass
bare-soil, trees, grass bare-soil, trees, cars
Gardner [3] sand, tank, pavement ’ e ’ i ’

pavement, buildings pavement, buildings

sand, tanks, bare-soil,

Stivaktakis [27]
pavement

bare-soil, trees, cars,
pavement, buildings, grass

bare-soil, trees, grass,
pavement, buildings

bare-soil, trees, grass, bare-soil, trees, cars,

RBFNN [21] sand, tanks, bare-soil 2= R
pavement, buildings pavement, buildings, grass
Zhu [29] sand, tanks, pavement bare-soil, trees, grass, bare-soil, trees, cars, grass,
Sd h . . . .
’ ’ pavement, buildings pavement, buildings
ML-GCN [36] sand. tanks. bare-soil bare-soil, trees, grass, bare-soil, trees, cars,
- sand, tanks, bare-s

pavement, buildings

pavement, buildings

Proposed Method sand, tanks, bare-soil

bare-soil, trees, grass,
pavement, buildings

bare-soil, trees, cars,
pavement, buildings

V. CONCLUSION

In this article, we propose an end-to-end deep learning frame-
work for multilabel RS image annotation. The framework con-
sists of a multiscale feature fusion module, a channel-spatial
attention learning module, and a label correlation extraction
module. The multiscale features are first extracted from different
layers of a VGG 16 model and fused by a cascade fusion strategy
with a series of operations, involving convolution, BN, ReLU,
and concatenation. Then, the fused features are refined by the
channel-spatial attention module for salient object detection.
Finally, the multiscale attentive features are further enhanced
by the label correlation extraction module, where the label
correlation information from a label co-occurrence matrix is em-
bedded into the features through a two-step fusion. Experimental
results on the UCM and AID multilabel datasets show that our
proposed method achieves the best performance compared with
the state-of-the-art methods.

In the label correlation extraction model, the pairwise label
correlation is used for the label co-occurrence matrix. In future
work, we plan to leverage high-order label correlations in the
model.
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