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Abstract—Remote sensing image fusion (RSIF) can generate an
integrated image with high spatial and spectral resolution. The
fused remote sensing image is conducive to applications includ-
ing disaster monitoring, ecological environment investigation, and
dynamic monitoring. However, most existing deep learning based
RSIF methods require ground truths (or reference images) to train
a model, and the acquisition of ground truths is a difficult problem.
To address this, we propose a semisupervised RSIF method based
on the multiscale conditional generative adversarial networks by
combining the multiskip connection and pseudo-Siamese struc-
ture. This new method can simultaneously extract the features
of panchromatic and multispectral images to fuse them without
a ground truth; the adopted multiskip connection contributes to
presenting image details. In addition, we propose a composite
loss function, which combines the least squares loss, L1 loss, and
peak signal-to-noise ratio loss to train the model; the composite
loss function can help to retain the spatial details and spectral
information of the source images. Moreover, we verify the proposed
method by extensive experiments, and the results show that the new
method can achieve outstanding performance without relying on
the ground truth.

Index Terms—Conditional generative adversarial network
(cGAN), deep learning (DL), image fusion, loss function, remote
sensing image fusion (RSIF).

I. INTRODUCTION

IMAGE fusion aims to fuse the complementary information
in two or more source images obtained by different sensors
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so that a new comprehensive image can be generated [1]−[3].
The fused image can present more useful information than any
one of the source images. Therefore, image fusion techniques
can provide a high-quality fused image to help interpret a scene
or target, and related research areas include medical images [5],
multifocus images [3], [6], infrared and visible images [7], [8],
and remote sensing images [9], [10].

Remote sensing images with high spatial and spectral res-
olution play an important role in geological exploration, en-
vironmental protection, urban planning, marine monitoring,
meteorological forecast, disaster relief, and other fields [1],
[12]−[15]. However, because of the limitations of imaging
mechanisms, panchromatic (PAN) and multispectral (MS) im-
ages are obtained by different satellite sensors. A PAN image
can be regarded as a PAN-band image, and this kind of image
has high spatial resolution of ground objects but lower spectral
resolution. The pixels of an MS image are usually represented
by red, green, and blue (RGB) values obtained from an MS
sensor, and the obtained image has low spatial resolution but
high spectral resolution. To understand scenes or ground targets
comprehensively, researchers proposed image fusion methods
to combine the complementary information of different remote
sensing images, i.e., remote sensing image fusion (RSIF). RSIF
is usually employed to fuse a gray-scale PAN image and color
MS image to obtain an integrated image with high spatial and
spectral resolution [13]−[16].

According to the fusion mechanism, the emerged RSIF meth-
ods can be regarded as belonging to two classes: conventional
image fusion methods and deep learning (DL) based image
fusion methods. The conventional image fusion methods can
be also divided into three categories: component substitution,
multiresolution analysis (MRA), and sparse representation (SR).
The component substitution-based methods assume that the geo-
metric details of an MS image exist in its structural components,
and these components are obtained by converting the source
image into a new space. Then, the spatial information of the PAN
image is injected into the MS image by replacing or partially
replacing the structural component. Finally, the fused remote
sensing image is obtained by using inverse transformation based
on the new structural component. However, this kind of method
has many problems. For example, intensity–color–saturation
transformation always distorts the spectral features of the fused
image [12], and the high pass filtering and principal component
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analysis (PCA) based RSIF methods may lose the physical
features of the source images [17]. Meanwhile, image fusion
methods based on MRA can recover the lost spatial information
of MS images by the corresponding high-frequency features of
PAN images. Although MRA-based methods can preserve more
spectral features than component substitution-based methods,
they usually suffer from problems of spatial distortion and
ringing effects, such as Laplacian pyramid transform (LPT)
and wavelet transform (WT) [15], [18]. LPT can reduce the
redundant information in the Gaussian pyramid but neglects the
correlation of the coefficients between the decomposed layers.
WT has good spatial and frequency resolution and can present
the frequency information of the images, but it will partially
lose some edge information of the source images because it
lacks shift invariance [17], [19]. In addition, the SR-based fusion
methods can obtain high-resolution MS images by using an
overcomplete dictionary that is trained by an image dataset; the
spectral distortion with SR-based fusion methods is also smaller.
However, most SR-based methods have a complex structure and
high computational complexity and usually generate smoothed
results, which is not good when we want to preserve the edges
of source images [1], [21].

In recent years, and with its continuous development, DL has
been gradually applied to image fusion and has shown favorable
results. DL methods overcome the difficulties in conventional
image fusion research to a certain extent. Existing DL-based im-
age fusion methods can be roughly divided into three categories:
methods based on convolutional neural networks (CNNs), con-
volutional sparse representation (CSR), and generative adver-
sarial networks (GANs). Among these methods, CNN-based
methods [22], [23] show great potential in image fusion by
virtue of the CNN’s strong feature learning ability. The image
transformation, activity level measurement, and fusion rules (or
a part of them) can be jointly implemented implicitly through
learning a CNN. Meanwhile, CSR-based image fusion methods
[24], [25] can obtain the SR of the whole image, rather than
independently computing the representations for a set of over-
lapping image patches as in conventional standard SR. Lastly,
GANs [22], [30], [31], which have boomed in popularity since
2014, show outstanding performance in image fusion because
of their powerful image generation ability [17]. Some image
fusion methods based on GANs have been proposed [26]−[28]
and show good performance in image fusion. However, these
methods still suffer from serious problems in their training
because the ground truth or reference images are lacking in
RSIF. To address this problem, we propose an RSIF algorithm
based on conditional generative adversarial networks (cGANs)
with a pseudo-Siamese structure and multiskip connection. The
proposed method is an end-to-end image fusion model, and it
can simultaneously extract the features of MS and PAN images
to achieve good fusion performance.

The contributions of this work are summarized as follows.
1) We propose a novel end-to-end semisupervised image fu-

sion method that does not need the ground truth image (with
high spatial and spectral resolution) and can achieve good
image fusion performance.

2) We propose a new pseudo-Siamese structure with multiskip
connection to extract the unique features of the PAN image

and the MS image, and, thus, the fused image contains both
the spatial texture information of the PAN image and the
spectral information of the MS image.

3 We design a new composite loss function, including the
least squares loss, peak signal-to-noise ratio (PSNR) loss,
and L1 norm loss, to train the proposed model. In addition,
subjective and objective image fusion evaluation indices
are used to comprehensively evaluate the fused image’s
quality.

The rest of this article is organized as follows. Section II
introduces the related work. Section III shows the details of the
proposed method. Section IV presents the experimental settings,
results, and analysis. Finally, Section V concludes this work.

II. RELATED WORK

This section introduces the related knowledge on this subject,
including the development of RSIF methods based on DL, the
structure of cGANs, and the least squares generative adversarial
network’s (LSGAN) loss function.

A. Remote Sensing Image Fusion Based on Deep Learning

In remote sensing techniques, it is very important to com-
bine the multisource remote sensing data to obtain complete
and reliable information [16]. Therefore, RSIF research began
[10], [16]. Popular remote sensing images include PAN im-
ages with high spatial resolution/low spectral resolution, and
MS images with low spatial resolution/high spectral resolution.
These images are often fused to generate a new integrated remote
sensing image with high spatial and spectral features. RSIF can
maximize the key information of source images and reduce the
fuzziness and redundant information in the output images; thus,
RSIF can suppress unimportant information to highlight the
useful information [32]. As a result, the fused images obtained
by RSIF can improve the reliability of remote sensing data.

Due to its powerful learning ability, DL has been extensively
researched in image processing, including RSIF [19], [21],
[35]. In 2018, Shao et al. [19] proposed an RSIF method that
introduced a double-branch network structure based on the deep
CNN. This double-branch network can capture the significant
spectral and spatial features of MS and PAN images. In contrast,
Dai et al. [20] proposed a spatio-temporal fusion method for low
spectral high spatial resolution (LSHT) and high spectral low
spatial resolution images based on DL. This method adopted a
two-layer fusion strategy based on the CNN. Each layer of the
network consists of two steps: first, the LSHT image is processed
with the goal of super resolution; second, the processed image
is fused by a linear model. In 2019, Liu et al. [21] proposed
a two-stream fusion network to extract the features of PAN
and MS images for fusion and producing a final image. In the
same year, Ye et al. [35] proposed an image fusion algorithm
based on the CNN and using a fusion model with end-to-end
attributes, in which the input was a pair of source images and
the output was a fused image. Compared with conventional
RSIF methods, DL-based methods can extract and fuse features
without following any artificial fusion rules. However, most
existing DL-based RSIF methods require the ground truth to
learn how to fuse the source images, which is a serious limitation
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because it is difficult to get a mass of reference or labeled images.
To solve this problem of limited access to reference images,
some researchers began to study unsupervised image fusion
methods. In 2019, Tatsumi et al. [33] proposed a guided deep
decoder network to achieve image fusion. This method allows
the network parameters to be optimized in an unsupervised way
and without training data.

Recently, GANs have received extensive attention due to
their powerful image generation ability, and many GANs with
different structures have been proposed [22], [30], [31]. GANs
are also promising RSIF models. In 2018, PSGAN proposed by
Liu et al. [36]. The authors first designed a two-stream fusion
structure to generate a high-resolution MS image and then used a
full convolution network as a discriminator to distinguish the real
and generated (fused) images. Later, Shao et al. [32] proposed
a residual encoder–decoder conditional generative adversarial
network (RED-cGAN) for pan-sharpening to produce more
details with sharpened images. Unfortunately, this method needs
reference remote sensing images for training, which are difficult
to acquire. More recently, an unsupervised framework for pan-
sharpening based on GANs was proposed by Ma et al. [26].
In this method, the generator separately establishes adversarial
games with the spectral discriminator and the spatial discrimina-
tor so as to preserve the rich spectral information of MS images
and the spatial information of PAN images. To further improve
the quality of fused images, we propose a semisupervised RSIF
method based on cGANs with a pseudo-Siamese structure.

B. Conditional Generative Adversarial Networks

cGANs [30] were proposed to solve the problem of GANs be-
ing too free and uncontrollable. cGANs introduce the conditional
variable Y in the modeling of the generator and discriminator,
and the additional information of Y will better guide the gen-
eration of data. The condition variables Y could be based on a
variety of information, such as category labels, multimodal data,
and random noise. When the condition is added to the generator,
a potential constraint is added to the random distribution of
GANs so that more realistic data is generated [22]. As a result,
cGANs have been widely used. The objective function of cGANs
is

min
G

max
D

V (D,G) = Ex∼Pdata(x) [logD (x|y)] + Ez∼Pz(z)

× [log (1−D (G (z|y)))] (1)

where G represents the generator, D represents the discrimina-
tor, x and y, respectively, represent the ground truth or reference
images and the generated image, and z represents the input
of G.

C. Least Squares Generative Adversarial Network

Compared with original GANs, the LSGANs [31] have a dif-
ferent loss function, i.e., the least squares loss function replaces
the loss function of original GANs. This change can alleviate the
problem of unstable training processes and improve the diversity
of the generated images. With the least square loss, the image
distribution can be infinitely close to the decision boundary. The

loss function is defined as follows:

min
D

VLSGAN (D) =
1

2
Ex∼pdata(x)

[
(D (x)− b)2

]

+
1

2
Ez∼pz(z)

[
(D (G (z))− a)2

]
, (2)

min
G

VLSGAN (G) =
1

2
Ez∼pz(z)

[
(D (G (z))− c)2

]
(3)

where (2) represents the loss function of generator, and (3)
represents the loss function of discriminator. x is the real image,
and the random variable z follows a standard normal distribution.
The constants a and b, respectively, represent the labels of the
real image and the generated image, and c represents the situation
where the generated data is determined as true data by the
discriminator. Specifically, a = c = 1 and b = 0 were proved to
achieve good performance in [31]. In view of its advantages, the
loss function of the LSGAN is used to replace the loss function
of cGANs in our proposed model.

III. PROPOSED METHOD

To address the limitation of conventional DL-based RSIF
methods, we introduce a new semisupervised image fusion
model that does not require the ground truth to train. In this
method, modified GANs with a pseudo-Siamese network and
multiskip connection are proposed based on cGANs. Besides, a
composite loss function is designed based on the combination of
least squares loss, L1 loss, and PSNR loss to measure the errors
between the source images and the generated image. In this
section, this new neural network and loss function are reported
in detail.

A. Network Structures and Processes

The proposed cGANs model consists of a generator and two
discriminators. In the generator, two encoders with the same
structure compose a pseudo-Siamese network, but there is only
one decoder in this network. To ensure that the fused image
could retain more spatial details and richer spectral informa-
tion, we considered preserving the spectral features of the MS
image and preserving the spatial features of the PAN image as
two separate tasks; these tasks are completed by the proposed
dual-discriminator structure. The two discriminators have the
same network structure comprising five convolution modules.
The input of the generator is the PAN image and the V channel
of the MS image, and the output is the fused V channel. The
input of the discriminator Discriminator_MS is the fused V
channel and the V channel of the MS image. This discriminator’s
purpose is to force the spectral information in the fused image
to be as consistent as possible with the spectral information
in the MS image. Similarly, the input of the discriminator
Discriminator_PAN is the fused V channel and PAN image.
This discriminator can force the detailed texture information in
the fused image to be consistent with the spatial information
in the PAN image. During model training, once neither of
the two discriminators can distinguish their inputs, the desired
fused image with both high spatial resolution and high spectral
resolution can be obtained. The block diagram of the proposed



JIN et al.: SEMISUPERVISED RSIF USING MULTISCALE CGAN WITH SIAMESE STRUCTURE 7069

Fig. 1. Framework of the proposed method.

Fig. 2. Detailed structure of the generator.

method is shown in Fig. 1. For a 64∗64 MS image and 256∗256
PAN image pair, the following seven steps are executed. First, the
MS image is enlarged to 256∗256 so that it is the same size as the
PAN image, and then the enlarged MS image is converted from
RGB color space to hue saturation value (HSV) color space. In
this work, HSV is used to separate the brightness intelligence
from the chrominance information, and V can be regarded as the
representation of brightness intelligence that is important to the
human visual system. Second, the PAN image and V channel
of the MS image are input into the pseudo-Siamese networks to
obtain the latent features, and, thus, the detailed features of the
MS and PAN images are extracted. Third, the latent features of
the two encoders are connected as the input of the decoder that
is used to generate the new fused V channel. Fourth, the fused
V channel is paired with the PAN image and the V channel of

the MS image to input them into two discriminators, and then
the discriminated results are fed back to the generator. Sixth,
the two discriminators continuously play the zero-sum game
with the generator until the discriminators fail to identify the
generated V channel; at this point, the optimal fusion result
is obtained. Finally, the fused V channel is concatenated with
the H and S channels of the MS image, and then we convert
them into RGB color space. Thus, we obtain the final fused
image.

1) Generator Structure: The structure of our generator is
shown in Fig. 2. It consists of two encoders and a decoder. The
two encoders have the same network structure, i.e., a pseudo-
Siamese network, in which the encoders are both connected with
the decoder as inspired by the U-shape neural network. Thus, we
can simultaneously extract the latent features of PAN and MS
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Fig. 3. Adopted skip connection.

images, and then the decoder can generate a new fused image that
retains the detailed information of both the PAN image and MS
image. The effect of this structure is verified in the experimental
section.

a) Pseudo-Siamese Network: In the generator, a new
pseudo-Siamese network structure is adopted to simultaneously
integrate the features of PAN and MS images. One encoder
extracts the spatial features of PAN images, while the other is
employed to extract the spectral features of MS images; these
encoders are referred to as Encoder_PAN and Encoder_MS,
respectively. In the pseudo-Siamese network, we use the residual
block (RB), which can deepen the network, to better present the
image features and prevent vanishing gradients. After concate-
nating the extracted features in Encoder_PAN and Encoder_MS
layer by layer, we input them into the corresponding layers of the
decoder, which has a double-side skip connection as shown in
Fig. 3. Through the fusion of low-level features and high-level
features between the encoders and decoder, the network can
retain abundant features from the PAN and MS images. Thus,
the spatial and spectral information can be integrated into the
fused image. The structure of our pseudo-Siamese structure with
skip connection is shown in Fig. 3.

b) Encoder: The proposed encoder consists of eight con-
volution modules, as shown in Fig. 2. Except for the last
convolution module, which contains a convolution layer and a
batch normalization (BN) layer, all modules are composed of a
convolution layer and a BN layer, followed by a leaky-rectified
linear unit (LReLU) activation function layer. In addition, every
two convolution modules have an RB, and, thus, there are three
RBs in total. The structure of the RB is also illustrated in Fig. 2.
It consists of two convolution modules: The first module consists
of an atrous convolution layer, a BN layer, and a rectified linear
unit (ReLU) activation function layer; the second module has an
atrous convolution layer and a BN layer. The input is added to
the output of the second convolution module. Here, compared
to the proposed method without RB modules, the RB can better
present the image features, and, thus, the performance of the
RSIF method is also improved.

Note that Encoder_MS and Encoder_PAN have some struc-
tural differences, i.e., whether the multiscale convolution (MSC)

Fig. 4. Structure of the discriminator.

module is included; the structure of the MSC module is also
shown in Fig. 2.

c) Decoder: The decoder is similar to the encoder and con-
sists of eight deconvolution modules. The first three modules are
composed of a ReLU activation function layer, a deconvolution
layer, a dropout layer, and a BN layer. The middle three modules
have the same structure as the encoder but do not contain a
dropout layer. The activation function of the last module uses
Tanh instead of ReLU. This structure can also be found in Fig. 2.

2) Discriminator Structure: The proposed model has two
discriminators that have the same network structure. The dis-
criminator contains five convolution modules. The first modules
consist of a convolution layer and an LReLU activation layer.
The middle three convolution modules have the same structure:
a convolution layer, an instance normalization (IN) layer, and an
LReLU activation layer. The last convolution module has only
one convolutional layer, and the activation layer uses a Sigmoid
activation function. Unlike a common discriminator, we use an
IN layer instead of the BN layer. The reason for this is that the
BN layer is sensitive to batch size, and the mean and variance
of each iteration are calculated on the same batch. As a result, if
the batch size is too small, the calculated mean and variance are
not enough to represent the distribution of the entire data. Thus,
if we set the batch size as 1, the BN will not work. The structure
of our discriminator is shown in Fig. 4.

B. Loss Function

In this work, we combine the least square loss, L1 loss, and
PSNR loss as the final loss function. Equations (4) and (5)
represent the least square loss

LcLSGAN (G) = E(xMS_V,xPAN)∼Pdata(xMS_V,xPAN)[
(DxMS

(G (xMS_V, xPAN) |xMS_V)− 1)2
]

+ E(xMS_V,xPAN)∼Pdata(xMS_V,xPAN)[
(DxPAN

(G (xMS_V, xPAN) |xPAN)− 1)2
]
, (4)

LcLSGAN

(
DxMS_V , DxPAN

)
=

1

2⎡
⎢⎢⎢⎢⎣

E(xMS_V,xPAN)∼Pdata(xMS_V,xPAN)[(
DxMS_V (xPAN |xMS_V)− 1

)2]
+E(xMS_V,xPAN)∼Pdata(xMS_V,xPAN)[

(DxPAN
(xMS_V |xPAN)− 1)2

]

⎤
⎥⎥⎥⎥⎦

+
1

2

⎡
⎢⎢⎢⎢⎣

E(xMS_V,xPAN)∼Pdata(xMS_V,xPAN)[(
DxMS_V (G (xMS_V, xPAN) |xMS_V)

)2]
+E(xMS_V,xPAN)∼Pdata(xMS_V,xPAN)[

(DxPAN
(G (xMS_V, xPAN) |xPAN))

2
]

⎤
⎥⎥⎥⎥⎦ (5)
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where G represents the generator, DxPAN
and DxMS

are two
discriminators with the same structure, and the input true PAN
image and the V channel of the MS image are represented by
xPAN and xMS_V, respectively. In addition, we use xMS_V and
xPAN to represent the condition of the generator and discrimi-
nator; this can guide the generation of the fused image without
a ground truth.

L1 loss represents the difference between the real image and
the generated image. The addition of L1 loss can improve the
clarity of the generated image and thus the quality of the fused
image. In this work, the L1 loss between the real MS image
and the generated image is denoted by LL1_MS, and the L1
loss between the real PAN image and the generated image is
denoted by LL1_PAN. The weights of LL1_MS and LL1_PAN are,
respectively, set as 0.3 and 0.7. The equations of L1 loss are
shown as follows:

LL1_MS (G) = E(xMS,xPAN)∼Pdata(xMS,xPAN)

[‖G (xMS, xPAN)− xMS‖ 1] , (6)

LL1_PAN (G) = E(xMS,xPAN)∼Pdata(xMS,xPAN)

[‖G (xMS, xPAN)− xPAN‖ 1] , (7)

LL1 (G) = 0.3 ∗ LL1_MS (G) + 0.7 ∗ LL1_PAN (G) (8)

where LL1 is the final L1 loss.
PSNR is a widely used image evaluation index that is based

on the errors between corresponding pixels of two images, i.e.,
the evaluation is an error-sensitivity model. In this work, the
PSNR loss between the real MS image and the generated image
is denoted by LPSNR_MS, and the L1 loss between the real PAN
image and the generated image is denoted by LPSNR_PAN. The
weights of LPSNR_MS and LPSNR_PAN are, respectively, set
as 0.3 and 0.7. The equations of PSNR loss are expressed as
follows:

MSE_MS =
1

mn

m−1∑
i=0

n−1∑
j=0

[VF (i, j)− xMS_V (i, j)]2, (9)

LPSNR_MS = 10 ∗ log10
(

MAX2
I

MSE_MS

)
, (10)

MSE_PAN =
1

mn

m−1∑
i=0

n−1∑
j=0

[VF (i, j)− xPAN (i, j)]2, (11)

LPSNR_PAN = 10 ∗ log10
(

MAX2
I

MSE_PAN

)
, (12)

LPSNR = 0.3 ∗ LPSNR_MS +0.7 ∗ LPSNR_PAN (13)

where MSE_MS is the mean square error (MSE) between the
fused V channel and the MS image, and MSE_PAN is the MSE
between the fused V channel and the PAN image. In (9) and (11),
m and n indicate the size of the source image. MAX2

I represents
the maximum pixel value of the image. In this work, the image
is normalized, and, thus, MAX2

I = 1.
Finally, the loss function of the generator can be expressed as

L (G)=LcLSGAN (G) + λLL1 (G) + 0.0001 ∗ LPSNR (14)

where the weight of LL1 is λ. In this work, λ = 100, and the
weight of LPSNR is set to 0.0001.

IV. EXPERIMENTS AND ANALYSIS

In this section, extensive experiments are conducted to verify
the performance of the proposed method with different settings.

A. Dataset

In this work, we adopted a set of remote sensing images
from the University of Maryland’s website,1 which contains MS
images and their corresponding PAN images. The sizes of the
images vary across the datasets. We selected two PAN and MS
image pairs in different scenes for experimental training and
testing; the sizes of the selected PAN and MS images used in the
training set were 1973 × 4096 and 7892 × 16384, respectively.
The sizes of PAN and MS images in the test set were 1920
× 4096 and 7680 × 16384, respectively. Because the original
remote sensing image is very large, we divided the MS and PAN
images into 64× 64 and 256× 256 pixels, respectively, to obtain
a set of registered image pairs. We used a total of 3840 PAN and
MS image pairs in the training set.

B. Experimental Setup

Here we present experiments on our key parameter settings
and network structures. In the encoder of the generator, an MSC
module is employed, the convolution kernel sizes are set as
1, 3, and 5, and the convolution step is set as 1. The dilated
convolution is applied in the RB, whose convolution kernel is
set as 3; the step size is 1, and the dilation is 2. The convolution
kernel of other convolution modules in the decoder is set as 4,
and the step size is 2. In the decoder, the convolution kernel
and step size of the deconvolution modules are set the same as
in the convolution module in the encoder. In the discriminator,
the convolution kernel size of the convolutional layer in all the
convolutional modules is set as 4, and the convolution step size
in the first three convolutional modules is 2; meanwhile, the
step size in the other convolutional modules is set as 1. In the
experiment, the number of training epochs is set as 200, the
learning rate is 0.00002, and the dropout rate is 0.5. We also
propose a composite loss function, in which the weight of the
L1 loss function is set as 100, the weight of the PSNR loss is set
as 0.0001, and the weight of least square loss is set as 1.

1) Comparison Experiment With Different Skip Connections:
Figs. 5–8 show the proposed model’s fusion results and image
enlargement with different skip connections. We can observe
that the fused image can only retain part of the spectral in-
formation in the MS image when the proposed method lacks
the skip connection. A single-side skip connection, i.e., Pro-
posed_NoPAN_Skip and Proposed_NoMS_Skip, which means
either Encoder_MS or Encoder_PAN is connected to the decoder
by the skip connection. The first case can retain most of the
spectral information of the MS image but only a few details of
the PAN image. The second case can retain most of the details of

1[Online]. Available: http://glcfapp.glcf.umd.edu:8080/esdi/index.jsp

http://glcfapp.glcf.umd.edu:8080/esdi/index.jsp
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Fig. 5. First group of fused images and enlarged images produced by the pro-
posed method with or without skip connection. (a) MS image. (b) PAN image. (c)
Proposed_No_Skip. (d) Proposed_NoPAN_Skip. (e) Proposed_NoMS_Skip. (f)
Proposed_Skip.

Fig. 6. Second group of fused images and enlarged images produced by
the proposed method with or without skip connection. (a) MS image. (b)
PAN image. (c) Proposed_No_Skip. (d) Proposed_NoPAN_Skip. (e) Pro-
posed_NoMS_Skip. (f) Proposed_Skip.

the PAN image. To concatenate two encoders with a decoder by
skip connection, the double-side skip connection is used in the
proposed method. In Figs. 5–8, when compared with the first
two cases, the fused image obtained by the proposed method
with double-side skip connection has a better visual effect and
contains more detailed information.

The performance of the proposed model without a skip layer
connection (Proposed_No_Skip) and that of the model with a
single skip connection (Proposed_NoPAN_Skip) are not sat-
isfactory. Therefore, we only compare the objective indica-
tors of the model with a double-side skip connection (Pro-
posed_Skip) and the model with a single-side skip connection

Fig. 7. Third group of fused images and enlarged images produced by the pro-
posed method with or without skip connection. (a) MS image. (b) PAN image. (c)
Proposed_No_Skip. (d) Proposed_NoPAN_Skip. (e) Proposed_NoMS_Skip. (f)
Proposed_Skip.

Fig. 8. Fourth group of fused images and enlarged images produced by the pro-
posed method with or without skip connection. (a) MS image. (b) PAN image. (c)
Proposed_No_Skip. (d) Proposed_NoPAN_Skip. (e) Proposed_NoMS_Skip. (f)
Proposed_Skip.

(Proposed_NoMS_Skip). The average values of different met-
rics are shown in Table I and illustrate that the performance of
Proposed_Skip is better than that of Proposed_NoMS_Skip. In
general, the proposed method with a double-side skip connection
can achieve better performance than that with a nonskip or
single-side skip connection.

2) Comparison of the Proposed Method With or Without
Multiscale Modules: Figs. 9 –12 show the results of the pro-
posed method with and without multiscale modules. The fused
images obtained by our final model have more detailed fea-
tures in the ocean, and most spectral information of the MS
image is retained. In other images, the influence of multiscale



JIN et al.: SEMISUPERVISED RSIF USING MULTISCALE CGAN WITH SIAMESE STRUCTURE 7073

TABLE I
AVERAGED IMAGE EVALUATION INDICES FOR THE PROPOSED METHOD WITH OR WITHOUT SKIP CONNECTION

The bold values represent the value of the optimal image quality indicator.

Fig. 9. First group of fused image of the proposed method with or without multiscale modules. (a) MS image. (b) PAN image. (c) Proposed_No_Multi-scale. (d)
Proposed_2_ Multi-scale. (e) Proposed_Multiscale.

Fig. 10. Second group of fused image of the proposed method with or without multiscale modules. (a) MS image. (b) PAN image. (c) Proposed_No_Multi-scale.
(d) Proposed_2_Multi-scale. (e) Proposed_Multiscale.

Fig. 11. Third group of fused image of the proposed method with or without multiscale modules. (a) MS image. (b) PAN image. (c) Proposed_No_Multi-scale.
(d) Proposed_2_Multi-scale. (e) Proposed_Multiscale.

Fig. 12. Fourth group of fused image of the proposed method with or without multiscale modules. (a) MS image. (b) PAN image. (c) Proposed_No_Multi-scale.
(d) Proposed_2_Multi-scale. (e) Proposed_Multiscale.

modules on the fused image cannot be easily distinguished by
the human eye. Thus, we use ten popular evaluation indicators
to analyze the performance of different multiscale modules.
The results in Table II reveal that the performance of the
MSC module in Encoder_PAN is better than that of the other

two ways (Proposed_2_Multi-scale and Proposed_No_Multi-
scale).

3) Comparison of Different Loss Functions: The fused re-
sults obtained when using different loss functions are shown in
Figs. 13 –15. We can observe that the spectral information of
the MS image is well retained by our composite loss function
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TABLE II
AVERAGED IMAGE EVALUATION INDICES FOR THE PROPOSED METHOD WITH OR WITHOUT MULTISCALE MODULES

The bold values represent the value of the optimal image quality indicator.

Fig. 13. First group of fused image using different loss functions. (a) MS image. (b) PAN image. (c) LSGAN+PSNR. (d) LSGAN+L1. (e) LSGAN+L1+PSNR.

Fig. 14. Second group of fused image using different loss functions. (a) MS image. (b) PAN image. (c) LSGAN+PSNR. (d) LSGAN+L1. (e) LSGAN+L1+PSNR.

Fig. 15. Third group of fused image using different loss functions. (a) MS image. (b) PAN image. (c) LSGAN+PSNR. (d) LSGAN+L1. (e) LSGAN+L1+PSNR.

TABLE III
AVERAGED IMAGE EVALUATION INDICES FOR THE PROPOSED METHOD WITH DIFFERENT LOSS FUNCTIONS

The bold values represent the value of the optimal image quality indicator.

(i.e., the improved LSGAN loss plus PSNR loss), but there
is some serious detail loss. When the PSNR loss is modified
as L1 loss, the detailed information and visual effect of the
fused remote sensing image are greatly improved. When the
improved LSGAN loss and L1 loss are combined with PSNR
loss, the visual effect of the fused image is similar to that of the
combination of LSGAN and L1 loss. Thus, evaluation indices
are used to analyze the image quality.

Table III shows the scores of fused images obtained when
using different composite loss functions. The values in this table

show that the proposed method should adopt the loss function
constituted by the improved LSGAN loss function, L1 loss, and
PSNR loss. The fused images when using our proposed loss
function are better than those obtained when using the combi-
nation of LSGAN and L1 loss; this holds for each evaluation
indices. The results show that the proposed method with the
proposed loss can fuse most spectral information of the MS
image and most of the spatial details of the PAN image. Better
objective indices are also obtained when using our proposed
loss.
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Fig. 16. First group of experimental results of different fusion methods. (a) MS image. (b) PAN image. (c) PCA. (d) GRA. (e) DWT. (f) LAP. (g) DT-DWT. (h)
WTSR. (i) FFIF. (j) DCHWT. (k) MGIVF. (l) ASR. (m) CSR. (n) SWT. (o) PNN. (p) PNN+. (q) Proposed_skip.

C. Comparison Experiments

In this subsection, the proposed method is compared with
existing image fusion methods through subjective visual anal-
ysis and image evaluation indices. Contrast fusion methods
include PCA [37], gradient pyramid (GRA) [37], discrete
wavelet transform (DWT) [37], Laplacian pyramid (LAP) [37],
dual-tree complex wavelet transform (DT-DWT) [38], pan-
sharpening method with wavelet transform and sparse rep-
resentation (WTSR) [18], fast filtering image fusion (FFIF)
[39], discrete cosine harmonic wavelet transform (DCHWT)

[40], multiscale guided image and video fusion (MGIVF) [41],
adaptive sparse representation (ASR) [42], CSR [43], stationary
wavelet transform (SWT) [44], pan-sharpening by convolutional
neural network (PNN) [45], and target-adaptive CNN-based
pan-sharpening (PNN+) [46]. What needs illustration is that
all these methods are performed on PAN images and three-band
MS images.

Figs. 16–21 show six groups of experimental results of dif-
ferent fusion methods. Although the images in Fig. 16(c), (d),
and (i) can retain the spectral information of the MS image,
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Fig. 17. Second group of experimental results of different fusion methods. (a) MS image. (b) PAN image. (c) PCA. (d) GRA. (e) DWT. (f) LAP. (g) DT-DWT.
(h) WTSR. (i) FFIF. (j) DCHWT. (k) MGIVF. (l) ASR. (m) CSR. (n) SWT. (o) PNN. (p) PNN+. (q) Proposed_skip.

the detailed information of the PAN image is seriously lost. In
Fig. 16 (e), (f), (g), (h), (l), (n), (o), and (p), most of the details
in the PAN image are retained, but the significant spectrum of
the MS image is distorted, especially the roof of the building.
In Fig. 16(m) and (k), both the spectral information of the
MS image and the detailed information of the PAN image are

seriously lost, and only part of the features are fused into the
final images. The image in Fig. 16(j) has a good fusion effect
but suffers from spectral distortion and detail loss. Although
images in Fig. 17(c), (e), (g), (h), (j), and (n) present a good
visual effect, there are some blurred areas at the roof of the
building. Meanwhile, images in Fig. 17(d), (f), (k), (l), (o), and
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Fig. 18. Third group of experimental results of different fusion methods. (a) MS image. (b) PAN image. (c) PCA. (d) GRA. (e) DWT. (f) LAP. (g) DT-DWT. (h)
WTSR. (i) FFIF. (j) DCHWT. (k) MGIVF. (l) ASR. (m) CSR. (n) SWT. (o) PNN. (p) PNN+. (q) Proposed_skip.

(p) have serious spectral distortion, and some objects cannot be
distinguished. In Fig. 17(i) and (m), only part of the useful fea-
tures of the MS and PAN images are fused into the final images.
Our proposed method can effectively preserve the details of the
source images and has a good visual effect that can distinguish

buildings, vegetation, topography, etc. The visual effect of the
fused images obtained by the proposed method is closest to the
source images, and the results can well present the features of
the source images.

Similarly, the images in Fig. 18 show that most image fusion
methods can achieve good visual effects. The blurred areas in



7078 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 19. Fourth group of experimental results of different fusion methods. (a) MS image. (b) PAN image. (c) PCA. (d) GRA. (e) DWT. (f) LAP. (g) DT-DWT.
(h) WTSR. (i) FFIF. (j) DCHWT. (k) MGIVF. (l) ASR. (m) CSR. (n) SWT. (o) PNN. (p) PNN+. (q) Proposed_skip.

Fig. 18 (i) and (m) show that these methods [39], [43] fail to fuse
the features of MS and PAN images, while only the spectral in-
formation is kept. In Fig. 18(k) and (l), most spectral information
of the MS image is lost. Besides, the spectral information of the
MS image is distorted in Fig. 18(o). Images in Fig. 19(c) and
(j) have a good visual effect that is close to the source images
but have a certain degree of detail loss. In Fig. 19(d), (e), (g),
and (h), the details of source images are well preserved, but the
spectrum may have serious distortions, especially the building’s
roof and vegetation cover. In Fig. 19(o) and (p), some spectrum
and detailed features are lost. The fusion performance observed
in Fig. 19(f), (k), (l), and (m) is much worse than that of other

fusion methods. In Figs. 20 and 21, we can find a similar problem
that was present in Figs. 16–19. Our experiments show that the
proposed method can effectively fuse the spectral information
of the MS image and the details of the PAN image and that
the method’s performance is competitive compared with other
image fusion methods.

Besides, we adopt ten evaluation indices to further analyze the
performance of different image fusion methods. These metrics
are the average gradient (AG), space frequency (SF), standard
deviation (STD), edge based on similarity measure (Qabf ),
overall information loss (Labf ), mutual information (MI), uni-
versal image quality index (Q), edge-dependent fusion quality
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Fig. 20. Fifth group of experimental results of different fusion methods. (a) MS image. (b) PAN image. (c) PCA. (d) GRA. (e) DWT. (f) LAP. (g) DT-DWT. (h)
WTSR. (i) FFIF. (j) DCHWT. (k) MGIVF. (l) ASR. (m) CSR. (n) SWT. (o) PNN. (p) PNN+. (q) Proposed_skip.



7080 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 21. Sixth group of experimental results of different fusion methods. (a) MS image. (b) PAN image. (c) PCA. (d) GRA. (e) DWT. (f) LAP. (g) DT-DWT. (h)
WTSR. (i) FFIF. (j) DCHWT. (k) MGIVF. (l) ASR. (m) CSR. (n) SWT. (o) PNN. (p) PNN+. (q) Proposed_skip.
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TABLE IV
EVALUATION INDICES CORRESPONDING TO FIRST GROUP OF FUSION RESULTS

The bold values represent the value of the optimal image quality indicator.

TABLE V
EVALUATION INDICES CORRESPONDING TO SECOND GROUP OF FUSION RESULTS

The bold values represent the value of the optimal image quality indicator.

TABLE VI
EVALUATION INDICES CORRESPONDING TO THIRD GROUP OF FUSION RESULTS

The bold values represent the value of the optimal image quality indicator.

index (Qe), weighted fusion quality index (Qw), and structural
similarity (SSIM) [47]−[50]. Tables IV–IX show the evaluation
index values of images fused by different methods; these tables
correspond to Figs. 16–21, respectively. Table X shows the
average values of Tables IV–IX.

In Tables IV–IX, most of the scores of our method are better
than those of other methods, and only a few values are lower
than those of FFIF and ASR. However, the performance of our
method is better than that of FFIF and ASR in terms of visual
effect; for example, the fused images of ASR in Figs. 18, 20, and

21 are unsatisfactory due to serious spectral distortion. Besides,
although some values of MGIVF are higher than those of the
proposed method, the visual effect of the proposed method is
significantly better than that of MGIVF. In addition, Table VIII
combined with Fig. 20 show that the performance of DCHWT
is slightly higher than that of the proposed method in terms of
AG because of its higher definition. Moreover, although one
index of LAP, PNN, and PNN+ is higher than that of the
proposed method, the fused images of the proposed method are
still competitive.
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TABLE VII
EVALUATION INDICES CORRESPONDING TO FOURTH GROUP OF FUSION RESULTS

The bold values represent the value of the optimal image quality indicator.

TABLE VIII
EVALUATION INDICES CORRESPONDING TO FIFTH GROUP OF FUSION RESULTS

The bold values represent the value of the optimal image quality indicator.

TABLE IX
EVALUATION INDICES CORRESPONDING TO THE SIXTH GROUP OF FUSION RESULTS

The bold values represent the value of the optimal image quality indicator.

In Table X, although the SSIM scores of MGIVF are higher
than those of the proposed method, most average scores of the
proposed method are higher; thus, our proposed method can
fuse more information from the source images into the fused
image. Besides, the metrics of each experiment are provided by
six tables in the supporting document, in which the scores of the
proposed method are competitive when compared with other
methods.

The experimental results in Figs. 16–21 and metrics in
Tables IV–IX show that the proposed method can effectively

integrate the spectral information of the MS image and the details
of the PAN image into the fused images. These results reveal
that the proposed method can achieve good performance in both
visual effect and objective indices, and, thus, it is a competitive
RSIF method.

V. CONCLUSION

In this work, a new semisupervised RSIF method based
on cGANs is proposed to solve the problem existing in most
DL-based fusion methods that need a ground truth or reference
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TABLE X
AVERAGE VALUES OF TABLES IV−IX

The bold values represent the value of the optimal image quality indicator.

image (with high spatial and spectral resolution) for training.
This method is an end-to-end image fusion model that only
uses the PAN image and MS image as the input to generate
the high-quality fused image. In addition, an encoder with a
pseudo-Siamese structure is proposed by combining a multi-
scale module and multiskip connection; thus, we can extract
the unique features of the PAN and MS images simultaneously.
Therefore, the fused image can retain both the spatial details of
the PAN image and the spectral information of the MS image.
We also propose a compound loss function that uses the least
square loss function as adversarial loss, and we combine it with
the L1 loss and PSNR loss to measure the errors between the
fused image and the source images. Experiments show that the
proposed method can achieve satisfactory performance, and that
it has obvious advantages over most existing methods.
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