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Integration of Crop Growth Model and Random
Forest for Winter Wheat Yield Estimation

From UAV Hyperspectral Imagery
Siqi Yang , Ling Hu, Haobo Wu, Huazhong Ren , Hongbo Qiao, Peijun Li , and Wenjie Fan

Abstract—Accurate and timely crop yield estimation is critical
for food security and sustainable development. The rapid develop-
ment of unmanned aerial vehicles (UAVs) offers a new approach
to acquire high spatio-temporal resolution imagery of farmland at
a low cost. In order to realize the full potential of UAV platform
and sensor, machine learning has been introduced to estimate
crop yield, but the shortages of field measurements have troubled
researchers. In this article, the CW-RF model, a new wheat yield es-
timation model suitable for the North China plain, was established
using random forest, and the crop growth model (the CERES-wheat
model) was chosen to simulate abundant training samples for
random forest at field plot scale. According to CERES-wheat model
simulation, the leaf area index (LAI) and leaf nitrogen content
(LNC) at the wheat jointing and heading stages were selected
as the most sensitive parameters, and were retrieved from UAV
hyperspectral imagery using the directional second derivative and
angular insensitivity vegetation index methods, respectively. Then
the retrieved LAI and LNC results were input into the CW-RF
model to estimate winter wheat yield. The field validation in Luohe,
Henan showed that the root-mean-squared error of the retrieved
LAI and LNC were 6.27% and 12.17% at jointing stages, 9.21%
and 13.64% at heading stages, respectively. The RMSE of estimated
yield was 1,008.08 kg/ha, and the mean absolute percent error
of estimated yield was 9.36%, demonstrating the available of the
CW-RF model in wheat yield estimation at field plot scale. Apart
from Luohe, validations in some other fields (e.g., Xiaotangshan,
Beijing), prove the wide applicability of the CW-RF model. In
addition, the UAV hyperspectral data were found to significantly
improve the retrieval accuracy, and further improve CW-RF model
estimation accuracy. In conclusion, this article showed that the
CERES-Wheat model simulation can be important data source
for machine learning-based wheat yield estimation model at field
plot scale, and the hyperspectral sensor mounted on a UAV is a
feasible remote sensing data acquisition mode for winter wheat
growth monitoring and yield estimation.
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I. INTRODUCTION

CROP yield is one of the most critical issues affecting
national economic development and food security [1], [2].

Accurate and timely crop yield estimation is essential for preci-
sion agriculture and sustainable development, and can provide
strong support for agricultural decision-making and manage-
ment [3]. Traditional crop yield estimation heavily depends on
ground field surveys, which are costly, time consuming and
prone to large errors [4].

Since the 1970s, satellite remote sensing data have been
broadly used for non-destructive crop yield estimation in large
region scale [5], [6]. Numerous studies have taken an empiri-
cal approach based on vegetation indices [7]–[9], and showed
that there is a linear relationship between crop yield and veg-
etation indices such as the normalized difference vegetation
index (NDVI), a soil-adjusted vegetation index (SAVI), and
green vegetation index. Previous studies [10]–[13] have also
reported that there are relationships between crop yield and
crop biophysical and biochemical parameters, such as the leaf
area index (LAI), the fraction of absorbed photosynthetic active
radiation (FPAR), and the leaf nitrogen content (LNC). Some
studies concentrated on the empirical models which depended
on the relationships between these parameters retrieved from
remote sensing and crop yield to estimate the final crop yield
[14], [15]. These models have successfully estimated the crop
yield in the region scale from satellite imagery, and have been
widely used due to their simplicity, calculation convenience, and
acceptable accuracy. However, relationships established in this
way are only applicable for local regions and specified time, and
seldom involves the mechanism of crop growth.

The crop growth models are process-oriented and dynamic
simulation models, providing a useful approach to simulate crop
growth processes and obtain agricultural data at field plot scale,
such as LAI, biomass, and yield [16], [17]. The widely used crop
growth models include CERES [18] and GOSSYM [19] series
models from the United States, SUCROS [20] series models
from the Netherlands, and CCSODS [21] series models from
the China. The accuracy of crop growth models is higher in
simulating crop growth parameters, but the structure and process
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are more complicated compared with the empirical models [22].
A large number of input parameters are needed to drive the
crop growth models. Some input parameters are difficult to
collect, and some parameters become unavailable because of
the variability on region scale, so that these models are limited
in its practical application [23]. Therefore, integration of remote
sensing and crop growth models has become the highlights in
the frontier of crop growth monitoring and yield estimation
[24]. Some studies focused on assimilating remote sensed crop
biophysical parameters into the crop growth model to obtain the
estimated yield [25]–[27], so that the problem of spatial scale
incompatibility can be solved. But this algorithm is complex, and
depended on the time-effectiveness of satellite remote sensing.

In recent years, the development of sensor technology
and technological advancements in unmanned aerial vehicles
(UAVs) provide an advanced platform for data acquisition [28].
Compared with satellite remote sensing, UAV remote sensing
has the advantage of high spatial-temporal resolution, low-cost,
flexibility and versatility [29]. Some researchers have conducted
research on crop yield estimation by UAV remote sensing based
on vegetation indices methods. Geipel et al. [30] demonstrated
that three vegetation indices calculated from UAV RGB images
were highly correlated with corn grain yield. Zhou et al. [8] also
analyzed the relationships between rice grain yield and several
vegetation indices at the booting stage and multiple growth
periods based on UAV imagery, and showed that there was a
high correlation between grain yield and vegetation indices. But,
the relationships are still locally applicable for only specified
regions and time.

With the rapid development of artificial intelligence, the ap-
plication of machine learning algorithms in crop yield estimation
has been gradually increasing [6], [31], [32]. The machine
learning including support vector machine, artificial neural net-
works, deep learning, and random forest, is an efficient empirical
method for classification and prediction [33]. However, the
amount of field measured yield data cannot meet the number
of samples required for machine learning framework, and direct
training with measured data may result in model overfitting.
Among the current machine learning algorithms, the random
forest algorithm was widely used in crop yield estimation at
the large regional scale, and has achieved accurate predictions
[34], [35], due to its unbiased estimation and suitability for small
sample data [36]. Therefore, in this article, we introduced crop
growth model simulation to increase the number of samples,
then using the random forest algorithm to build a crop yield
estimation model suitable for the UAV imagery.

The primary objectives of this article include: first, developing
a new winter wheat yield estimation model (the CW-RF model)
using the random forest regression algorithm in combination
with the CERES-Wheat model suitable for UAV hyperspectral
imagery; and second, testing the performance of the LAI and
LNC retrieval methods for the hyperspectral sensor mounted on
the UAV; third, assessing the potential for UAV remote sensing
in yield estimation and analyze the possible error sources.

The remaining parts of this article are organized as: Sec-
tion II introduces the study area, experimental design, image
acquisition and processing, and field data collection; Section III

Fig. 1. Overview of the study area. (a) Geographical location of the experi-
mental site. (b) Illustration of field data collection. (c) RGB orthomosaic imagery
collected by a UAV on March 22, 2019 showing the spatial location of the 40
plots.

presents the methods used in this article, including the CERES-
wheat model, sensitive analysis, random forest algorithm, the
development of CW-RF model, the LAI and LNC retrieval
method and model validation; Section IV shows the retrieved
and estimated results, and Sections V and VI provide discussion
and conclusions, respectively.

II. MATERIALS

A. Study Area

The study was conducted at the experimental station of Na-
tional Agriculture Production base for high quality wheat, which
is located in Luohe, Henan Province, China, (113°52′54′′E,
33°41′59′′N) at an altitude of 63 m (see Fig. 1). The study
area has a warm temperate humid continental monsoon climate,
with mild cold winters, hot rainy summers, and short spring and
autumn seasons. The annual average temperature, number of
frost-free days, and precipitation are 14.6°C, 220, and 797.2 mm,
respectively. The temporal distribution of rainfall is extremely
uneven and is concentrated in the summer months, with summer
precipitation accounting for approximately 70% of the annual
precipitation. The annual sunshine duration is between 2187
and 2359 h. The predominant soil texture is moist and the
organic matter content of the soil is 10–20 g/kg in the study
area. The main crops planted in the study area are summer corn
and winter wheat. The growth period of winter wheat is mainly
from October to June of the next year.

B. Experimental Design

An experiment involving four different winter wheat cultivars
and four different nitrogen application levels was designed for
this article. Aikang 58, Zhoumai 27, Xinong 509, and Yumai 49-
198 were selected as the test cultivars (see Fig. 2). The nitrogen
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Fig. 2. Spatial distribution of whole plots in experimental area.

treatments were 0, 120, 225, and 330 kg/ha. Half of the nitrogen
fertilizer was used as base fertilizer, with the other half applied
at the jointing stage of the winter wheat. In addition, 135 kg/ha
P2O5 and 105 kg/ha K2O fertilizer supplements were applied to
all field plots. The experiment had a randomized complete block
design. As the control group, the 0 kg N per hectare treatment
had only one block with an area of 100 m2 (10 × 10 m), while
the other treatments had three replications and each plot had
an area of 130 m2 (10 × 13 m). A total of 40 plots were used
in the article. The spatial distribution of the plots is shown in
Fig. 2. The wheat sowing date was October 17, 2018 and the
wheat harvesting date was June 2, 2019. The field management
practices were the same as those generally used in high yield
wheat fields.

C. Image Acquisition and Processing

The UAV used in this article was the DJI Matrice 600 Pro (SZ
DJI Technology Co., Ltd., Sham Chun, China) with six rotors,
which performs in a very stable manner at low altitudes and
low wind speeds [see Fig. 3(a) and (b)]. The maximum payload
capacity of the UAV is 6 kg, and the maximum hover time
without any load is 38 min. Its working environment temperature
is between -10 and 40 °C. A hyperspectral imaging instrument,
Pika L (Resonon Inc., Bozeman, MT, USA) was mounted on the
UAV to acquire hyperspectral images [see Fig. 3(c)]. The Pika
L has a short exposure time for push-broom imaging, weighs
0.6 kg, and measures 10.0 × 12.5 × 5.3 cm3. It’s operating
range spans from the visible to the near-infrared, with a spectral
range of 400∼1000 nm, and its spectral resolution was 2.1
nm. Collected radiation data was recorded as a hyperspectral
cube, with 900 samples and up to 2000 lines. Synchronously

with the UAV-based hyperspectral data acquisition, an L1D-20C
digital camera (Hasselblad Inc., Gothenburg, Sweden) mounted
on another UAV (DJI Mavic 2 Pro; SZ DJI Technology Co.,
Ltd., Sham Chun, China), with four rotors, also acquired digital
images. These digital images were used for the orthorectification
of hyperspectral images.

The UAV flight was conducted under a clear sky, with cloud-
less and windless environmental conditions between 10:00 and
14:00 local time during the wheat tilling, jointing and heading
stages (December 17, 2018, March 23, 2019 and April 19, 2019).
An automatic control system was used to plan flight path. The
flight altitude was 100 m and the speed was 3 m/s for the
acquisition of hyperspectral and digital images. A total of 150
bands were selected for the hyperspectral imaging instrument
and the exposure parameters of the sensor were set manually
according to sunlight conditions. The hyperspectral images were
continuously acquired during the flight at 90 fp/s and saved to a
mobile hard drive. Before each flight, a calibration white plate
(100% reflectance) and four 1.2 × 1.2 m standard targets with a
fixed reflectance of 5%, 20%, 40%, and 60%, respectively, were
placed on the ground within the UAV flight path and captured
in the hyperspectral image. This was used for the radiation
correction of hyperspectral images.

The process workflow for the hyperspectral images included
radiometric calibration, radiometric correction, atmospheric
correction, geometric correction and image mosaicking [37],
[38]. Radiometric calibration was performed by a hyperspectral
sensor calibration file using Spectronon software (Resonon Inc.,
Bozeman, MT, USA, ), and the original digital number values of
the images were converted to an apparent radiance. Radiometric
correction was based on four standard targets. According to the
relationship between the radiance of targets in airborne images
and fixed reflectance, the apparent radiance data was trans-
formed into surface reflectance data using a least square linear
method. Second Simulation of a Satellite Signal in the solar
spectrum (6S) model was adopted to carry out atmospheric cor-
rection. Geometric correction included both lens distortion cor-
rection and orthorectification. The georectify tool in Spectronon
software was used for lens distortion correction. In addition, a
digital orthophoto map (DOM) was generated from UAV-based
digital images using Photoscan Professional software (Agisoft
LLC., ST. Petersburg, Russia). Then, an orthographic correction
was applied based on ground control points that were extracted
manually between DOM and hyperspectral images. Finally,
Spectronon software was used to mosaic images. The ortho
hyperspectral images obtained previously were resampled to 0.1
m and projected into the WGS84 coordination system. Color
composite images of hyperspectral data corresponding to the
jointing and heading stages are shown in Fig. 4.

D. Field Data Collection

Field measurements and UAV flights were conducted simulta-
neously. The collected data mainly included the LAI, LNC, and
the spectral reflectance of the canopy during the growth stage of
winter wheat. Repeated nondestructive sampling was carried out
in each plot for the determination of the LAI and spectra, while
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Fig. 3. UAV systems and hyperspectral sensor. (a) DJI M600 Pro Hexacopter platform. (b) Autonomous flight control system and telemetry and telecontrol
system. (c) Pika L hyperspectral sensor.

Fig. 4. True color composite images based on UAV hyperspectral data. (a)
Jointing stage. (b) Heading stage. The wavelength of the red band is 659 nm, the
wavelength of the green band is 549 nm, and the wavelength of the blue band is
479 nm.

destructive sampling was carried out in each plot for the deter-
mination of LNC. Three clusters from each plot were randomly
selected to determine the LAI using a plant canopy analyzer
(LAI-2000; LI-COR Inc., Lincoln, NE, USA). The LAI for each
plot was calculated as an average. The ground hyperspectral data

was measured using a field spectrometer (FieldSpec 3; Analytica
Spectra Devices Inc., Longmont, CO, USA), with a spectral
range of 350–2500 nm and spectral resampling interval of 1 nm.
Calibration was conducted before and after the measurement
using a calibration plate and was repeated ten times to obtain
an average. Ten wheat plants were randomly cut with scissors
in each plot, and their green leaves were killed at 105 °C for 30
min in the laboratory, then kept at 70–80 °C, dried, and crushed,
before the total nitrogen content of leaves was determined. At
winter wheat maturity, a 1 m2 sampling area from each plot was
harvested manually for the calculation of yield. The number of
winter wheat spikes and grains in the sampling area was counted.
The thousand grain weight was calculated after drying under
sunlight, and the yield of winter wheat was determined.

III. METHODOLOGY

Fig. 5 shows a concept map for winter wheat yield estimation
based on the integration of the CERES-Wheat model and random
forest algorithm.

First, the parameters selected on the basis of typical conditions
for the North China Plain, including local weather and soil
conditions, plant characteristics and the general management
information were input into the CERES-Wheat model, and
abundant simulated data was produced. Second, based on the
simulation results, the optimal growth parameters and periods
for the wheat yield were selected using sensitive analysis. Then,
the relationship between the optimal growth parameters at best
stages and wheat yield was developed with the use of the random
forest regression algorithm, which was called the CW-RF model.
Besides, the parameters were retrieved from UAV hyperspectral
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Fig. 5. Concept map for winter wheat yield estimation based on the integration of the CERES-Wheat model and random forest algorithm.

imagery using the proper method. Finally, the retrieved results
were input into the CW-RF model, and the estimated winter
wheat yield was obtained. Compared with the measured yield,
the accuracy of the model was verified.

A. CERES-Wheat Model

The CERES-Wheat model, employed in this article, is a deter-
ministic model to simulate the growth of wheat. It was originally
developed under the auspices of the USDA-ARS Wheat Yield
Project and the U.S. government multiagency AGRI-STARS
program in the late 1970s [39]. The CERES-Wheat model is
one of the main models incorporated in the decision support sys-
tem for agrotechnology transfer (DSSAT), and simulates wheat
growth, development, and yield data by considering photosyn-
thesis, nutrient absorption, water absorption and transpiration,
organ formation and senescence. DSSAT v.4.5 model was used
for the study.

The main inputs of CERES-Wheat include weather and soil
conditions, plant characteristics, and field management. In order
to make the simulation data more suitable for the situation of
the North China Plain, we considered inputting several sets
of weather, soil, plant characteristics, and general management
parameters adopted in the North China Plain into the CERES-
Wheat model.

The minimum weather inputs of the model are daily solar
radiation (SRAD, MJ m-2 day-1), minimum and maximum air
temperature (TMIN and TMAX,°C), and precipitation (RAIN,
mm). These temperature and precipitation values were obtained
from the China meteorological data sharing service system
website, with the exception of solar radiation. The approximate
daily solar radiation was calculated from the daily sunshine
hours recorded on the same website. According to the Angstrom
empirical formula [40], the expression of daily solar radiation is

as follows:

Rs = Rmax

(
as + bs

n

N

)
(1)

where Rs is daily solar radiation; Rmax is daily astronomi-
cal radiation; n is daily sunshine hours; N is the theoretical
daily maximum sunshine hours; and as and bs are empirical
coefficients values of as = 0.18 and bs = 0.55 for the North
China Plain, as recommended by the Food and Agriculture
Organization of the United Nations (FAO).

The input soil dataset included general information, such as
soil type, color, albedo, drainage, and runoff potential, and for
each soil layer it included information such as the proportion of
clay, silt, stones, the content of organic carbon, cation exchange
capacity, total nitrogen, pH, bulk density, saturated soil water,
and other factors.

The input field management information was obtained from
the exact practices adopted in the experiment. In addition to
basic planting information, such as the date of planting and
harvesting, planting population, and planting depth, irrigation
and fertilizer information were recorded and used in the model.
The irrigation method was sprinkler irrigation and the main
nitrogen fertilizer was urea. The irrigation and fertilizer amounts
were set as variables.

Plant characteristics are generally determined by debugging
the cultivar parameters file in the CERES-Wheat model. The
definition, unit, and range of these parameters are given in Table
Ⅰ. The program is usually debugged by the generalized likelihood
uncertainty estimation method, but in this article, different sets of
calibrated wheat cultivar parameters were derived from several
literature sources [41]–[43] and empirical values to simulate
more universal results.

The output data of the CERES-Wheat model included the
result variables, such as wheat yield and grain protein content,
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and process variables such as LAI, FPAR, LNC, above-ground
biomass, stem nitrogen content, root nitrogen content and other
factors. The process data was recorded on a daily timescale.

B. Sensitive Analysis

Establishing the relationship between simulated multi-period
crop growth parameters and simulated yield may lead to model
redundancy. Therefore, we considered using a correlation anal-
ysis to select the optimal parameters of the best growth period.

The Sensitive analysis was utilized for select optimal growth
parameters and periods. Sensitivity analysis is realized by cal-
culating Pearson correlation coefficient. The basic function is
represented as

r =

∑n
i=1

(
Xi − X̄

) (
Yi − Ȳ

)
√∑n

i=1

(
Xi − X̄

)2√∑n
i=1

(
Yi − Ȳ

)2 (2)

where the r represents the Pearson correlation coefficient, Xi

represents simulated wheat growth parameter in this article, Yi

represents simulated wheat yield, X̄ and Ȳ denotes the mean
value of Xi and Yi respectively.

First, we divided the whole growth process of wheat from
sowing to maturity into eight stages: tilling stage, jointing stage,
flagging stage, heading stage, flowering stage, filling stage,
and maturing stage. Second, considering the growth parameters
that can be effectively retrieved by remote sensing, the LAI,
LNC, and FPAR were selected among the numerous simulated
parameters in this article. Then, the data of each growth stage
were averaged. Finally, the Pearson correlation coefficients of
these parameters during different growth stages were calculated.

C. Random Forest Algorithm

The random forest is a popular machine learning algorithm
based on a classification and regression tree (CART). The CART
represents a decision tree structure in the form of binary tree
formed by hierarchical organization of training datasets under
a series of conditions or restrictions. The random forest can be
used for estimating a categorical variable (classification), and
also can be used for estimating a continuous variable (regres-
sion). The random forest regression algorithm has good perfor-
mance in predicting high dimensional datasets and is extremely
insensitive to noisy datasets [44].

The random forest begins with many bootstrap samples that
are extracted randomly from the original training dataset. The
regression trees are created by extracting a part of training
samples through replacement, and some samples can be selected
repeatedly while some samples are out of bag. A regression tree
is fitted by a set of the bootstrap samples and each node per
tree is chosen from a small set of input variables, which are
selected randomly from the total dataset. The estimated value of
an observation is calculated through averaging all of the trees.

The random forest regression algorithm has achieved effective
results in various remote sensing studies, including agricultural
monitoring and management applications. In this article, to
model the relationship between wheat growth parameters and
wheat yield, random forest algorithm was run using the random

forest package (v.4.6-14) in R software (v.3.6.1). Two main
parameters were defined and optimized in the random forest
algorithm: the number of trees that was created (“ntree” pa-
rameter; default value is 500 trees), and the number of different
variables for tree node splitting (“mtry” parameter; default value
is one-third of the total number of variables). The random forest
algorithm was conducted as follows.

1) Setting proper ntree: For each regression tree, ntree bootstrap
samples are randomly extracted from the original data as the
training dataset;

2) Setting proper mtry: If the feature dimension of samples is M,
a constant mtry < M needs to be specified, and mtry variables
are randomly selected from M variables. For each node per
tree, the best split is chosen among mtry variables.

3) Each tree is developed to its maximum expansion, and new
data is estimated by averaging the estimation results of all
trees.

D. Development of CW-RF Model

In this article, we designed four sets of different weather
parameters, which were obtained from the annual mean weather
data of four provincial meteorological stations on the North
China Plain. These weather stations are located in Beijing,
Luohe (Henan Province), Weifang (Shandong Province) and
Xuzhou (Jiangsu Province). These four sites are all located in
the North China Plain with certain representativeness.

In addition, we designed five sets of different soil parameters,
which were selected from typical soil types of five provinces in
the North China Plain. The five provinces are Beijing, Henan,
Shandong, Jiangsu and Anhui Province. The soil data in Beijing
came from field measurements, and Henan Province came from
local soil records, and Shandong, Anhui and Jiangsu Province
were from the China Soil Science Database website (http://vdb3.
soil.csdb.cn/).

Ten sets of different wheat cultivar parameters, which came
from literature and prior knowledge, seven sets of different
nitrogen fertilizer parameters, which were 0, 60, 120, 180, 225,
270, 330 kg/ha, respectively, and three set of different irrigation
parameters, which were 10, 30, and 50 mm, were set in this
article. These four different types of data were combined and
input into the DSSAT software (with the CERES-Wheat model
encapsulated), and a total of 4200 groups of output data are
produced.

The Pearson correlation coefficient between these growth
parameters and simulated yield were analyzed (see Table Ⅱ).
The correlation between both the LAI and LNC and yield were
significantly higher than the correlation between FPAR and
yield, and therefore the LAI and LNC were selected as the best
growth parameters. The strongest correlation between the LAI
and yield was found in the heading period of wheat, while the
strongest correlation between the LNC and yield was found in
the jointing period of wheat. Therefore, the jointing and heading
period were selected as sensitive growth periods in this article.
The data distribution of the simulated LAI, LNC, and yield is
shown in Fig. 6. It shows the simulated data was suitable for
training the random forest algorithm.

http://vdb3.soil.csdb.cn/
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Fig. 6. Box-plot of simulated LAI, LNC, and wheat yield.

Fig. 7. Association between RMSE and ntree used in random forest.

The simulated LAI and LNC at jointing and heading stages
and wheat yield data were input into the random forest regression
algorithm, the CW-RF model was developed. For the three stages
of random forest algorithm, the parameter values (ntree and
mtry) were optimized using the simulated training dataset. The
RMSE of the model and out-of-bag error were used to find
the values that could best estimate the winter wheat yield. The
out-of-bag error was lowest when mtry was set to half of the
total variables. When ntree > 200, RMSE roughly reached the
minimum and changed smoothly (see Fig. 7). The ntree was set
to 200 to improve the calculation efficiency. According to the
results, ntree was set to 200, and mtry was set to 2.

Optimal parameters were used to generate variable impor-
tance. The importance of variables was evaluated by the influ-
ence of variables on estimation accuracy, which allowed for a
quick assessment of the relevance between predictors and wheat
yield. In this article, percentage increase in mean square error
(%IncMSE) was used to measure the importance of variables
(see Fig. 8). The results show that LNC at heading stage is
the most important explanatory variable in the CW-RF model,

Fig. 8. Variable importance plot generated by the random forest algorithm.

followed by LAI at heading stage and LAI at jointing stage, and
finally LNC at jointing stage.

E. Remote Sensing Retrieval Method

The LAI of winter wheat in UAV hyperspectral remote sensing
images was retrieved by the directional second derivative (DSD)
method [45], while the LNC of winter wheat was retrieved based
on the novel angular insensitivity vegetation index (AIVI) [46].

The DSD is an algorithm that can effectively eliminate the
soil background effect and bidirection effect (view direction and
solar direction), and then retrieve the LAI. The spectrum analysis
of leaf and soil indicated that the DSD value of leaf ρ

′′
v was much

larger than that of the soil spectrum ρ
′′
g within the 0.68–0.71 and

0.73–0.75 μm bands. When ρ
′′
v � ρ

′′
g , the second derivative of

reflectance for the object ρ′′ can be expressed as

ρ′′

ρ′′
v

= 1−
[
1− Ed

μ0F0 + Ed

(
1− e−λ0

Gv
µv

(1−Γ(Φ))LAI
)]

e−λ0
Gv
µv

LAIΓ(Φ) (3)

where Gv is the G function of the view direction; μv = cosθv,
θv is the viewing zenith angle; λ0 is the Nilson parameter,
which is used to describe the clumping effect of foliage; Γ(Φ)
is an empirical function used to describe the hot-spot effect;
μ0F0 is the direct irradiance of the sun, and Ed is the diffuse
irradiance of the atmosphere. When Φ = 0 and Γ (Φ) = 1, if
b = λ0 Gv/μv , the expression can be simplified as follows:

ρ′′

ρ′′
v

= 1− e−bLAI. (4)

Equation (4) shows the approximate correlation between the
second derivative and the LAI. Based on this equation, the winter
wheat LAI was retrieved rapidly and accurately, removing the
angle and soil background effects.

In this article, the AIVI was chosen to retrieve LNC [46].
The AIVI is not sensitive to angle and has a strong correlation
with LNC of winter wheat. Based on red-edge, blue, and green
bands, AIVI overcomes the influence of different experimental
conditions and view zenith angles. The results showed that the
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Fig. 9. Framework for the development of CW-RF model, crop growth parameters retrieval and model validation.

AIVI had a stronger association with LNC compared to tradi-
tional vegetation indices, suggesting that the linear relationship
between AIVI and LNC would be more stable and accurate. The
AIVI is expressed as follows:

AIVI =
R445 × (R720 +R735)−R573 × (R720 −R735)

R720 × (R573 +R445)
(5)

where Ri is reflectance at i wavelength (nm).

F. Model Validation

The accuracy verification mainly consisted of two indexes,
the mean-absolute-percent error (MAPE, %) and the root-mean-
squared error (RMSE). The MAPE and RMSE were calculated
using the following formula

MAPE =

m∑
i=1

∣∣∣∣ ŷ − y

y

∣∣∣∣× 100

m
(6)

RMSE =

√√√√ 1

m

m∑
i=1

(ŷ − y)2 (7)

where ŷ represents estimated value,y represents measured value,
and m is the number of samples.

Fig. 9 shows the framework for winter wheat yield estimation
in this article. The algorithm framework mainly includes the

development of CW-RF model, crop growth parameters retrieval
and model validation.

IV. RESULTS

A. Retrieval Results

1) Wheat LAI Retrieved From UAV Hyperspectral Data: The pix-
els of the UAV-based hyperspectral images were resampled to
1 m. The DSD method was applied to the UAV hyperspectral
images when parameter b in simplified formula approximately
was 0.5 [45], inversion maps of wheat LAI during the jointing
and heading stage were obtained (see Fig. 10).

It can be seen from the ridges between the plots that the soil
information was mostly removed and the vegetation information
was retained. Each plot was basically covered by winter wheat
and the wheat LAI varied from 0 to 4. In addition, the wheat LAI
of each plot was obtained by averaging the LAI of each pixel in
the plot.

The measured LAI of 40 field plots were all used to validate
the accuracy of wheat LAI retrieval. A comparison of the LAI
retrieval and measured values are shown in Fig. 11. In both the
jointing stage and heading stage of the wheat, the scattered points
were evenly distributed around the 1:1 line, the RMSE were
6.27% and 9.21% respectively, and the MAPE were 2.62% and
3.85% respectively. This showed that the retrieved LAI values
were close to the measured values, which indicated the reliability
of the DSD algorithm.
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Fig. 10. LAI spatial distribution map retrieved from UAV-based hyperspectral data. (a) Jointing stage. (b) Heading stage.

Fig. 11. Comparison between the retrieved and measured LAI at the jointing and heading stages. (a) Jointing stage. (b) Heading stage.

2) Wheat LNC Retrieved from UAV Hyperspectral Data: The
pixels of UAV-based hyperspectral images were resampled
to 1 m, and the AIVI was calculated from the UAV hy-
perspectral images at the jointing and heading stages of
wheat.

Due to the small number of measured samples, the leave-one-
out cross validation was applied in LNC retrieval. One measured

sample was left for validation at a time, and the remaining
measured samples were used to calibrate the LNC model in
one training. According to the measured LNC and AIVI of the
corresponding pixels, the relationship between the wheat LNC
and AIVI was obtained by linear regression. The validation
results were combined into a complete inversion map, and Fig.
12 showed the retrieved wheat LNC during the jointing and
heading stages.
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Fig. 12. LNC spatial distribution map retrieved from UAV-based hyperspectral data. (a) Jointing stage. (b) Heading stage.

Fig. 13. Comparison between the retrieved and measured LNC at the jointing and heading stages. (a) Jointing stage. (b) Heading stage.

The LNC retrieval results also retained vegetation infor-
mation and eliminated soil information by setting thresholds
for the AIVI. Fig. 12 shows that the wheat LNC varied
from 0 to 5%. The wheat LNC of each plot was obtained
by averaging the LNC of each pixel in the plot. A compar-
ison of the results of the LNC retrieval and measured val-
ues are shown in Fig. 13. The RMSE at the jointing and
heading stages of wheat were 12.17% and 13.64%, respec-
tively, and MAPE were 3.05% and 3.07%, respectively, which

confirmed the reliability of winter wheat LNC retrieval using
AIVI method.

B. Estimated Yield Results

Based on the retrieval values of winter wheat LAI and LNC
in each plot, the estimated yield in each plot was acquired using
the CW-RF model. Fig. 14 shows a spatial distribution map
of the measured yield, estimated yield, and error percentage,
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Fig. 14. Yield spatial distribution map. (a) Measured yield. (b) Estimated yield. (c) Error percentage.

Fig. 15. Relationship between measured and estimated winter wheat yield.

respectively. It can be seen that the absolute error of most plots
was less than 10%. Fig. 15 shows the comparison of estimated
and measured yield. According to the statistical analysis, the
MAPE was 9.36% and RMSE was 1008.08 kg/ha, which showed
that the model established in this article performed well and was
capable of plot scale yield estimation.

V. DISCUSSION

A. Error Analysis

According to the concept of CW-RF model, crop growth
model simulation, sample representation and observation are
three main aspects that affect the uncertainties of crop yield

estimation [47]. Although the crop growth models (e.g., the
CERES-Wheat model) have robust physical and biological ex-
planations for specific crop yield, the bias of these models
may be increased due to the large uncertainties in the spatial
distribution of weather and soil conditions, plant characteristics,
and field management [48]. The uncertainties of input data may
be transferred to the model simulation results [49]. Therefore, it
is necessary to analyze and summarize the uncertainties of the
CERES-Wheat model.

The simplification of the actual growth process of winter
wheat, the driving parameters given by experience and prior
knowledge, and the regional heterogeneity of some initial con-
ditions, lead to large uncertainties in simulation results of the
CERES-Wheat model. Especially in some extreme weather and
crop growth conditions, the simulation results deviate greatly
from the reality of crop growth. Xiong [50] pointed out that
the CERES-Wheat model could not reflect the effects of dis-
eases, pests and weeds, and could not simulate satisfactory
results under meteorological disaster and extreme environment
stress situation. In addition, the uncertainties caused by spatial
heterogeneity of driving parameters are aggravated when crop
growth models are applied to yield estimation in regional scale.
Observations can provide relatively real growth conditions of
crops, and integrating the advantages of crop growth models
and observations reduce the uncertainties of yield estimation.

Remote sensing provides larger range of observations com-
pared to the site scale, which can reduce the uncertainties from
spatial heterogeneity. Therefore, observation data from remote
sensing is currently widely used in crop growth models for yield
estimation, and most of studies on the uncertainty of the crop
growth model were focus on the model input variables which
were closely related to remote sensing [51]. Li et al. [52] found
that the higher crop parameters retrieval accuracy, the smaller
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uncertainties of crop growth models and yield estimation error.
Therefore, accurate retrieval of crop parameters is a necessary
guarantee for crop growth models.

Since the data source of the CW-RF model was the simulation
results of the CERES-Wheat model, the simulation errors of
the CERES-Wheat model could be transferred to the CW-RF
model. In order to deal with these problems, we hope to introduce
more field measurements in the future research, which has two
benefits: (the field measurements could be used as the training
data of the CW-RF model to reduce the simulation errors and
uncertainties brought by the CERES-wheat model; and the field
measurements could be used to calibrate the CERES-wheat
model to reduce the simulation error and uncertainties.

UAV-based retrieval LAI and LNC were used as the input
of the CW-RF model, the retrieval accuracy directly affected
the accuracy of CW-RF model for yield estimation. Although
UAV operation was strictly in accordance with the standards
during the stage of hyperspectral image acquisition, retrieval
errors were still unavoidable due to uncertain factors, such
as atmospheric conditions and mixed pixels. The influence of
parameters retrieval error on the CW-RF model was further
quantitatively analyzed. Additional 5% and 10% random MAPE
were added to the remote sensed LAI and LNC of winter wheat
at the jointing and heading stages, respectively. The RMSE of
the LAI and LNC were 8.81% and 15.37% under 5% random
MAPE, and 13.72% and 22.83% under 10% random MAPE,
respectively. A total of eight groups of data with random errors
were generated and input into the CW-RF model. A comparison
of the results was given in TableⅢ. The results showed that with
an increase in the LAI and LNC retrieval error, the MAPE and
RMSE of the CW-RF model also increased, and the accuracy
of CW-RF model decreased, demonstrating that the accuracy of
the remote sensed LAI and LNC was essential for ensuring the
estimation accuracy of the CW-RF model. The importance of
the UAV hyperspectral remote sensing retrieval accuracy to the
CW-RF model was also indicated. Based on a standard MAPE
of less than 20% and RMSE of less than 1500 kg/ha, we believed
that the accuracy of the CW-RF model could be guaranteed when
the MAPE and RMSE of the remote sensed LAI were less than
10% and 13.72%, respectively, and the MAPE and RMSE of the
LNC was less than 5% and 15.37%, respectively.

In addition, the empirical methods for the LAI and LNC
retrieval may dilute transferability of the CW-RF model and also
affect the accuracy. The concise and physical model to estimate
LAI and LNC from UAV-based hyperspectral data should be
recommended to avoid the effect of solar-sensor bidirectional
reflectance distribution function (BRDF) and background re-
flectance variation.

The selection of the growth period has a very important influ-
ence on the accuracy of winter wheat yield estimation models
[53]. The jointing and flagging stages are the key periods for
determining the number of ears and grains of winter wheat, while
the heading and filling stages are the key periods determining
the final grain weight. The CERES-Wheat model simulation
results showed that the LAI and LNC at the jointing and heading
stages had the highest correlation with yield, followed by the
flagging and filling stages, but the difference was not significant.

The results coincided with the previous study by Yue et al.
[54]. The study reported that during the later stages of crop
growth, the chlorophyll content of leaves decreases, and the
correlation between crop growth parameters and dry matter
accumulation decreases. The selection of growth periods may
have an impact on the retrieval results, therefore we added more
growth periods into the CW-RF model. The MAPE and RMSE
were calculated after adding the flagging and flowering stages
based on the jointing and heading stages in the CW-RF model
(see Table IV).

The results showed that compared with the jointing and head-
ing stages in the CW-RF model (MAPE = 9.36%, RMSE =
1008.08 kg/ha), adding one or more of the flagging and flowering
stages would slightly improve the estimation accuracy, which
was consistent with the conclusion that the accuracy of crop yield
estimation can be improved by using multitemporal data in some
studies [2], [8], [55]. Considering the cost of UAV flights and
the time requirements for earlier yield estimation for agricultural
decision-making, the use of the jointing and heading stages were
identified as a tradeoff for yield estimation in the CW-RF model.

B. Applicability of the CW-RF Model

In this article, the CW-RF model was used to estimate the
wheat yield. Hyperspectral remote sensing data collected by
UAV and available from the National Precision Agriculture
Research and Demonstration Base in Xiaotangshan, Beijing
(116°23′50′′E, 39°54′59′′N, located in the North China Plain)
was used to verify the applicability of the model. The data was
acquired in 2018, and the UAV type, hyperspectral sensor type,
data type, and processing workflow were same as those used in
this article in Luohe.

Several prevailing winter wheat yield estimation models
based on a statistical correlation analysis [2], [56], [57] were
selected for comparison with the CW-RF model. These empirical
models were based on the relationship between wheat yield
and remote sensed LAI, single-growth period vegetation index,
and multi-growth periods vegetation index, respectively. LAI
was obtained based on the UAV hyperspectral images during
the wheat heading period according to Ren et al. [56], and
NDVI was selected as the vegetation index for modeling. The
wavelength of red band used to calculate NDVI was 650 nm,
and the wavelength of near-infrared band was 857 nm. The
calculation of single-growth period NDVI was based on the
images of wheat heading stage according to Reyniers et al. [57],
while the multigrowth period NDVI was based on the images of
wheat jointing and heading stages according to Wang et al. [2].
The linear relationships among these models and their RMSE
and MAPE values are given in Table V.

These empirical statistical models are easy to implement and
have a high calculation efficiency, but they lack the ability to
describe physical mechanisms. Taking the empirical model 1 in
Table V as an example. The RMSE of the model built in Luohe
was 1025.42 kg/ha, and the MAPE is 9.74%. The RMSE of the
model directly applied to Xiaotangshan is 2112.99 kg/ha, the
MAPE is 34.03%, the RMSE has increased by 106.06%, and
the MAPE has increased by 249.38%. Similar situations also
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TABLE I
CULTIVAR PARAMETERS OF WHEAT IN THE CERES-WHEAT MODEL

TABLE II
CORRELATIONS BETWEEN WHEAT YIELD AND GROWTH PARAMETERS IN THE DIFFERENT GROWTH STAGES

TABLE III
MAPE AND RMSE OF THE CW-RF MODEL UNDER THE DIFFERENT MAPE ERROR AND RMSE ERROR OF PARAMETERS

TABLE IV
MAPE AND RMSE VALUES OF THE CW-RF MODEL WHEN MORE GROWTH STAGES WERE ADDED

TABLE V
COMPARISON BETWEEN PREVIOUS STATISTICAL MODELS AND THE MODEL USED IN THIS ARTICLE

Model 1: Used for establishing the relationship between wheat yield and remote sensed LAI.
Model 2: Used for establishing the relationship between wheat yield and the single-growth period vegetation index.
Model 3: Used for establishing the relationship between wheat yield and the multi-growth periods vegetation index.
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TABLE VI
COMPARISON BETWEEN UAV-BASED HYPERSPECTRAL AND MULTISPECTRAL DATA

appeared in several other empirical models. It can be deduced
that the previous statistical models tend to be applicable locally.
In this article, the yield estimation model had a high accuracy in
both Luohe and Xiaotangshan, and performed well in these two
areas. The input data of the CW-RF model originated from the
CERES-Wheat model, which can reflect a series of physiological
and biochemical processes of crops, and it was not limited by
empirical statistics.

The spatial scale of the CERES-Wheat model was consistent
with the field plot scale used in this article. This matching of scale
ensured that the yield estimation model trained by simulated data
was suitable for UAV remote sensing without assimilation.

In theory, the idea of UAV-based CW-RF model in this article
could be applied to satellite data, but scale suitability problem
still existed when the CW-RF model was directly transferred to
coarse resolution satellite data. It should be further explored how
the CW-RF models and remote sensing retrieval methods in the
study could adapt to high-resolution satellite data in the future.

In addition, as a representative integrated learning technique,
the random forest algorithm used for modeling in this article was
inclusive of all the samples. The few outliers and missing values
did not affect the results, which also ensured the stability of the
model. Thus, the CW-RF model has a wide applicability and is
considered to perform well for winter wheat yield estimation in
the North China Plain.

C. Advantages of Hyperspectral Data

With the continuous development of hyperspectral technol-
ogy, the application of hyperspectral remote sensing in precision
agriculture has become an area of active research. Hyperspectral
data can accurately describe the spectral details and provide
abundant spectral information. Based on sensitive band analysis,
vegetation index construction, and red-edge parameter analysis
methods, some progress has been made in the retrieval of crop
growth parameters, such as the LAI [58], nitrogen content [59]
and yield [60]. Some previously published results [61], [62] indi-
cated that hyperspectral data can improve the inversion accuracy
of crop growth parameters compared with multispectral data, but
a few studies like [63] have come to the opposite conclusion. Liu
et al. [58] believed that this was due to the low signal-to-noise
ratio of sensors, the low spatial resolution of the remote sensing,
and the adoption of methods such as vegetation indexes that
failed to reflect the advantages of hyperspectral data.

For the UAV platform, whether the hyperspectral data can
improve the retrieval accuracy is worth exploring. The RMSE

and MAPE of the retrieved LAI and LNC with hyperspectral and
multispectral data is given in Table Ⅵ. The multispectral data
was acquired by convoluting hyperspectral data with the spectral
response function of the Pika L sensor, and vegetation indices,
such as the NDVI, medium resolution imaging spectrometer,
medium terrestrial chlorophyll index , and RED-EDGE NDVI
[64] were calculated by multispectral data. To obtain the LAI and
LNC, empirical linear relationships between the LAI and LNC
of winter wheat and these vegetation indices were established,
which were based on local training, without considering the
BRDF characteristics of the canopy and background.

The results showed that the precision of the LAI and LNC
retrieved from hyperspectral data was higher than that retrieved
from multispectral data (see Table VI). The DSD method for LAI
retrieval made full use of the advantages of the red-edge band in
hyperspectral data, and effectively restrained the influence of soil
background noise. The selection and combination of sensitive
bands of AIVI for LNC retrieval was reliant on the hyperspectral
data. In addition, the high spatial resolution and stability of
the UAV platform also improved the stability of hyperspectral
data. According to previous discussion, the accuracy of remote
sensing data directly affected the accuracy of the CW-RF model,
and this effect was positively correlated. The spectral resolution
of the hyperspectral sensor on the UAV had the potential to
improve the wheat LAI and LNC estimation accuracy, and then
the accuracy of CW-RF model may be improved, which required
further study.

VI. CONCLUSION

Estimating winter wheat yield early and accurately at field
plot scale is of great significance for field management and
agricultural operation. In this article, a winter wheat yield es-
timation model, the CW-RF model, was established based on
the CERES-Wheat model simulation data using the random
forest regression algorithm. A total of 4200 groups of samples
were simulated using the CERES-Wheat model, involving four
different weather parameters, five different soil parameters,
ten different wheat cultivars, seven different nitrogen fertilizer
parameters and three irrigation parameters that were based on
the current situation in the North China Plain. The jointing and
heading stages were identified as the two key growth periods, and
the LAI and LNC were chosen as the main growth parameters
for winter wheat yield estimation. Therefore, the LAI and LNC
of winter wheat during the jointing and heading stages retrieved
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from UAV hyperspectral images were input into the CW-RF
model to estimate winter wheat yield.

Field validation shows that the CW-RF model has a high ac-
curacy and could provide an accurate yield estimation at the field
plot scale. The CERES-Wheat model simulation could solve the
problem of few samples in the application of random forest algo-
rithm for crop yield estimation, and could also ensure estimation
accuracy. The model performed well in two typical areas of the
North China Plain, Luohe (Henan) and Xiaotangshan (Beijing).
Compared with the traditional winter wheat yield estimation
model, the CW-RF model owns a more general applicability.
More UAV flights and ground measurement experiments will be
conducted in other locations to confirm the applicability of the
model to the North China Plain.

The prior knowledge and empirical methods for the LAI and
LNC retrieval may dilute the transferability of the model and
reduce the physical interpretability of the CW-RF model. The
quantitatively remote sensed models for LAI and LNC deserve
future study.

As the simulation errors and uncertainty of the CERES-Wheat
model could be transferred to the CW-RF model, and this effect
was positively correlated, more field measurements should be
introduced into the CW-RF model to reduce the errors and un-
certainties. In addition, simulation and analysis results showed
that the UAV hyperspectral data could significantly improve
the winter wheat LAI and LNC inversion accuracy, and further
improve the accuracy of winter wheat yield estimation.
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