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Abstract—Forest cover is a crucial factor that influences the
performance of optical satellite-based snow cover monitoring al-
gorithms. However, evaluation of such algorithms in forested land-
scapes is rare due to lack of reliable in situ data in such regions. In
this investigation, we assessed the performance of the operational
snow detection (SCA) and fractional snow cover estimation (FSC)
algorithms employed by the Copernicus Land Monitoring Service
for High-Resolution Snow & Ice Monitoring (HRSI) with a combi-
nation of Sentinel-2 and Landsat-7/8 satellite scenes, lidar-based,
and in situ datasets. These algorithms were evaluated over test
sites located in the forested mountainous landscape of the Pyrenees
in Spain and the Sierra Nevada in the USA. Over the Pyrenees
site, the effectiveness of snow cover detection was evaluated with
respect to a time-series of in situ snow depth measurements logged
over test plots with different aspects, canopy cover, and solar
irradiance. Over the Sierra Nevada site, the impact of ground
vegetation was assessed over the under canopy fractional snow
cover retrievals using airborne lidar-derived fractional vegetation
cover information. The analyses over the Pyrenees indicated a good
accuracy of snow detection with the exception of plots with either
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dense canopy cover or insufficient solar exposure (shaded forested
slope), or both. The operational HRSI algorithm yielded similar
performances (25-30% RMSE) as the computationally intensive
spectral unmixing approach while retrieving the subcanopy ground
FSC over the Sierra Nevada site. It was observed that a more
accurate lidar-derived tree cover density map did not improve the
subcanopy FSC retrievals.

Index Terms—Fractional snow cover area (fSCA), lidar,
normalized difference snow index (NDSI), operational snow cover
monitoring, snow cover area (SCA), tree cover density (TCD),
under canopy snow cover.

1. INTRODUCTION

ERRESTRIAL snow cover is a crucial component of the

global hydrological cycle and strongly influences net ra-
diation balance [1]. A significant percentage of Earth’s snow-
covered regions are vast and geographically remote. Earth ob-
servation satellites have therefore been employed in such regions
for monitoring the state of the global snow cover as early
as the 1960s [2]. Among the different variables that can be
effectively retrieved from the Earth observation satellites, snow
cover information [quantified by either binary snow cover area
(SCA) or fractional snow cover area (FSC/fSCA)] derived from
the multispectral optical data is the most widely used [3]. In
mountainous regions, snow cover extent information has been
employed for driving hydrological forecasting models for early
planning and management of winter precipitation, which is later
released during the spring melt phase [4], [5]. Over a boreal
forest landscape, fSCA derived from the MODIS data under an
operational framework indicated improvement in the streamflow
forecasts [6]. Moreover, the retreating extent of snow cover is
considered as one of the primary indicators of global climate
change [7]. Furthermore, the planetary snow and ice cover has a
strong influence on the local and global albedo and participates
in an important positive climate feedback process (ice-albedo
feedback) [8]. Therefore, global SCA trend detection and quan-
tification is important and requires operational monitoring on a
regular basis. Monitoring of snow cover extent is also important
for road authorities or winter tourism planning. A user survey
in the recent past indicated the need for operational snow cover
extent products with low latency (less than 12 h from the time
of satellite acquisition) and high spatial resolution (better than
50 m) [9].
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Optical sensors are reliable instruments for observing snow
from space. The distinctly high reflectance of snow in the visible
(VIS: 520-600 nm) and its highly absorptive nature in the short-
wave infrared (SWIR: 15501750 nm) wavelengths of the elec-
tromagnetic spectrum are captured by multispectral sensors [10].
Such properties form the basis of the classical snow identi-
fication technique known as the normalized difference snow
index (NDSI) [11], which combines VIS and SWIR channels
and was documented several decades ago [12], [13]. However,
NDSI only partly addresses the crucial issue of discriminating
snow-covered land against other classes like vegetation. There-
fore, the performance of this index remains rather questionable
in forested landscapes, particularly due to the evolution of
mixed pixel scenarios with varying snow, vegetation, and/or
soil conditions [14]. Apart from the absence of sunlight and
the presence of cloud cover, the overlying forest canopy limits
the observation of snow cover with optical satellites [15], [16].
The degradation in the performance of this classical approach
is caused by the overlying canopy volume. Such forest compo-
nents present an obstruction and absorbs both the downwelling
solar irradiance reaching the snow covered forest floor as well
as the reflected upwelling radiance (the information-carrying
signal). The degree of obscuration of the forest floor signal by
the canopy elements is determined primarily by the tree cover
density (TCD) [17], [18]. Thus, in addition to the varying snow
cover fraction overlying the forest floor, the forest reflectance
during winters is impacted by the fraction of sunlit snow visible
through the canopy gaps or intercepted by the canopy [19].
Previous investigations have proposed spectral unmixing models
to retrieve FSC from NASA’s Moderate Resolution Imaging
Spectroradiometer (MODIS). The endmember-model analyzes
the surface reflectance data in the visible, near-infrared, and
SWIR bands with multiple possibilities of spectral mixtures of
endmembers like snow, vegetation, rock, and soil. The technique
demands a-priori knowledge of the endmember spectra in the
image or derivation of the spectra using a radiative transfer
model [20], [21]. Endmembers may vary spatially and season-
ally in forested areas due to processes like seasonal snowfall,
litterfall, and shadow effects on the spectral albedo. Therefore,
such detailed information when available is expected to provide
a reliable estimate of the FSC. Such level of complexity is,
however, processing-intensive. Furthermore, these factors are
in contrast to the constraints like low latency and wide-areal
coverage, which are essential for operational implementation
of an Earth observation algorithm on a global scale. A recent
assessment of the existing snow information retrieval techniques
for the MODIS data revealed that the spectral unmixing-based
algorithms did not outperform the NDSI-based approaches [22].
Despite the existing challenges, present investigations are striv-
ing to improve the state-of-the-art in spectral unmixing-based
snow information retrievals (snow cover fraction, albedo, and
grain size) from an operational point of view [20], [21], [23]. Al-
though MODIS allows near-daily generation of the operational
FSC maps at a wider spatial scale, its coarse spatial resolution
(from 250 to 1000 m) and the requirement for additional com-
pensation due to cumulative shielding effect of the forest canopy
(obscuring the under canopy snow cover) with growing viewing
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zenith angle (VZA) (due to the oblique off-nadir viewing geom-
etry of wide-swath systems) favors high-resolution sensors like
Sentinel-2 and Landsat-8 [16], [21], [24]-[29].

With the possibility to process high-resolution Sentinel-
2 and Landsat-7/8 multispectral optical datasets under the
high-resolution snow & ice monitoring (HR-S&I) Let-It-Snow
(LIS) framework of the Copernicus land monitoring service
(CLMS), snow cover information (SCA and FSC) is now avail-
able at a spatially finer scale [30]. Although the top-of-the-
canopy FSC (FSCroc) algorithm was already evaluated us-
ing multiple in situ and very high-resolution remote sensing
datasets, the evaluation focused on the snow cover above the
tree line, and, therefore, the effect of the canopy adjustment on
on-ground FSC (FSCog) was not assessed [31], [32]. Moreover,
the calibration and evaluation were performed over the European
sites. Therefore, this investigation provides an opportunity to
build upon the existing knowledge from the past analyses by
further assessing the algorithms’ performance in other regions
to scrutinize the aspect of landscape diversity [22]. Further-
more, this evaluation is important for users of the HR-S&I
service, particularly if the FSC products are to be assimilated
into a snowpack model [33]. Due to the prevalence of mixed
pixels in the forested landscapes, merely binarizing pixels into
snow/snow-free can introduce errors while integrating the SCA
information for hydro-climatological modeling [34]. The fSCA,
which is a finer representation of the binary SCA and defines the
snow-covered fraction of the pixel area, has been observed to
improve estimations crucial for better modeling of land surface
and hydrological regimes [35].

In this investigation, we assessed the performance of both the
operational SCA detection and the subcanopy snow cover frac-
tion (FSCqg) retrieval algorithms over the forested landscapes.
Such assessment is challenging given the limited detailed in
situ/lidar-based observations of SCA and FSC under the forest
canopies with near-overlapping cloud-free satellite data [36].
We exploited datasets from two recent investigations. One is a
time-series of snow depth (SD) measurements logged during
three consecutive winters in a forested valley located in the
central Spanish Pyrenees mountain range [37]. This dataset
enabled determination of the presence/absence of snow cover
and hence was employed to evaluate the SCA algorithm. The
other dataset was acquired in a forested terrain over the Sagehen
Creek Watershed in the Sierra Nevada, CA, USA using multiple
airborne lidar overflights (for vegetation fraction: 2014 and snow
cover: 2016) and was postprocessed to determine the fractional
vegetation and subcanopy snow cover fraction at high spatial
resolution [38].

II. OPERATIONAL ALGORITHM

The recently launched HR-S&I service by the CLMS ex-
ploits high-resolution multispectral optical satellite data to pro-
duce operational snow cover maps, including top-of-canopy
FSC (FSCroc) and on-ground FSC (FSCqg), all based on the
NDSI. The algorithms were designed to work equivalently with
Landsat-7/8 and Sentinel-2 L2A products, which are surface
reflectance values obtained after correction of atmospheric and
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terrain effects (flat surface reflectance) including generation of
a cloud and cloud shadow mask. The NDSI is derived from the
flat surface reflectance data as shown in the following equation:

NDSI — PGreen — PSWIR 1)
PGreen + PSWIR

where pswir is the flat surface reflectance in the SWIR band at
1565-1655 nm (central wavelength: 1610 nm) and pgyeen 1S the
flat surface reflectance in the visible green band at 543-578 nm
(central wavelength: 560 nm) for Sentinel-2 (Landsat-7 ETM+:
520-600 and 1550—1750 nm and Landsat-8: 530-590 and 1570-
1650 nm, respectively, for the Green and SWIR bands).

The SCA detection algorithm is based on the NDSI with
some additional criterion (like inclusion of red band reflectance
and gap-filled digital elevation model from NASA’s Shuttle
Radar Topography Mission for elevation thresholding to min-
imize false snow detection) that enhances the robustness of
snow detection [31]. The satellite data was atmospherically
corrected to surface reflectance products (Sentinel-2 L1C to
L2A)using the MACCS-ATCOR Joint Algorithm (MAJA) mod-
ule, which demonstrated better performance with atmospheric
correction and cloud detection benchmark studies [39]. MAJA
is an operational module that takes into account time-series
of satellite scenes to estimate the aerosol optical thickness
and classify cloud pixels, which apart from correcting for the
atmospheric haze also accurately resolves the snow-cloud am-
biguity [40], [41]. The FSCroc is related to the NDSI by a
sigmoid-shaped function, which was empirically established as
shown in the following equation [32]:

1
FSCroc = 5 (tanh(2.65 x NDSI — 1.42) +1).  (2)

A pastinvestigation with the coarse-resolutioned MODIS data
indicated a regression relationship between FSC and NDSI to be
reasonably robust and applicable both on a local and continental
scale [42]. The FSCroc is computed only for the pixels marked
as snow-covered, determined by the SCA algorithm described
above [31]. The FSCqg is estimated by canopy adjustment of
FSCroc as shown in the following equation[16], [25], [43], [44]:

FSCOG = min(FSCToc/VGF, 1) (3)

where VGF is the viewable gap fraction, which is determined
by the TCD as shown in the following equation:

VGF = 1 — TCD. 4

For VGF = 0, the algorithm returns FSCog = 1 when FSCroc
> 0, whereas it returns FSCog = 0 when FSCpoc = 0. When
TCD is not defined or not available, FSCog = FSCroc [30].
The TCD is adopted from the Copernicus Tree Cover Density
(version 2015) [45] and resampled on the same grid as the L2A
product using bilinear resampling (bilinear is preferred to the
cubic method since the latter may result in values outside the
range of the input map, i.e., beyond 0%—100%).

High-resolution multispectral optical satellite systems like
Sentinel-2 (20 m) and Landsat-7/8 (30 m) acquire data at a
significantly narrower swath widths (near-nadir viewing geom-
etry), achieved with the pushbroom mode of image acquisition
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(as opposed to whiskbroom mode in MODIS), which eliminates
the need for any pixelwise geometrical corrections with respect
to the VZA. Although the computation of SCA and FSC at
relatively higher spatial resolutions (as compared to MODIS)
addresses the issue of mixed pixels to a certain extent, the
influence of ground parameters like vegetation fraction still plays
an important role in determining the performance of the NDSI-
based algorithms [34], [46], [47]. This occurs since the varying
topography and vegetation distribution controls the spectral
signature of snow cover, canopy occlusion and shading, and
topographic shadowing, which impact the NDSI [48]. Therefore,
evaluation of the impact of such factors over the operational
algorithms’ performance is a crucial exercise.

III. TEST SITES AND DATA
A. Test Site A: Pyrenees

This site is located in the Balneario de Panticosa valley in
the central Spanish Pyrenees near the French—Spanish border,
as shown in Fig. 1.

For a recent investigation, the site offered the opportunity to
look into the spatial and temporal interactions of forests with
snowpack accumulated over a range of site conditions [37].

The site is divided into four plots with each plot further
segmented into forest opening (O) and beneath forest canopy
(F) sections. The plots are located at varying altitudes, as shown
in Fig. 1, and are further classified by their unique site charac-
teristics like aspect, percentage canopy cover, solar irradiance,
and several other factors (Table I).

1) In Situ Data:

1) SD: Daily SD data were logged over the test plots (P1,
P2, P3, and P4) using a semiautomatic (since photographs
were manually processed to extract SD) time-lapse cam-
eras and snow pole setup [eight such pairs were divided
over each plot with 3 in the forest openings (O) and 5
beneath the forest canopy (F)]. A random forest based
regression technique was utilized to gap-fill the missing
data at the snow poles [49]. The semiautomatic SDs
were cross-validated with the manual SD measurements
taken during field surveys conducted at an interval of
10-15 days. The measurements were taken from the onset
of snow accumulation (in November) until the end of
the melting season (in May/June) during the winters of
2015/2016, 2016/2017, and 2017/2018.

2) Site factors: The essential factors considered over this site
are detailed in Table I. These factors can typically impact
the satellite retrievals of snow cover information and also
modify the snowpack characteristics [5S0]-[58]. The site
is dominantly covered by mountain pine and Scots pine
(Pinus uncinata Ram. and Pinus sylvertris L.), with each
one prominently distributed at a different elevation range
(mountain pine: from 1600 to 2500 m and Scots pine:
from 1200 to 1900 m a.s.l.). This influences the degree
of snowpack—forest interaction, which is known to also
vary with the altitude (from 1600 to 2500 m a.s.l. for the
Pyrenees) [57]-[61].
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TABLE I
AVERAGE VALUES OF SITE CHARACTERISTICS OVER SITE A [37]. THE POTENTIAL SOLAR IRRADIANCE (PSI) AND OBSERVED SOLAR IRRADIANCE (OSI)
ARE EXPRESSED AS 10007*Whm ™2 AND Wm ™2, RESPECTIVELY, AND BOTH ARE AVERAGED FROM MARCH TO MAY. UTM COORDINATES ARE IN ZONE: 30 N

AND DATUM: WGS84

H Plots UTM Easting (m) UTM Northing (m)  Elevation (m a.s.l.)  Aspect (degrees) Canopy Cover (%)  PSI OSI H
P1 (Upper) 725,720 4,738,517 2008 S (193.66) 156 1653 1544
P2 (Lower) 725,718 4,737,976 1814 E (79.92) 85 129.6  167.6
P3 (Lower) 726,325 4,737,554 1674 W (261.7) 119 140.2  192.7
P4 (Upper) 727,488 4,736,790 2104 NE (48.3) 29 1226 195.1

0 200 400 Km
e

©

Fig. 1. Test Site A: Relative location of the test plots in the Balneario de
Panticosa, Northeastern Iberian Peninsula, Central Spanish Pyrenees. UTM
Zone: 30 N and Datum: WGS84. Figures are reproduced with permission
from [37]. (a) Relative location of the test plots in the Balneario de Panticosa
valley. (b) Relative location of the test plots: P1 and P2. (c) Relative location of
the test plots: P3 and P4.

The percentage canopy cover referred to in Table I is
the proportion of the forest floor covered by the verti-
cal projection of the tree crowns [62]. For canopy cover
estimation, two crown projections (one perpendicular and

one parallel to the terrain slope line) were measured for
each individual pine. Two area values were calculated
from these measurements, which were then averaged. The
cover area of each pine was then expressed as a percentage
of the subplot area. Finally, all individual canopy cover
percentages were aggregated. Canopy cover values can be
higher than 100% since it aggregates (as the percentage
of subplot area) the individual crown projections of the
trees, which in some cases may overlap. The experimental
setting composed of one plot of approximately 450 sq. m
in each forest stand. The canopy cover, tree density, and
basal area measurements were conducted over 15 x 15 m
subplots, which is composed of approximately half of each
studied plot [37], [62].

The site is divided into several plots (P1, P2, P3, and
P4). Based on the elevation, the plots were broadly clas-
sified as either an “Upper (U)” or a “Lower (L)” plot.
Apart from differences in their elevations, the plots were
chosen in a manner that each one is facing a different
cardinal/intercardinal direction. This is quantified by the
aspect of the plot that determines if a slope is facing away
from or directly toward the incoming solar irradiance. For
slopes facing southwards, the exposure to solar irradiance
is expected to be higher as compared to the northwards
facing slopes.

However, the net irradiance received by an area is not only
a function of its aspect but also depends on several other
factors like percentage canopy cover. This can be appre-
ciated in Table I for P1, which, due to its location, shows
the highest “Potential Solar Irradiance.” However, due to
the sheltering effect of the high percentage canopy cover
over P1 (the highest among all the plots), the “Observed
Solar Irradiance” is the lowest. The observed irradiance
is logged by an automatic weather station installed at
the forest opening of each plot, whereas the potential
irradiance is the calculated amount of radiant energy for
a specific location and time period [37]. The values pre-
sented in Table I for both these irradiance measurements
are averaged from March to May.

2) Satellite Data: Due to the daily long-term time-series in
situ data acquisition plan over Site A, a significant number of
high-resolution Sentinel-2 acquisitions were available tempo-
rally overlapping the ground data acquisitions. Therefore, the
analysis over Site A exploited the large number of suitable acqui-
sitions from the winters of 2016/2017 and 2017/2018 to compute
the SCA (FSCroc > 0) using the MAJA-LIS workflow [31].



MUHURI et al.: PERFORMANCE ASSESSMENT OF OPTICAL SATELLITE-BASED OPERATIONAL SNOW COVER MONITORING ALGORITHMS

720,000 725,000 730,000 735,000

Fe=123° -120° -417°, -1142

4,380,000
4,380,000

(=
o
<
wn
[
“
<

4,375,000

4,370,000
4,370,000

JASO lidar extent

4,365,000
4,365,000

725,000 730,000

720,000 735,000
(@)
1.0
VEG
0.8
0.6
| - 0.4
i L 0.2
(b) L o.0

Fig. 2. Test Site B: Sagehen Creek Watershed, Northern Sierra Nevada
Mountain Range, CA, USA. UTM Zone: 10 N and Datum: NADS83. Figures
are reproduced with permission from [38]. (a) Location of the Sagehen Creek
Watershed with Snow Telemetry (SNOTEL) stations (# 539, 540, and 541
denoted by the green squares) and NASA’s Airborne Snow Observatory (ASO)
footprint (enclosed by the yellow polygon). (b) NCALM 2014 snow-off lidar
data derived fractional vegetation cover (fVEG) over the NASA’s ASO lidar
extent in Site B.

B. Test Site B: Sierra Nevada

This site is located in the Sagehen Creek Watershed in the
northern Sierra Nevada, CA, USA, as shown in Fig. 2. The site
footprint [denoted by the Airborne Snow Observatory (ASO)
lidar extent] includes Lake Independence and other small water
bodies, which are excluded from our analysis. The site is mostly
covered by coniferous forests with trees of varying heights and
canopy densities.

1) Lidar-Based Data: The fractional vegetation cover
(fVEG) was derived from the airborne lidar dataset pro-
vided by the National Center for Airborne Laser Mapping
(NCALM) [63], which was acquired during the summer of 2014
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as a part of the Tahoe National Forest lidar survey. The NCALM
2014 snow-off lidar data essentially captured the vegetation
heights. fVEG defines the fraction of tall canopy (NCALM
vegetation heights greater than 2 m) at 10 m spatial resolution
(composed of 1 m pixels) [38]. fVEG (lidar-derived) and TCD
(multispectral satellite-derived [64]) are positively correlated
indices quantifying the percentage abundance of canopy cover
over a pixel. These indices are employed to investigate the impact
of quality of vegetation fraction data, derived from different
sources (airborne lidar and satellite) at different spatial scales,
over the FSCqg retrievals.

NASA’s ASO was flown over the test site on March 26, April
17, and May 18, 2016 in order to acquire lidar measurements
during the snow depletion phase of the season [65]. The estima-
tion of fractional SCA (FSCggr or fSCA as referred in [38]) at
10-m resolution over the test site involved combination of the
fVEG information, derived from the NCALM snow-free lidar
point cloud data, and the snow presence/absence information (at
1 m resolution), derived from the within-pixel mean lidar return
elevation in the ASO data [38]. For additional details on lidar
data processing and snow cover measurements over Site B, refer
to [38].

2) Satellite Data: Due to the spatially distributed (high spa-
tial density) nature of the airborne lidar measurements over
Site B (also referred here as groundtruth), data from multiple
high-resolution satellite platforms (S2 and L7/8) were integrated
to demonstrate the optimal utilization of temporally overlapping
(nearly coinciding in time) and spatially similar sensor (closely
matching in spatial resolution) acquisitions.

1) Sentinel-2 (20 m): The Sentinel-2 scenes were processed
to FSCroc and FSCog using the MAJA-LIS framework
as performed operationally within the CLMS HR-S&I
service. The processing was done offline as the area is
not covered by the service yet (only Europe).

2) Landsat-7 ETM+ (30 m with SLC-Off) and Landsat-8
(30 m): After the Landsat-7 ETM+ (the predecessor of
Landsat-8) experienced a scan line corrector (SLC) mech-
anism failure on May 31, 2003, the scenes exhibited
wedge-shaped scan-to-scan gaps with no-data values as
a result of the normal scanning pattern [66]. However,
the L7 system with its SLC powered off is still able to
acquire useful data by sacrificing approximately 22% of
the scene’s normal coverage. Despite the SLC failure,
the scenes maintain the previous level of radiometric and
geometric corrections. Although a range of gap-filling
approaches are available to compensate for the issue of
SLC failure, our analysis in this investigation was only
performed over the native L7 pixels by masking the no-
data areas [67].

Landsat offers multispectral satellite data like the Sentinel-
2 but at a slightly coarser spatial resolution and a longer
revisit time. However, in the absence of a Sentinel-2
satellite pass, the Landsat data can be utilized due to their
comparable spatial resolutions (S2: 20 m and L7/8: 30 m).
Moreover, the United States Geological Survey (USGS)
Earth Explorer provides both Landsat-7/8 atmospherically
corrected surface reflectance products. These products
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were processed in a manner similar to the Sentinel-2
datasets with the LIS processor [31], [68].

3) USGS Landsat-Derived FSC (FSCryscac): The analysis-
ready FSC maps were obtained from the USGS Earth
Explorer, which are generated from the temporally
coincident Landsat-7/8 datasets using the TMSCAG
approach [20], [69]. TMSCAG is an adaptation of
MODSCAG for Landsat ETM+ and TM data for FSC
estimation [70].

4) Auxiliary Vegetation Map: Due to the absence of the
Copernicus TCD map over this region (available only for
Europe), the freely distributed global TCD map at 30 m
spatial resolution (resampled for S2) was employed for
canopy adjusting the FSCroc maps to FSCog: tep [64].
Although lidar-derived vegetation cover information (like
fVEG) are desirable due to their higher spatial detailing,
the satellite-derived TCD from multispectral data reliably
fulfils this gap due to the lack of such high-resolution
lidar products on a global scale, thus enabling rescaling of
FSC for operational purposes. In order to assess the per-
formance impact of high-resolution lidar-derived fVEG
over the rescaled FSCroc, the airborne lidar data was
employed to obtain the FSCqg. fyvgg and compared with
the FSCog: Tcp.

IV. METHODOLOGY

Over Site A in the Pyrenees, the performance of satellite-
based snow detection (binary SCA: snow/snow-free) was in-
vestigated with respect to the in situ time-series SD profile
indicating presence/absence of snow cover. The performance
was assessed with respect to varying site factors like forest cover,
topography, and meteorological variations. Although a signifi-
cant number of Sentinel-2 scenes were available overlapping the
ground data acquisition period, the effective number of scenes
suitable for analyses were reduced due to the obscuring effect
of the cloud cover. Besides, Sentinel-2 data was not available
during the winter of 2015/2016.

Over Site B in California, we analyzed the performance of
the FSC (continuously varying from O to 1) algorithm and also
looked at the performance of snow detection at different ranges
of fVEG, as shown in Fig. 2(b). Due to the limited number
of lidar data acquisition dates, a combination of the Sentinel-2
and Landsat-7/8 scenes (with minimum temporal gap between
the lidar flights and satellite acquisitions) was employed to
compensate for the cloud-cover and satellite revisit time.

The in situ/lidar-based data utilized in this investigation over
the two sites are unique with respect to their applicability for the
evaluation of the operational SCA and FSC algorithms.

1) Site A: Point-based in situ measurements observed over

a temporally longer duration (2015/2016, 2016/2017, and
2017/2018) and compared with a significantly large num-
ber of satellite acquisitions (70 Sentinel-2 scenes).

2) Site B: Spatially distributed airborne lidar measurements
(also referred here as groundtruth) observed over a tem-
porally shorter duration (March 26, April 17, and May
18, 2016) and compared with limited number of satellite
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TABLE I
CONFUSION MATRIX FOR BINARY CLASSIFICATION. G: GROUNDTRUTH AND S:
SATELLITE. TP: TRUE POSITIVE, TN: TRUE NEGATIVE, FP: FALSE POSITIVE,
AND FN: FALSE NEGATIVE. N = TP + TN + FP + FN. NORMALIZED
CONFUSION MATRIX ELEMENTS: THE TP, FN, FP, AND TN ARE NORMALIZED
BY DIVIDING EACH ONE OF THEM WITH THE SUM OF THE ELEMENTS IN THE
CORRESPONDING ROW OF THE CONFUSION MATRIX. THE VARIATION OF THE
NORMALIZED ELEMENTS IS CONSTRAINED BETWEEN O AND 1

S
Snow Snow-Free Total
G Snow TP FN TP + FN
Snow-Free FP TN TN + FP
Total TP + FP TN + FN N

acquisitions (Sentinel-2 and Landsat-7/8) at high data
point density.

Due to different spatial resolutions of the groundtruth (lidar-
derived) and satellite-derived maps over Site B, the groundtruth
maps were resampled (downsampled) to match the satellite res-
olution. The average resampling method was employed to avoid
excessive smoothing [71]. The fVEG and the FSCgrgr maps,
derived from the airborne lidar measurements, were resampled
from their native 10-m resolution to 20 m (in case of Sentinel-2)
and 30 m (in case of Landsat-7/8).

In case of Site A, no such resampling was required due to
the point-based nature of the measurements over the test plots
(P1, P2, P3, and P4). The geographic coordinates for each plot
were utilized to compare the satellite observations with the in
situ measurements. Single pixel geographic coordinates of the
plot centers (UTM coordinates) are as shown in Table 1. These
coordinates were employed for the analyses by assuming that
the in situ data acquisition points were discretely located within
a 20 x 20 m Sentinel-2 pixel.

A. Evaluation Metrics

1) Confusion Matrix Parameters: Snow cover detection can
be considered as a binary classification problem where a
pixel is either classified as snow-covered or snow-free. Con-
fusion matrix is a means to evaluate performance of the al-
gorithms involved in such classifications (but not limited to
two classes) [72]-[74]. The confusion matrix for a binary
snow/snow-free classification scenario is as shown in Table II.

The matrix quantifies both the correctly classified (pixel as-
signed to the original class) and misclassified (pixel assigned
to the erroneous class) pixels. The original/erroneous class is
determined from the in situ/lidar-based datasets (G) acquired
over Site A and B.

The confusion matrix elements encapsulates the following
information.

1) True Positive (TP): The TP defines those pixels which
are verified by the in situ/lidar-based data as SNOW-
COVERED and also identified from the satellite data (by
the algorithms) as SNOW pixels.

2) True Negative (TN): The TN defines those pixels which
are verified by the in situ/lidar-based data as SNOW-FREE
and also identified from the satellite data as NO-SNOW
pixels.
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3) False Positive (FP): The FP defines those pixels which are
verified by the in situ/lidar-based data as SNOW-FREE
but identified from the satellite data as SNOW pixels.

4) False Negative (FN): The FN defines those pixels which
are verified by the in situ/lidar-based data as SNOW-
COVERED but identified from the satellite data as NO-
SNOW pixels.

These matrix elements are further utilized to compute perfor-
mance metrics for the satellite-based algorithms. These metrics
are defined as follows.

1) Accuracy (Ac): The accuracy of an algorithm (also called
observed accuracy, Ac,p) is defined as the rate of correct
classification. In this expression, if the misclassification
terms FP and FN are zero, then the accuracy of the algo-
rithm will be 100%. The Acgps is computed as

TP + TN

Acep, = .
Cobs = TP TN + FP + FN

(&)

2) Cohen’s Kappa Coefficient (x): The Cohen’s kappa coef-
ficient (k) is a relatively pessimistic measure of the algo-
rithm’s performance (a more robust measure as compared
to Acgps), particularly for an imbalanced dataset (if the
extents of snow-covered versus snow-free areas are signif-
icantly different). It is a function of the observed accuracy
(Acgps) and the random/expected accuracy (Acyang) [75].
A complete agreement with respect to the in situ/lidar-
based data is indicated by x =1, whereas x =0 in-
dicates merely a random agreement (an agreement by
chance) [76]. « is an important measure to be considered
with Acgps since it attempts to remove imbalance/bias in
the class distribution (one class is more prevalent than
the other) and points out a disagreement if Acps i less
than the Acung [77]. The coefficient of agreement kappa
is defined as

o—1— 1 — Acops
B 1 — Acrand
_ ACobs - ACrand
11— Acrand
TP + TN
ACobs = N
Ac s — Q_R)Q-C) + (X0 R)(DCo)
rand — N2

> Ry = (TP +FN)
> Cy = (TP +FP)
> Ry = (TN +FP)
> Cy = (IN+FN).

2) Additional Metrics: Apart from the metrics derived from
the confusion matrix, we computed the following statistical met-
rics to compare the degree of agreement between the observed
and the estimated FSC (lidar-based and satellite data, respec-
tively). Unlike for the binary SCA analyses where confusion
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matrix parameters were suitably employed, FSC is a continu-
ously varying quantity (snow cover fraction varies continuously
from O to 1), and, therefore, the following statistical measures
were necessary for its evaluation.

1) Root Mean Square Error (RMSE): RMSE is a measure
of the normalized distance between the observed and the
predicted data samples. Here, RMSE is used to compare
the observed (z;) and the estimated (y;) FSC. It is defined
as

6)

2) Pearson Correlation Coefficient (CC): CC is a measure
that indicates the strength of the association (positively
or negatively correlated) between the observed and the
estimated FSC. It is defined as

Y (@i —T)(yi — 7)

cC = .
Vi (@i —T)2 3 (v — )2

B. Workflow

1) Over Test Site A: Confusion matrix analysis was em-
ployed to assess the performance of snow detection with
time-series of Sentinel-2 acquisitions over Site A. The snow-
covered/snow-free pixels were distinguished by thresholding
the satellite-derived FSCroc ( > 0). SD at each test plot was
considered as a measure to determine the presence/absence of
snow cover. Since SD was measured at both the open vegetation-
free (O) and canopy covered (F) sections, the confusion matrix
metrics were derived by comparing the thresholded satellite
observations (binary SCA: snow/snow-free) with the SDs from
both these sections. The confusion matrix elements for the initial
iteration was computed for all SD > 0.1 cm. This in situ SD
threshold, employed to distinguish a pixel as snow/snow-free,
was then smoothly increased in small steps (of 0.5 cm). In this
manner, by increasing the in situ SD threshold, we performed
a sensitivity analysis of the satellite-based snow detection with
respect to the depth of the snow cover present over the ground.

2) Over Test Site B: We evaluated the performance of the
satellite-based snow detection using thresholded FSC informa-
tion derived from the satellite FSC maps generated using the
following approaches:

a) FSCog: tcp using satellite-derived TCD;

b) FSCog: rveg using lidar-derived fVEG;

¢) FSCryscac using endmember-based spectral unmixing.

The normalized confusion matrix elements (as defined in
Table II) along with the associated accuracy (Aceps) and the
kappa coefficient (k) were computed by comparing the snow
presence/absence information, obtained from the thresholded
satellite FSC maps (FSCroc > 0), with the thresholded FSCrgr
maps. The FSCgrgr maps were derived by combining the
NCALM (2014) and ASO lidar datasets acquired during the
snow depletion phase (March 26, April 17, and May 18, 2016)
over Site B.

The metrics were computed from pixels binned at different
range of vegetation fraction (fVEG). Each range consisted of
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pixels with a 10% increment in the fVEG as compared to the
previous range. The pixels were divided (stratified by fVEG)
into 10 such ranges indicating an incremental rise in the fVEG.

The performance of the satellite-based FSC retrievals was
assessed with respect to the lidar-derived FSCrgr using the addi-
tional set of statistical evaluation metrics. These were computed
both over the incremental range of vegetation fractions (strati-
fied/binned by fVEG) as well as an overall score by considering
the entire population of the FSC pixels from all possible range
of vegetation fractions together (into a single bin).

V. RESULTS

A. Test Site A: Pyrenees

1)

Performance of Satellite-Based Snow Detection: The

metrics derived for the satellite-based snow detections over the
open (O) and the forested (F) sections (for each plot) are shown
in Figs. 3 and 4.

The following observations can be summarized.

1)

2)

3)

4)

The sensitivity analysis with respect to the in situ SD
threshold indicated that the performance (accuracy and
k score) of the algorithm decreased as a function of
this threshold. The algorithm performed well even at the
lowest SD thresholds that indicated the sensitivity of the
algorithm and its ability to capture the finer ground details.
Coarse-resolution sensors like MODIS requires the pres-
ence of relatively higher levels of SD to corroborate with
the groundtruth and achieve similar levels of detection
accuracies as high-resolution sensors like Sentinel-2 (and
Landsat) [31], [78].

Upon comparing Figs. 3 and 4, the metrics from the
forested section indicated decrease in the TN and en-
hancement of the FP. This explained the relatively weaker
detection performance over the forested sections as com-
pared to the open areas. The degradation in performance
can be cumulatively attributed to the obscuring effect of
the canopy cover and consistently lower subcanopy SDs
observed over all the plots (Fig. 5), which possibly caused
the corresponding decrease in the accuracy and x score.
SD (decreasing order of mean seasonal SD: P4, P2, P1,
and P3) solely seems to have little influence in determining
the order of the algorithm’s performance among the plots.
P4 with its North-Eastern aspect exhibited the highest SD,
whereas P3 with “Western” aspect had the lowest SD. P2
and P1 with “Eastern” and “Southern” aspect, respectively,
exhibited intermediate levels of SD. The performance of
the algorithm was rather controlled by a combination of
several factors like aspect, canopy cover, “Potential Solar
Irradiance” (increasing order of potential irradiance: P4,
P2, P3, P1), etc.

The highest accuracy and « score were observed over P1
(upper), as shown in Fig. 3(a). P1 also had the highest
level of computed “Potential Solar Irradiance,” as detailed
in Table L. It is clear from the x variations that the scores
are consistently higher in open areas as compared to the

Fig. 3.
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TABLE IIT
PLOTWISE SNOW DETECTION METRICS: OPEN (O). TP, TN, FP, AND FN
DENOTE NUMBER OF OCCASION OF SUCCESS/FAILURE OF DETECTION. U:
UPPER AND L: LOWER

H Open (O) PI(U) P2(L) P3(@L) P4 H
TP 32 40 22 62
TN 29 21 16 6
FP 0 1 0 1
FN 0 0 25 1
Acops 1 0.983 0.603 0.971
K 1 0.964 0.308 0.841

forested sections and solar exposure seems to play a promi-
nent role in determining the algorithm’s performance.

5) Among all the plots, even though P1 had the highest
vegetation density (followed by P3, P2, and P4), it is
also the plot with the highest accuracy and « score. Even
though vegetation density is known to be responsible for
lowering the performance of satellite-based snow detec-
tion, we observed that “Potential Solar Irradiance” had a
compensating effect on the performance.

6) The obscuring effect of vegetation cover over P3 (second
highest) was not completely compensated by the relatively
high “Potential Solar Irradiance” (second highest). This
can be attributed to insufficient solar exposure in relation to
the canopy cover (to compensate for the obscuring action
of the canopy) and low SD (P3 has the lowest SD), which
can be cumulatively held responsible for the lowering of
the performance (lowest among all).

7) The perturbed nature of the metrics profiles over P3, as
shown in Fig. 4(c), can be attributed to the cumulative
effect of forest cover and insufficient solar exposure. The
former assists in reducing the duration and cumulative
snow water equivalent (SWE) of the snowpack (due to
reduced SD) along with introducing manifold increase in
the spatial heterogeneity (by 190% [37]) of the subcanopy
snow cover. Whereas the latter constraints the compen-
sating action under the canopy cover and thus limits the
essential spectral information (reflected from the snow
covered forest floor) from reaching the satellite sensor.

We investigated the role of these site factors in the suc-
cess/failure of the algorithm (in correctly identifying a snow
covered pixel) in the presence of a finite SD (considering the SDs
in the open section). The plotwise performance can be visually
appreciated in Fig. 5 (with the confusion matrix elements plotted
as colored lines).

The overall accuracy and x score (for the entire SD time-
series) for the minimum SD threshold (for all SD > 0.1 cm) are
detailed in Tables III and IV (considering the SDs in the open
and forested sections, respectively).

The following can be summarized from these observations.

1) The algorithm’s performance (decreasing order of per-
formance: P1, P2, P4, and P3) correlated better with the
“Potential Solar Irradiance” as compared to the “Observed
Solar Irradiance,” as detailed in Table 1. Due to the point-
based measurement of the observed irradiance in the forest
openings, which is also impacted by the sheltering effect
of the surrounding trees, a difference can be recognized
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TABLE IV

PLOTWISE SNOW DETECTION METRICS: FOREST (F). TP, TN, FP, AND
FN DENOTE NUMBER OF OCCASION OF SUCCESS/FAILURE OF DETECTION. U:

2)

3)

4)

5)

UPPER AND L: LOWER

[Forest/ PI(U) P2(@L) P3@D) P40 |
TP 25 31 14 55
TN 29 21 30 6
FP 7 10 8 8
EN 0 0 11 1
Acops 0.885  0.838  0.698  0.871
K 0772  0.677 0356  0.505

between the potential and observed irradiance. Moreover,
a satellite pixel is spatially heterogeneous and can accom-
modate both the forest opening and the adjoining trees
within a single pixel. This can hamper the user’s ability to
distinctly correlate an algorithm’s performance with one
of the irradiances.

Furthermore, the satellite acquired surface reflectance is
dependent on the state and geometry of solar illumination
(a seasonally changing factor over the site) during the time
of the satellite scene acquisition, which is responsible for
illuminating the subcanopy snow cover. Under forested
conditions, a significant portion of the incoming as well
as the reflected light from the snow covered forest floor is
absorbed by the overlying vegetation (for photosynthesis)
that can consequently reduce the reflectance from the for-
est floor. This process can eventually hamper the satellite
detection of subcanopy snow cover. Terrain shadowing
can also limit detection.

It is noteworthy that over the open section (Table III) both
FP (Error of Commission) and FN (Error of Omission) are
negligibly small with the only exception of P3 where FN
is noticeably high. The introduction of FP is evident only
in the forested section (Table IV) with the FN still remain-
ing quite small and the only exception can be observed
again over P3. The poor performance of the algorithm
over P3 (lowest) can be visually observed in Fig. 5(c)
by the abundance of FN (blue lines) that indicates cases
when a snow covered pixel was misclassified as snow-free
by the satellite algorithm. Over both the sections, under
well-illuminated conditions (except P3), the FN (Error of
Omission) remained significantly low indicating that the
thinnest layer of snow (in situ data) was detected.

The role of site factors associated with P3 is reflected in the
way they influence the metrics in a deteriorating manner.
Low « indicates the algorithm’s inability to corroborate
with the in situ observations and identification of snow
pixels. Even a sufficiently high value of “Potential Solar
Irradiance” (second highest), as detailed in Table I, was un-
able to compensate due to the unique site characteristics:
shadowed conditions due to low elevation at the bottom
of the valley as shown in Fig. 1(c), relatively high canopy
cover (second highest), and low SD (lowest).

The accuracy and « score over all the plots (except P3)
showed better performance with respect to the SD mea-
sured over the open areas. Over P3 (in Table III with
respect to Table IV), TP increased, TN decreased, FP
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decreased, and FN increased. This cumulatively led to
a counterintuitively small decrease in the performance
metrics (since increase in FN was greater than increase in
TP) for the open areas as compared to the forested section.

B. Test Site B: Sierra Nevada

1) Performance of Satellite-Based Snow Detection: The
lidar-derived FSCrgr map on March 26, 2016 is as shown in
Fig. 6(a).

The performance of the satellite-based snow detection was as-
sessed using the normalized confusion matrix elements as shown
in Fig. 7, derived by comparing the thresholded lidar-derived
maps with the binarized satellite-derived FSC (for the SCA
analysis, the thresholded/binarized FSC maps are also referred
to as FSCoga: tcps FSCoq: fveg, and FSCrvscag) that employed
S2 acquisition on the same date and the L7 acquisition on March
24 (fOl" FSCTMSCAG)~

The following observations can be summarized from Fig. 7.

1) The accuracy and the « coefficient decreased for increas-
ing values of fVEG. This can be attributed to the decrease
in the TP and increase in the FN due to the growing degree
of obscuration by the overlying canopy cover.

2) The metric profiles of the FSCog. rcp and FSCog: tvEG
showed little difference. This indicated that the Landsat
reflectance derived TCD (at a coarser resolution) captured
the ground vegetation fraction information reliably close
to the lidar-derived fVEG, which was acquired at a com-
paratively higher resolution (1 m) and then aggregated
(1 m pixels comprised a 10 m fVEG pixel) before it was
resampled to 20 m (or 30 m for L7/8 on other dates).

3) Although Fig. 7(b) indicated similar levels of accuracy
as Fig. 7(a), the k coefficient revealed the disagreement
between the snow cover information obtained from the
FSCrmscac (L7 on March 24) and the ground conditions
(ASO on March 26). This disagreement can possibly be
attributed to a light snow precipitation event (or wind-
transport of snow) that occurred over Site B between
March 24 and March 26, 2016 before the Sentinel-2 and
lidar data acquisitions. This event was evident in the
meteorological reanalyses and was recorded during this
period at the Lake Independence SNOTEL station (2 mm
of precipitation is recorded between March 25 and March
26 at station # 541).

The FSCrgr map over Site B on April 17, as shown in Fig. 8(a),
indicates the ablating effect of rising air temperature (refer to [38,
Fig. 1(D)]) on the snow cover extent over the area, particularly
in the lower elevations (refer to [38, Fig. 2]). L8 overlapped the
lidar acquisition on this date.

The confusion matrix metrics are as shown in Fig. 9.

The following observations can be summarized.

1) An increase in the TN and a decrease in the FP can be
observed in Fig. 9 with respect to the profile in Fig. 7. This
enhancement in the “True” and reduction in the “False”
element of the confusion matrix can be attributed to the
decrease in the FSCroc due to depleting trend of the snow
cover. For a given value of vegetation density, FSCroc
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Fig. 6. FSCgrgr (ASO + NCALM), FSCog: tcp (S2), and FSCrymscac (L7)
maps over Site B: March 2016. Satellite: S2 on March 26 and L7 on March 24,
2016. Lidar: ASO on March 26, 2016 and NCALM in 2014.

beyond a critical value can cause overestimation while
canopy adjusting it to FSCpg due to the saturation of the
scaling function [44]. Such a saturating action can cause
overestimated subcanopy snow cover information, which
can be eventually falsely classified (increasing the FP) as
a snow covered pixel. Therefore, a decrease in the FP is
an indication of decrease in such overestimations.
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Normalized Confusion Matrix

Normalized Confusion Matrix

Fig. 7.
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2)

3)

4)

As the snow cover depleted, the steepness of the de-
crease in the TP and increase in the FN (with increasing
canopy density) decreased. This indicated a decrease in the
negative correlation between the algorithm’s performance
and vegetation density due to the earlier disappearance
of the subcanopy snow cover. However, in case of the
FSCrmscag, it indicated a relatively sharper fall in the
TP and a steeper rise in the FN, both commencing at a
relatively lower value of vegetation fraction (commencing
from fVEG > 0.25). This indicated the inability of the
FSCrmscac to appropriately identify subcanopy SCAs
(increasing FN).

An initial rise in both the accuracy and & coefficient
was observed with increasing vegetation fraction range,
which however later decreased. This indicated that the
introduction of TCD or fVEG information to FSCtoc
indeed improved the subcanopy FSC (FSCog) until a
critical value of the vegetation density was reached beyond
which the metrics decreased.

Unlike the FSCryscag metrics in Fig. 7(b), Fig. 9(b)
showed a higher degree of resemblance to the metrics
generated for FSCog. rcp and FSCog: rveg, which can be
attributed to any lack of temporal gap or a decorrelating
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—- 0.0

FSCRrgr (ASO + NCALM), FSCog: tcp (L8), and FSCmscac (L8)

maps over Site B: April 2016. Satellite: L8 on April 17, 2016. Lidar: ASO on
April 17,2016 and NCALM in 2014.

5)

precipitation (or wind-transport) event between the satel-
lite and lidar acquisitions.

A relatively higher value of x coefficient as compared to
Fig. 7 indicated a better agreement of the satellite-derived
FSC with the lidar-based measurements.
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Fig. 9. Performance assessment of satellite-derived SCA w.r.t. vegetation
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The FSCggr over Site B on May 18, 2016 can be observed
in Fig. 10(a). A visual inspection of the snow cover extent with
respect to elevation profile and vegetation fraction (refer to [38,
Fig. 2]) indicated that the vast majority of the remnant snow
cover was limited to the south-west corner of the site that offered
a suitable combination of high elevation (highest in the area) and
low vegetation density (low fVEG).

The closest cloud-free satellite scene to compare the ground
scenario was a L7 scene available on May 27, 2016. The follow-
ing observations can be summarized from the confusion matrix
metrics shown in Fig. 11.

1) FP gradually decreased with the depleting trend of snow
cover from March to May 2016. TP and TN are maxi-
mized, whereas FP and FN are minimized.

2) Although the accuracy profile remained relatively flat, the
K coefficient improved with initial increase in the vegeta-
tion fraction and later showed a decrease. The general rise
in the x score can be attributed to overall improvement
in the identification of snow cover under nonsaturating
conditions when FSCrqc is accurately rescaled to FSCqg.
For certain combinations of top-of-the-canopy snow cover
and vegetation fraction (VGF or TCD), (3) can saturate
resulting in overestimation.
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3) Although the majority of snow cover was only limited
to the high elevation and sparsely vegetated south-west
corner of the test site, the decrease in « for higher ranges
of vegetation fraction with increasing FN indicated the
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algorithm’s missed detection of some sparse remnant snow
cover still present under the dense vegetation.

4) As the majority of subcanopy snow cover disappeared
between March 26 and May 27, the « score improved.
This indicated that the satellite detection of terrestrial
snow cover more accurately resembles the actual ground
scenario when the snow cover is limited to the open or
sparsely vegetated areas rather than under the dense forest
cover.

5) For snow cover information obtained from the
FSCrmscag, both TP and k remained comparatively
lower and FN relatively higher.

The depleting state of snow cover over Site B as indicated
in Figs. 6, 8, and 10 can be appreciated in the violin plots as
shown in Fig. 12. These plots indicate the shifting regime of
snow cover (from high toward low FSC) over the snow depletion
phase of the winter of 2016 over Site B. The distribution of the
FSC on March 26 was prominently dominated by high FSC near
80%—100% [Fig. 12(a)]. As snow cover depleted over Site B, the
pixel FSC distribution gradually developed a spread along the
length of the “violins” as can be observed through the bulging-up
of the central section in Fig. 12(b) on April 17. As the majority
of the snow cover depleted over the area, the pixel distribution
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Fig. 12.  Violin plots indicating depleting trend of the FSC over Site B from
March to May 2016. (a) March 2016. (b) April 2016. (c) May 2016.

prominently shifted towards lower FSCs near the bottom of the
“violins” [Fig. 12(¢c)].

2) Performance of Satellite-Based FSC: The RMSE and CC
metrics computed for satellite-based FSC estimated on March
26, 2016 (unlike the SCA analysis, the FSC maps are not
thresholded/binarized into snow/no-snow for the FSC analysis)
are shown in Fig. 13(a) and (b). The following observations can
be summarized.

1) A general trend among the metrics can be observed here.
As the vegetation fraction increased, the RMSE initially
decreased due to the correcting effect of the FSCroc-
FSCoqg scaling function. This function, beyond a critical
combination of FSCroc and vegetation fraction, overes-
timated the FSCqpg, which then caused an increase in the
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2)

RMSE. Pearson CC decreased with increasing vegetation
cover and the decrease was steeper at higher vegetation
fractions.

Due to the decorrelating precipitation event that occurred
between the L7 and the lidar data acquisitions, significant
separation can be observed for the FSCrvscag at cer-
tain vegetation ranges among the computed metrics. The
FSCrmscac, generated using the L7 acquisition on March

3)

24, indicated a low RMSE at higher vegetation fraction
range. This can be attributed possibly to the overestimation
that occurred with the S2 derived FSCqg due to relatively
larger FSCroc, as a result of the precipitation.

Itis difficult to assign the source of error while considering
the overall global score (dashed lines) since it can be real-
ized from Fig. 13 that error is rather unevenly distributed
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TABLE V
OVERALL STATISTICS FOR SATELLITE-DERIVED FSC OVER SITE B. BY
CONSIDERING FSCS AT ALL VEGETATION FRACTIONS TOGETHER

I FSCoc:tco  FSCoc:rvec  FSCrmscag ||

March 2016
RMSE 0.336 0.337 0.297
CC 0.301 0.301 0.153

April 2016
RMSE 0.296 0.296 0.263
CC 0.761 0.762 0.776

May 2016
RMSE 0.226 0.225 0.247
CC 0.857 0.859 0.814

across the different range of vegetation fractions. There-
fore, the performance assessment of the FSC algorithm is
more apparent when the metrics are computed for each
individual range of fVEG.

The metrics computed on April 17 are shown in Fig. 13(c)
and (d). The following observations can be summarized.

1) The metric profiles indicated the same trend as Fig. 13(a)
and (b) but are relatively flatter. This can be attributed to
the disappearing top-of-the-canopy snow cover that allows
accurate rescaling and determination of the FSCqg closely
matching the actual ground conditions. The flatness of the
metrics curve can be contributed partly due to the slightly
coarser resolution of the L8 data (30 m as compared to
20 m for S2).

2) Unlike the disparity of the FSCryscag with the ground
conditions as observed in Fig. 13(a) and (b) due to the
absence of temporally decorrelating precipitation/wind-
transport event on April 17, all metrics for this date fol-
lowed a nearly coherent path.

The next lidar data collection over Site B occurred on May
18, 2016. However, the closest cloud-free scene (L7) was only
possible on May 27. The metrics for this acquisition are shown
in Fig. 13(e) and (f). The following observations can be summa-
rized.

1) The RMSE demonstrated an even flatter profile as com-
pared to the ones observed in Fig. 13(a) and (c). This
denoted an almost negligible variation in the RMSE with
respect to the vegetation fraction for scenarios where the
majority of snow cover was limited to sparsely vegetated
and open areas.

2) The CC increased and remained fairly unchanged until
it showed a decrease again for densely vegetated areas
(fVEG > 0.75).

In summary, a closer inspection of Fig. 13 indicated that the
overall global RMSE decreased and the Pearson CC increased
(both denoted by the dashed lines) from March 26 to May 27,
2016. The overall variation in the statistics during this period
is summarized in Table V. The improving performance of the
algorithm with respect to the ablating state of snow cover over
Site B can be observed both from the variation in the vegetation
fraction binned and overall statistics. It can be observed that
the FSCog: tcp and FSCog. tveg demonstrated better or similar
overall performance with regard to FSCryscag-
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VI. DISCUSSION

This assessment indicated that accurate detection of binary
snow cover (SCA) was achieved with the NDSI-based op-
erational MAJA-LIS algorithm in forested areas despite the
obstructing effect of the canopy cover. Since TCD plays an
additional role in the estimation of the under canopy FSC, its
performance was separately evaluated. The presence/absence of
snow cover (binary SCA) conveys little information regarding
the performance of the FSC estimation (snow cover fraction is
a continuously varying quantity from O to 1), particularly under
varying degree of vegetation fraction conditions. The accuracy
generally exceeded 0.9 and a  of about 0.6 was obtained in areas
with low to average TCD over both the test sites. However, analy-
ses over the Sierra Nevada site indicated that the performance of
the SCA algorithm dropped in areas with high TCDs (typically
TCD > 0.75), and the snow detection was not significantly better
than a random agreement at TCD=1. Over the Pyrenees site,
the largest decrease in performance was observed in shaded
forested slopes, where both canopy cover and the lack of solar
irradiance collectively created the most challenging observation
scenario. This is well in accordance with observations reported
by early investigations where snowpack obscured by shadow or
forest cover hampered the photointerpretation of snowlines in
watersheds and recent investigations that reported areas of dense
forest shadows to be primarily responsible for introducing omis-
sion/commission errors in snow detection algorithms [79], [80].

Aspects facing away from the solar illumination, increas-
ing canopy cover and decreasing exposure to solar irradiance,
negatively impacted the performance of the snow detection.
Nevertheless, the solar irradiance compensated for the obscuring
action of the dense canopy cover over a south facing test plot
(P1). Under well-illuminated conditions, the FN remained sig-
nificantly low (mostly zero) that indicated there was negligible
omission errors both in the open and under the canopy in the
over the Pyrenees site (except P3).

In general, the accuracy of the FSC algorithm decreased with
an increase in the vegetation fraction and remained relatively
lower than those observed over the open areas (25% as re-
ported in [32]). This observed trend in the accuracy, graph-
ically illustrated in this investigation, corroborates well with
lower accuracies reported by past investigations with snow
detection and fSCA estimation over forested areas and complex
terrains [25],[81]-[85]. The investigation indicated close resem-
blance of the LIS FSCpg rescaled using both high-resolution
lidar-derived and coarse-resolution satellite-derived fractional
vegetation maps (fVEG and TCD, respectively). This revealed
that using a more accurate TCD product may not lead to sig-
nificant improvements in the FSC retrievals. Therefore, it can
be inferred that apart from the different methodologies followed
by the algorithms, the performance was largely limited by the
radiometric information content of the satellite scenes. The relia-
bility of both the operational and TMSCAG-based FSC retrievals
was observed to be limited beyond a critical value of TCD
(typically, TCD > 0.75). Despite very different approaches,
FSCog and FSCryscag indicated similar performances and
FSCrmscac performed only slightly better under certain site
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conditions. However, the current registration performances of S2
LI1C products are not nominal and the upcoming reprocessing
by the European Space Agency (ESA) may lead to improved
performances in many S2 products including FSC.

VII. CONCLUSION

We investigated the performance of NDSI-based SCA and
FSC algorithms with high-resolution Sentinel-2 and Landsat-
7/8 data in two forested landscapes (Pyrenees and Sierra
Nevada). These algorithms are employed by the recently
launched operational HR-S&I monitoring service. Over the
Pyrenees site, the operational snow cover detection algorithm
exhibited better performance in areas receiving higher solar
irradiance, but the detection degraded under dense canopy and
poorly illuminated forest conditions. Over the Sierra Nevada
site, the HR-S&I snow cover fraction retrievals were comparable
(25%-30% RMSE) to those provided by the USGS, based on
a spectral unmixing approach. However, uncertainties with the
snow cover fraction retrieved over dense forested areas remained
large, and the retrievals were not considered reliable in areas
with tree cover densities above 75%. Over the Sierra Nevada,
we employed the lidar-derived vegetation fraction map (fVEG)
along with the default the Landsat time-series data derived
tree cover density (TCD) map. One of the key observations
from this experiment revealed that the use of a more accurate
high-resolution fVEG map derived from airborne lidar did not
improve the subcanopy FSC retrievals. Hence, we suspect that
the accuracy is rather limited by the algorithm and the phys-
ical limits due to the masking of the subcanopy snow cover
by the overlying trees, which obstructs the useful signal from
reaching the satellite sensors. Therefore, the quality of the
vegetation density data is not solely responsible for determining
the performance of the retrievals. Nevertheless, it remains to
be investigated if seasonally variable TCD information could
possibly help in improving such retrievals, especially over the
deciduous forests.
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