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Abstract—Convolutional neural networks (CNNs) have become
quite popular for solving many different tasks in remote sens-
ing data processing. The convolution is a linear operation, which
extracts features from the input data. However, nonlinear oper-
ations are able to better characterize the internal relationships
and hidden patterns within complex remote sensing data, such
as hyperspectral images (HSIs). Morphological operations are
powerful nonlinear transformations for feature extraction that
preserve the essential characteristics of the image, such as bor-
ders, shape, and structural information. In this article, a new
end-to-end morphological deep learning framework (called Mor-
phConvHyperNet) is introduced. The proposed approach effi-
ciently models nonlinear information during the training pro-
cess of HSI classification. Specifically, our method includes spec-
tral and spatial morphological blocks to extract relevant fea-
tures from the HSI input data. These morphological blocks con-
sist of two basic 2-D morphological operators (erosion and di-
lation) in the respective layers, followed by a weighted combi-
nation of the feature maps. Both layers can successfully encode
the nonlinear information related to shape and size, playing an
important role in classification performance. Our experimental
results, obtained on five widely used HSIs, reveal that our newly
proposed MorphConvHyperNet offers comparable (and even
superior) performance when compared to traditional 2-D and 3-D
CNNs for HSI classification.

Index Terms—Classification, convolutional neural networks
(CNNs), deep learning (DL), hyperspectral images (HSIs), latent
feature space transfer, morphological transformations.
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I. INTRODUCTION

HYPERSPECTRAL images (HSIs) contain rich spectral
and spatial information comprised of hundreds of highly

correlated and near-contiguous spectral bands, which are si-
multaneously captured over an observation area (along dif-
ferent wavelengths within the electromagnetic spectrum). The
large and rich information containing HSI data cubes has been
successfully exploited in many different applications, such as
environmental management, surveillance, precision agriculture,
and crop analysis, among others.

Classification is an important technique for HSI data exploita-
tion. The goal of classification is to assign a land-cover class
to each spectral pixel by analyzing both the spectral and spatial
information contained in the image. However, HSI classification
poses two main challenges: the large spatial variability of the
pixel-based spectral signatures, and the lack of available labeled
samples. These challenges aggravate the curse of dimensionality
problem, which hinders the training of any supervised algorithm
and prevents the achievement of desirable performance levels,
i.e., the obtained classification accuracies may not always be
satisfactory.

To tackle the above problems, deep learning (DL) has received
a lot of attention in the field of HSI classification [1], [2]. Initially,
stacked autoencoders [3] and deep belief networks [4] were in-
troduced as accurate unsupervised methods to extract layerwise
trained deep features. However, their standard fully connected
(FC) architecture imposes a feature flattening process before the
classification, leading to the loss of spatial-contextual informa-
tion. On the contrary, convolutional neural networks (CNNs) are
able to automatically extract spectral–spatial features from the
raw input data through a series of linear transformations (com-
bined with nonlinear activations) to facilitate the recognition
of patterns. In fact, the stack of convolutions layers is inspired
by the natural visual cortex, where the spatial dimensions of
the convolution kernel define the receptive field, identifying
the presence of certain features and refining the feature extrac-
tion (FE) procedure along the entire stack. In this sense, the
convolution kernel can be easily adopted to conduct HSI data
analysis [2].

For instance, Bera and Shrivastava [5] explored the perfor-
mance of the CNN model considering different optimizers.
Similarly, Paoletti et al. [6] analyzed the impact of the input
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spatial size on model accuracy. Ramamurthy et al. [7] conducted
image denoising and dimensionality reduction by combining
autoencoders and CNNs. Also, Zhao and Du [8] explored 2-D
CNNs to extract spatial information from reduced HSI data using
principal component analysis (PCA) for classification, but failed
to exploit the entire range of spectral information contained in
the HSI. To overcome this issue, Makantasis et al. [9] introduced
2-D CNNs to extract spectral–spatial information separately,
combining these two sources of information to improve clas-
sification performance. This is due to the convolution operation
(the basic building block of the CNN), which simply computes
a linear combination of the input, followed by an activation
function to introduce nonlinearity in the feature learning process.
Zhong et al. [10] introduced efficient spectral and spatial residual
blocks to extract discriminative features for HSI classification.
Roy et al. [11] introduced a new hybrid deep model, which
combines 3-D and 2-D convolutions to improve spatial–spectral
feature representation. Furthermore, Roy et al. [12] combined
convolution kernels with generative adversarial minority over-
sampling to enhance the model performance by addressing the
imbalanced data challenge imposed by HSI classification. Wang
et al. [13] proposed an end-to-end cubic CNN, which applies
convolutions in different directions of the feature volume to fully
exploit spatial and spatial–spectral features. Driven by the goal
of extracting and exploiting the best possible features, Alipour-
Fard et al. [14] and Roy et al. [15] explored new architectural
designs to make the convolutional kernel more flexible.

However, in order to fully exploit the spatial-contextual in-
formation contained in the HSI, the shapes and contours of the
border regions should be well preserved when extracting features
(by keeping their geometry unchanged). Despite the success
of previous works focusing on capturing high-level features,
complex spatial features and relationships can be missed in this
context due to the kernel and subsequent pooling operations. In
this context, morphological operators have been widely used
to address the aforementioned issues and better capture the
spatial-contextual information [16], [17]. In the following, a
number of related works combining morphological operations
and deep architectures are presented.

A. Related Works

A constant critique of deep networks is their FE process,
which is completely opaque. Indeed, kernels self-adjust through
the forward–backward procedure, without any control over what
features they are extracting. In this context, several efforts
have been conducted to open the black box and provide an
interpretation of the extracted features, some of them inspired
by morphological operators. In these operators, the structuring
element (SE) plays an important role and helps to preserve the
semantic meaning of structures according to the size and shape
of the SE. For instance, Shen et al. [18] attempted to learn
both the SE and the morphological operations. They have also
defined the residual morphological neural network with the help
of subtraction of dilation and erosion operation. Furthermore,
it has been proved that nonlinear functions can better capture

the intrinsic structure of abstract features [19]. In this context,
the intrinsic linear combination operations within the CNN
model can be replaced by nonlinear morphological operations
to reduce the number of activation functions, while maintaining
(or even increasing) the performance of the model. In addition,
Mellouli et al. [20] have defined a soft version of dilation and
erosion using counterharmonic mean (CHM), validating the
method in digits recognition, where the proposed CHM-based
layer achieved higher performance than conventional models.
Also, Nogueira et al. [21] conducted an extensive study on
the combination of deep models and multiple morphological
operations such as opening, closing, top-hat operations, which
have been combined with the CNN to perform classification task
on aerial images.

Mathematical morphology (MM) is well known for its capac-
ity to analyze and recover specific structures within images using
combinations of nonlinear filtering operations, such as dilation
(⊕) and erosion (�) [22]. MM operations have been successfully
applied in many areas of computer vision, such as FE, seman-
tic image segmentation, denoising, and edge detection, among
others [23]. Traditionally, standard methods for HSI classifica-
tion consist of two stages: FE and feature classification, using,
for instance, support vector machine (SVM) [24]. Commonly
used FE techniques based on MM are morphological attribute
profiles [25], morphological profiles (MPs) [26], derivatives
of MPs [27], and extended MPs [28]. These FE approaches
have been widely used in the HSI research domain, normally
by reducing the HSI to a few representative components us-
ing, for instance, PCA. Franchi et al. [29] introduced a mor-
phological pooling layer similar to convolutional max-pooling.
The resulting network is used for image denoising and edge
detection. The great success of MM features has inspired us
to design a completely new approach for HSI classification,
which combines the dilation and erosion operations with the
conventional CNN in a layered fashion design, without in-
creasing model complexity (in terms of trainable weight pa-
rameters) [29]. In fact, two new blocks have been designed
to improve the FE procedure conducted by the deep CNN
model.

1) On the one hand, a newly designed SpectralMorph
block implements a dual-path module, where the first
path applies the erosion operation over the data and the
second path performs the dilation operation. The obtained
features are processed along the channel dimension by two
lightweight 1× 1 convolution layers and then combined
to obtain the final SpectralMorph feature maps.

2) On the other hand, theSpatialMorph block also imple-
ments a dual-path module. However, the obtained (eroded
and dilated) features are processed along the spatial di-
mension by two 3 × 3 convolution layers and then com-
bined to obtain the final feature maps.

To the best of our knowledge, this is the first time in the
literature that morphological operators such as dilation and
erosion are integrated into the conventional CNN architecture
for extracting structural information and classifying HSIs in an
end-to-end fashion.
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Fig. 1. Graphical overview of the proposed morphological convolutional network (MorphConvHyperNet) for spectral–spatial HSI classification.

The rest of this article is organized as follows:
Section II provides the architectural details of the proposed
model, detailing the preprocessing step and the considered mor-
phological operations. Section III discusses the experimental
results obtained with several HSI classifiers and the proposed
method, using five HSI datasets. Finally, Section IV concludes
this article with some remarks and hints at plausible future
research lines.

II. PROPOSED CLASSIFICATION FRAMEWORK

In the following, we provide the details of our new deep
morphological CNN model for remote sensing HSI data classi-
fication. Our model is composed of two trainable morphological
blocks called SpectralMorph and SpatialMorph. They,
respectively, implement a spectral and a spatial conv2D opera-
tion followed by 2-D erosion and dilation. The overall architec-
ture of our model is shown in Fig. 1. The flow of the proposed
framework involves 3-D HSI patch extraction, morphological
operations, and automatic selection of morphological features
using 2-D erosion and dilation. In the following, we describe
these stages in detail.

A. Preprocessing of HSI Data

A spectral–spatial HSI can be represented by a 3-D tensor with
dimensions W (width), H (height), and B (channels), defined
as the data cube X ∈ RH×W×B .The range of spectral features
should be standardized to prevent features with higher variances
(or wider ranges) from dominating the deep model optimization
metrics. In this regard, the data are standardized by removing the
mean and scaling to unit variance as a preprocessing step, forcing
all features to contribute equally to the model performance. For
this purpose, the Z-score method is implemented following

x̂i,j =
xi,j − μ

σ
(1)

where xi,j ∈ RD = [xi,j,1, . . . , xi,j,D] is a pixel from X,
∀i ∈ [1, H], j ∈ [1,W ], and x̂i,j ∈ RD defines its standardized
counterpart, with zero mean and unit standard deviation. μ and
σ are the mean and the variance, respectively.

Hereinafter and with the aim of simplifying the nomenclature,
when we refer to as X, we mean the reduced data cube that has
been standardized. Then, to capture both spectral and spatial
information, X is cropped into overlapping 3-D input patches
of size xi,j ∈ RS×S×B , ∀i ∈ [1, H], j ∈ [1,W ], with a stride
of 1. Finally, the obtained patches xi,j are sent to the neural
model to be processed, so that every position (i, j) needs to be
associated with one of L land-cover classes defined in advance.

B. Morphological Operations

Morphological operations are very powerful in terms of
capturing the shape and size of objects in the image. In this
work, a deep network based on two elementary morphological
operations is proposed. In particular, morphological dilation and
erosion operations are considered. Let I ∈ RM×N×C be an in-
termediate feature map extracted from the HSI data, with spatial
size M ×N and C channels. The dilation (⊕) and erosion (�)
operations over the feature map centered at spatial location (i, j)
can be defined as follows:

(I⊕ Sd)(i, j) = max
(̂i,ĵ,k̂)∈U

(Ii+î,j+ĵ,k̂ + Sd
î,ĵ,k̂

) (2)

(I� Se)(i, j) = min
(̂i,ĵ,k̂)∈U

(Ii+î,j+ĵ,k̂ − Se
î,ĵ,k̂

) (3)

where U = { (̂i, ĵ, k̂) | î ∈ {1, 2, 3, . . . ,M}; ĵ ∈ {1, 2, 3, . . . ,
N}; k̂ ∈ {1, 2, 3, .., C}}, and Sd and Se are the SEs for the
dilation and erosion operations, respectively.

Fig. 2 depicts the dilation operation with an SE of size 3 × 3.
It may be noted that the dilation and erosion operations are
nonlinear and piecewise differentiable. A grayscale image can
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Fig. 2. Graphical visualization of the dilation operation. An input image patch
of size (7×7×1) is dilated with an SE of size (3×3×1) and produces same output
size if padded.

Fig. 3. Graphical visualization of the erosion operation. An input image patch
of size (7×7×1) is eroded with an SE of size (3×3×1), removing the irrelevant
data.

be viewed as a surface over the image plane. The dilation will
increase the surface of the particular feature in the feature space
(according to the size and shape of the SE). Similarly, the
erosion will suppress the feature in the surface. Fig. 3 provides a
graphical representation of the erosion operation For HSIs, mor-
phological erosion and dilation can be applied in band-by-band
fashion.

C. SpectralMorph and SpatialMorph Blocks

Dilation and erosion are shape-sensitive operations. This
property is quite helpful to extract discriminative spatial-
contextual information during the training stage. In this con-
text, we designed our network using nonlinear MM filters. As
mentioned in [19], a single-layer dilation or erosion (followed
by a linear combination) can be used for complex classification
tasks. Dilation and erosion operations on morphological feature
maps generate dilated and eroded feature maps. To combine the
resulting feature maps, we can take a linear combination of these
maps as follows:

I2(i,j) = b+

C∑

k=1

wkI
2
(i,j,k) (4)

where the feature maps of I1 are combined linearly in order to
generate I2. The linear combination can be viewed as a 1 × 1

TABLE I
ARCHITECTURAL DETAILS OF OUR MorphConvHyperNet MODEL

convolution. To generate additional features, we may apply mul-
tiple dilation/erosion operations (and generate multiple linear
combinations of dilation and erosion).

In this work, shape features have been incorporated by intro-
ducing trainable (and therefore, learnable) MM operations, i.e.,
dilation and erosion into the conventional CNN model. Conse-
quently, we have defined two separate morphological blocks.

1) First, theSpectralMorph is built as a spectral morpho-
logical block, which comprises two parallel MM opera-
tions (dilation or erosion) followed by a linear combination
of dilated and eroded feature maps. We further add (in
elementwise fashion) the resulting feature maps. Fig. 1
provides the graphical representation of the Spectral-
Morph block.

2) Similarly, 3 × 3 convolutions can be used instead of linear
combinations of feature maps. This helps to extract spatial
features from dilated and eroded feature maps. In this case,
we call the resulting block SpatialMorph (see Fig. 1).

Before training, for all the considered SEs, the weights of the
linear combination and the convolution weights are initialized
randomly. In particular, network weights have been set through
He et al.’s operator [30], the well-known variance-scaling ini-
tializer that enhances the network performance when ReLU
activation functions are implemented. Moreover, biases have
been set to 0. For simplicity, in this work, we design a net-
work that focuses on simple nonlinear MM operations (erosion
and dilation) and explore their performance in the context of
HSI classification. However, more sophisticated MM operations
such as opening, closing, reconstruction-based operations, etc.,
can also be included in future developments. In the following
subsection, we describe the adopted network configuration in
detail.

D. Proposed Morphological CNN

Our morphological CNN comprises several convolution and
morphological layers. In each layer, we have taken multiple
convolutions and dilation/erosion operations to generate mul-
tiple feature maps. Fig. 1 illustrates the overall architecture of
the proposed network. A layerwise detailed summary of the
proposed model is provided in Table I.

As it can be seen, for the design of the proposed network, we
have employed two symmetric morphological blocks designated
as SpectralMorph and SpatialMorph. These blocks are
intended to extract MM features from the feature maps. It should
be noted that the dilation and erosion operations may also work
as redundant layers. For example, a dilation operation using an
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SE of size 3 × 3 with a center element set to 0 and all other ele-
ments set to − inf propagates the input to the next layer without
changing the value of the input. As a result, multiple dilation
or erosion operations help to generate multiple morphological
feature maps.

In our experiments, we have considered B/4 dilations and
B/4 erosions in each block. It should also be noted that dilation
and erosion are based on min /max operations, so they may
produce many zero gradient values while conducting the back-
propagation step. To boost the gradient, we use a convolution
layer to specifically enhance the desired output of each opera-
tion. Then, normalization and activation functions are applied
to each block. The obtained feature maps are then concatenated
and processed by a spatial downsampler, i.e., a MaxPool layer,
followed by a stack of convolution, normalization, and activation
layers. Finally, a global average pooling is applied to reshape the
data into vectors suitable for the processing of FC layers, which
are used for classification purposes.

The SEs and the convolutional kernels are all 3 × 3 pixels
in size, and all of them are initialized randomly before training.
The network is trained in end-to-end fashion using the backprop-
agation algorithm. In the following section, we quantitatively
and qualitatively verify the performance of our network using
real HSI data. We also provide an ablation study to validate
if morphological layers help extracting features that further
contribute to the final classification performance.

Fig. 4 visualizes different feature maps extracted from several
input samples at particular stages of the network architecture.
As we can see, although the feature maps obtained by the initial
convolution layer are quite smooth, the SpectralMorph and
SpatialMorph blocks are able to extract valuable informa-
tion through their erosion and dilation paths, which is combined
to obtain the final output. As a result, the block outputs contain
rich information, improving the data representation by means of
highly discriminating information.

III. EXPERIMENTAL RESULTS

A. HSI Datasets

In order to evaluate the performance of the proposed Mor-
phConvHyperNet, five different HSI scenes1 have been con-
sidered: Indian Pines (IP), University of Pavia (UP), University
of Houston (UH), Salinas Valley (SV), and Botswana (BW)
scenes. Figs. 5–7, respectively, show a detailed summary of the
IP, UP and UH scenes, including their corresponding ground
truth, the type associated with the land-cover classes, and the
number of available labeled samples per class. In the following,
we describe the datasets considered in this article.

1) The IP dataset was gathered by the airborne visi-
ble/infrared imaging spectrometer (AVIRIS) [31] over
the IP test site in North-western Indiana. It contains 224
spectral bands within a wavelength range of 400–2500 nm.
The 24 null and corrupted bands have been removed.
The spatial size of the image is 145 × 145 pixels, and it

1[Online]. Available: http://dase.grss-ieee.org /

Fig. 4. Graphical visualization of the obtained features. Each column indicates
a different sample, while each row provides the obtained feature obtained after
being processing through the different filters and blocks of the network. In
this sense, row 1 provides the original sample, rows 2 provide the extracted
feature maps after the first convolution layer, rows 3 and 4 provide the extracted
feature maps after spectral erosion and dilation, rows 5 and 6 provide the
extracted feature maps after spatial erosion and dilation, and finally rows 7
and 8 provide the feature maps obtained by the SpectralMorph block and
the SpatialMorph block, respectively.

Fig. 5. Ground truth, the type associated with the land-cover classes, and the
number of available samples in the IP dataset.

comprises 16 mutually exclusive vegetation classes. The
spatial resolution is 20 meters per pixel (mpp).

2) The UP dataset was acquired by the reflective optics sys-
tem imaging spectrometer sensor during a flight campaign
over the university campus at Pavia, Northern Italy [32].
It consists of 610 × 340 pixels with 103 spectral bands
in the wavelength range of 430–860 nm and the spatial

http://dase.grss-ieee.org
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Fig. 6. Ground truth, the type associated with the land-cover classes, and the
number of available samples in the UP dataset.

Fig. 7. Ground truth, the type associated with the land-cover classes, and the
number of available samples in the UH dataset, where the image at the top is the
training set and the image at the bottom is the testing set.

resolution of 2.5 mpp. It comprises nine urban land-cover
classes.

3) The IEEE Geoscience and Remote Sensing Society pub-
lished the UH dataset—collected by the compact airborne
spectrographic imager—in 2013 [33], as part of its Data
Fusion Contest. It is composed of 340 × 1905 pixels with
144 spectral bands. The spatial resolution of this dataset is
2.5 mpp with a wavelength ranging from 0.38 to 1.05 μm.
Finally, the ground truth comprises 15 different land-cover
classes.

4) The SV dataset was acquired using the AVIRIS sensor
over an agricultural area on Salinas Valley, CA, USA.
It contains 512 × 217 pixels with 224 spectral bands.
For classification purpose, 20 absorption and noise bands
were removed (108th–112th, 154th–167th, and 224th).
The spatial resolution is 3.7 mpp, and the ground truth
considers 16 different land-cover classes.

5) The BW dataset was collected using the Hyperion instru-
ment aboard the NASA EO-1 satellite, which captured
the scene on the Okavango Delta, Botswana. The spa-
tial resolution of this dataset is 30 mpp, with 1497 ×
256 pixels. It contains 145 spectral bands with a wave-
length range of 400–2500 nm. Before the classifica-
tion task, 97 uncalibrated and water-corrupted bands
were removed. The ground truth contains 14 land-cover
classes.

In addition, several experiments have been conducted using
the Disjoint Indian Pines (DIP) scene and the Disjoint Uni-
versity of Pavia (DUP) image. This addresses an important
drawback associated with 2-D/3-D kernel-based models and
the spatially overlapping data. Indeed, CNNs are based on
neighborhood windows, which must be extracted as cropped
windows from the HSI scene. In a clear contrast to other remote
sensing applications, this represents a serious limitation within
HSI processing, as the same HSI scene is used for extracting
both training and test samples. As a result, when extracting
neighborhood windows for the training samples, these windows
may overlap the test information, including it in the training
stage. This may unfairly benefit the model, which will provide
overrated classification results. To overcome this drawback, re-
cent HSI classification work encourages the use of both disjoint
and random sampling strategies, providing a tradeoff between
these different approaches. Inspired by these works, DIP, DUP,
and DUH have been taken into account from the IEEE GRSS
Data and Algorithm Standard Evaluation website. These disjoint
datasets have mutually exclusive training and test samples (as
the ground truth for the UH dataset), i.e., there is no spatial
overlapping between the training and test data. Figs. 8 and
9 show the disjoint splits given for the IP and UP datasets,
respectively. Moreover, Table II details the number of pixels
per class. It is noteworthy that disjoint train–test sets can be
even more challenging compared to randomly selected training
and test samples, as they do not ensure class balance. In fact,
DIP and DUP have highly class imbalanced issues, which is
very interesting to test the robustness of the proposed model.
The disjoint training and test splits for the UH dataset are given
in Fig. 7.
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Fig. 8. Spatially disjoint training and test samples for the IP dataset (DIP
dataset). (a) Disjoint train. (b) Disjoint test.

Fig. 9. Spatially disjoint training and test samples for the UP dataset (DUP
dataset). (a) Disjoint train. (b) Disjoint test.

TABLE II
NUMBER OF TRAINING SAMPLES (TRS) AND TEST SAMPLES (TES) OBTAINED

FROM THE DISJOINT TRAIN–TEST IP AND UP DATASETS

Finally, to better illustrate the performance of the proposed
model on random train–test splits, the BW and SV datasets
are used only when labeled samples are available. Here, sam-
ple patches are extracted from the raw HSI data, and random

sampling is conducted to select the training samples, while the
remaining labeled samples are used for testing.

B. Experimental Settings

In order to validate the effectiveness of the pro-
posed MorphConvHyperNet, a detailed comparison
have been conducted between several state-of-the art models,
which include classical machine learning and representative
DL methods. These methods are available in [2].2 In
particular, the methods considered include multinomial
logistic regression (MLR) [34], SVM with radial basis
function [24], gated recurrent unit (GRU) [35], long short-term
memory (LSTM) [36], CNN1D [37], CNN2D [2], and
CNN3D [38], [39]. Moreover, to feed spatial-based models,
a spatial neighborhood of size 11×11 has been considered
to create patches for all the HSI datasets. The network
parameters are randomly initialized and trained with the Adam
optimizer [40], using a learning rate of 0.001 while minimizing
the widely used cross-entropy loss.

The classification performance of the proposed model has
been evaluated considering four widely used quantitative met-
rics: per-class accuracy, overall accuracy (OA), average accu-
racy (AA), and kappa coefficient (κ) [41], respectively. In this
sense, the ratio of correctly classified samples among the total
test samples is determined by the OA, while the mean of class-
wise accuracy is determined by the AA. Finally, κ represents a
strong mutual agreement between the generated classification
maps of one network model and the provided ground truth.
All the considered models have been run five times, using 200
epochs per iteration, and we collect and report the average
results.

The hardware environment used for experiments is composed
of an Intel i9-9940X processor with 128 GB of DDR4 RAM and
NVidia Titan RTX with 24 GB of DDR4 RAM. The source code
of our framework was implemented by using the Keras library
with TensorFlow as the backend.

C. Classification Results Over Disjoint Datasets

To illustrate the generalization ability of our newly proposed
method in comparison with other traditional approaches, the
DIP (see Fig. 8), DUP (see Fig. 9), and DUH (see Fig. 7)
datasets have been considered. As pointed out before, these
datasets prevent spatial overlapping between training and test
and introduce certain challenges, as the different land-cover
classes are unbalanced in terms of the number of samples (such
as DIP and DUP).

In this regard, DIP is first considered. It contains class-specific
imbalanced training samples. As shown in Fig. 5, classwise
data variation is particularly observed in two classes: “Oats”
and “Soybean-mintill.” These classes, respectively, contain 20
and 2455 samples. According to the experimental settings dis-
cussed in Section III-B, the quantitative results in terms of OA,
AA, κ, and per-class accuracy for the DIP dataset (using all

2[Online]. Available: https://github.com/mhaut/hyperspectral_deeplearning_
review

https://github.com/mhaut/hyperspectral_deeplearning_review
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TABLE III
CLASSIFICATION RESULTS OBTAINED BY MLR, SVM, RNN, LSTM, GRU, CNN1D, CNN2D, CNN3D, AND MorphConvHyperNet ON THE DISJOINT

TRAIN–TEST DATASET FOR THE IP SCENE (DIP)

TABLE IV
CLASSIFICATION RESULTS OBTAINED BY MLR, SVM, RNN, LSTM, GRU, CNN1D, CNN2D, CNN3D, AND MorphConvHyperNet ON THE DISJOINT

TRAIN–TEST DATASET FOR THE UH SCENE

the considered classification models) are reported in Table III,
where we display in bold typeface the highest achieved results
across all the compared classification methods. On the one hand,
Table III reveals that the proposed MorphConvHyperNet
model achieves superior performance in terms of OA, and κ.
On the other hand, the highest AA is achieved by the SVM. It
can also be seen that the CNN2D can provide better classification
performance than CNN1D and CNN3D, achieving better class-
specific accuracy for a few of the classes. Overall, the proposed
MorphConvHyperNet framework consistently outperforms
the traditional CNN1D, CNN2D, and CNN3D by a large margin
(particularly in comparison with CNN1D and CNN3D). The
other classification models (i.e., MLP, LSTM, and GRU) achieve
similar accuracy, while RNN and MLR provide the lowest OA
values.

In a similar way, Table IV reports the results obtained for
the disjoint UH dataset. As pointed before, the total number of
classwise training and test samples for the UH dataset is shown in
Fig. 7. The results presented in Table IV reveal that the proposed
network exhibits constant performance gains in all the consid-
ered measurements i.e., OA, AA, and κ with respect to CNN1D,
CNN2D, and all the other considered methods. It can also be
observed that the OA achieved by the CNN1D is significantly

better than that achieved by the CNN2D and CNN3D. Focusing
on recurrent models, the GRU outperforms the classification
results obtained by the standard RNN and LSTM. MLP and
MLR seem to perform very similarly, achieving the lowest
accuracy results.

Finally, to determine the generalization power of the pro-
posed MorphConvHyperNet model in highly imbalanced
scenarios, the DUP dataset (see Fig. 9) has been considered
too. As we can observe, Fig. 6 provides the classwise number of
samples. Among all the classes, the “Shadows” is the minority
class, which contains the minimum number of samples (947),
while the “Meadows” class contains the maximum number of
samples (18 649). From Table V, it can be observed that the
proposed MorphConvHyperNet framework achieves OA,
AA, and κ values that consistently outperform those obtained
by the other traditional classification models. In particular, the
proposed model exhibits better scores than the convolutional-
based models, i.e., CNN1D, CNN2D, and CNN3D. This is due
to the presence of similar textures over most spectral bands
on three classes, namely, “Asphalt,” “Self-blocking bricks,”
and “Shadows,” where the morphological layers help to better
capture the shape information and distinguish these classes,
while it simplicity avoids overfitting problems. As compared
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TABLE V
CLASSIFICATION RESULTS OBTAINED BY MLR, SVM, RNN, LSTM, GRU, CNN1D, CNN2D, CNN3D, AND MorphConvHyperNet ON THE DISJOINT

TRAIN–TEST DATASET FOR THE UP SCENE (DUP)

Fig. 10. OA obtained by different classification methods with different training percentages over (a) IP dataset, (b) UP dataset, (c) SV dataset, and (d) BW dataset.

to the CNN1D and CNN3D, the CNN2D provides significantly
better OA due to the poor generalization ability exhibited by
the CNN1D and the overfitting and complexity problems raised
by the CNN3D. The CNN2D also improves the performance
obtained by the other traditional classification models. Focusing
on recurrent models, the LSTM and the GRU exhibit similar
OA performances, whereas the RNN achieves the worst results.
Comparing MLR, SVM, and MLP, the MLP and the SVM
perform very similarly.

D. Performance on Random Sampling With Different Training
Percentages

To evaluate the generalization ability of the proposed Mor-
phConvHyperNet network, it is important to analyze the
performance improvements obtained using randomly selected
and varying training sets. Fig. 10(a)–(d), respectively, shows
the OA—obtained by different classification methods, using
different training percentages—for the IP, UP, SV, and BW
datasets. Specifically, we randomly select 3%, 5%, 10%, and
15% of the available labeled samples from the IP and BW
datasets for training, while 1%, 3%, 5%, and 10% of the available
labeled samples have been randomly selected from the UP and
SV datasets to train the models (the remaining samples are used
for testing).

It can be observed from Fig. 10(a) that the proposed Mor-
phConvHyperNet model utterly outperforms all the stan-
dard machine learning methods, i.e., SVM, MLR, and MLP.
Also, recurrent networks (RNN, GRU, and LSTM) reach lower
OA results in comparison with the proposed network. In this
sense, the proposed MorphConvHyperNet takes advantage

of the spatial information provided by the input neighborhood
windows in a natural way, which can significantly reduce the
uncertainty introduced by spectrally complex images, such as
IP. These results are corroborated by the CNN1D, the OA of
which is considerably lower than that obtained by spatial and
spectral–spatial models (i.e., CNN2D and CNN3D) and the pro-
posal. In fact, purely spectral models (SVM, MLR, MLP, RNN,
GRU, LSTM, and CNN1D) have the worst accuracy and are also
the most affected by the lack of training samples in IP scene. On
the contrary, CNN2D, CNN3D, and MorphConvHyperNet
achieve the best OAs, in particular the proposed network far
exceeds the results obtained by the CNN3D, performing more
accurately when few training samples are available. This may
be due to the high complexity introduced by the kernels of the
CNN3D model, which introduce a large number of parameters
that must be carefully trained and adjusted to extract the most
discriminative features in order to improve classification. How-
ever, these kernels consume a great amount of training samples;
therefore, the model quickly tends to stagnate and overfit its
parameters. On the other hand, the CNN2D is far less complex
than the CNN3D, performing similarly to the proposed model
when there are few training samples. Nevertheless, its OA results
drop in comparison to the proposed model, in particular in
the last two cases. This is due to the behavior of the kernels
themselves, which work as black boxes. Indeed, there is no
control of the features that the CNN2D is obtaining, so redundant
and irrelevant information may be being extracted by the model,
which in the end produces worse classification results. In sharp
contrast, the proposed model extracts better features, producing
abstract and discriminative data representations that greatly help
the model to improve classification results.
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In a similar way, Fig. 10(b) provides the OA results obtained
by the considered models on UP scene using training set sizes
comprising 1%, 3%, 5%, and 10% of randomly selected samples
from the available labeled samples. Once more, the spatial
and spectral–spatial networks greatly outperform the classifica-
tion results obtained by the purely spectral models. Moreover,
Fig. 10(b) demonstrates the significant OA performance gains
achieved by the proposed MorphConvHyperNet network
compared with CNN2D and CNN3D. While the complexity
of kernels produces a fast degradation of the CNN3D model,
the CNN2D does not extract the full potential of the data.
In this sense, the proposed model is much simpler and takes
advantage of the rich spectral–spatial information extracted from
the morphological operations, achieving better OA results even
when there are few training samples available.

Fig. 10(c) illustrates the obtained results in terms of OA with
1%, 3%, 5%, and 10% of randomly selected training samples
from the available labeled ones in the SV dataset. The image of
SV is characterized by its regular patches of different crops and
the spectral complexity of several lettuce crops, which differ
in the stage of ripening. In this regard, spectral models show
very similar results, where the MLR is the worst of all, while
the GRU is the only one able to outperform the 94% of OA.
Focusing on the spatial and spectral–spatial models, CNN3D is
really affected by spectral mixing, in particular when the training
data are small to cover the full variability of the samples. Thus,
its kernels are incapable of being adjusted to extract the most
representative information. Although CNN2D is less affected
than CNN3D by spectral similarity, it does not achieve the best
results either. Finally, the proposed model achieves the best
classification result, outperforming all the compared methods
when the number of training samples is small (i.e., with 1%
and 3%), although its standard deviation is higher than spectral
models.

Finally, Fig. 10(d) provides the obtained results using 3%, 5%,
10%, and 15% of randomly selected samples from the BW scene
to train the classification models considered. Similarly to the IP
scene, this dataset is characterized by its low spatial resolution
(even lower than IP, as BW has 30 mpp and IP has 20 mpp)
and its high spectral mixing, which makes it a very challenging
image for HSI classification algorithms, which have to devote
a higher effort to properly exploit the information contained on
low-spatial-resolution HSI satellite images such as this one. As
a result, it is not uncommon to note that many related articles
in the literature have not reported accuracies in the BW datasets
precisely because of their difficulty. In this regard, the OA of
spectral models remains between 80% and 94% of accuracy,
where the CNN1D stands out as the best classifier. On the
contrary, spatial and spectral–spatial models are highly affected
by both the low spatial resolution and the high spectral mixing.
It is notable that in this scene, the proposed model suffers a great
degradation and does not outperform either CNN2D or CNN3D
until it has at least 15% of training data, while with 5% of training
data, it performs quite similar to CNN2D. In this sense, erosion
and dilation operations are affected by the spectral–spatial char-
acteristics of the data. One way to overcome this drawback is to
try different window sizes or different numbers of morphological

operations, in order to better focus the operations and match
them to the type of data, although the aim of this article has been
from the beginning to provide a general architecture that works
accurately with a large number of different scenes, for instance,
with images of low spatial resolution and high spectral mixture
such as IP, scenes with better spectrally separated classes and
rich spatial information like UP, or with samples with a lot of
spectral similarity as SV. Indeed, focusing on the BW dataset,
the results of the proposed network are utterly better than those
obtained by the spectral models from the 5% of training samples
with a significant margin, performing similarly to the CNN2D
and the CNN3D at the end of the experiment.

Overall, the plots in Fig. 10 reveal that the features extracted
by the proposed MorphConvHyperNet exhibit better gener-
alization ability, leading to superior classification performance
for training sets with different sizes and different spectral–spatial
characteristics. It should also be mentioned that the proposed
model achieves excellent performance with the considered HSI
datasets. Morphological operations are highly nonlinear. For
example, dilation and erosion operations are composed of simple
maximum and minimum operations. This removes a significant
amount of complexity from the model. In particular, our work
implements spatial and spectral dilation/erosion operations,
which selectively ignore noise and redundancies in the feature
maps. In fact, this improves FE and feature representation. While
the CNN takes spatial linear combinations, including redundan-
cies and noises, the proposed network applies its morphological
operations to remove irrelevant information. As a result, when
the network is trained with few examples, the standard CNN
wastes too many resources on modeling irrelevant data and is not
able to find the noise pattern, while the morphological operations
completely ignore the noise. Therefore, noise- and redundancy-
free feature maps always play an important role in achieving
high accuracy, even on a small number of training samples.
The fact that CNN1D underperforms when compared to other
strategies is expected, as it only relies on spectral information,
while the other tested methods also include spatial-contextual
information.

E. Ablation Study

The proposed MorphConvHyperNet network employs
two commonly used morphological operations, i.e., dilation and
erosion, within its underlying architecture. To further evaluate
the effectiveness of the morphological layers in the proposed
framework, an ablation study has been conducted in order to
evaluate the accuracy of the proposed MorphConvHyper-
Net and its baseline counterpart, the CNN2D. In this context,
the CNN2D model has been designed upon the same network
architecture of MorphConvHyperNet but without including
the morphological blocks. While conducting the experiments,
we kept the experimental settings unchanged (as discussed in
Section III-B).

The CNN2D and MorphConvHyperNet columns of
xTables III–V provide the results of the ablation studies in
terms of OA, AA, and κ over the DIP, UH, and DUP datasets,
respectively. Focusing on the obtained results reported from DIP
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Fig. 11. (a) OA, (b) AA, and (c) κ (×100) obtained by the proposed network with various sizes of the dilation and erosion SEs using the DIP (blue bars), DUP
(orange bars), and UH (green bars) datasets.

scene in Table III (characterized by its low spatial resolution, its
high spectral mixing, and great class imbalance), the CNN2D
and MorphConvHyperNet models achieves similar OA and
Kappa values (slightly higher in the case of the proposed model
and with a lower standard deviation); nevertheless, the AA is
almost two percentage points better in the proposed model,
indicating that the classification by class is more accurate than
in the CNN2D model. On the other hand, focusing on Table IV,
which reports the obtained results on the class-balanced UH
scene, the proposed MorphConvHyperNet far outperforms
the classification results obtained by the baseline, exhibiting a
lower standard deviation; thus, its classification performance is
much more stable than CNN2D. Finally, in Table V, we can
evaluate the behavior of the proposed MorphConvHyperNet
and CNN2D in classifying the class-imbalanced DUP scene.
Once more, the proposed model greatly outperforms the OA,
AA, and Kappa values achieved by the CNN2D model, exhibit-
ing higher stability and generalization ability with significantly
lower standard deviation. This is because the proposed model
extracts more robust and effective features through the spectral
and spatial morphology blocks, which are constructed using a
combination of dilation and erosion layers. Such MM layers
extract and learn more informative feature maps, which empha-
size the role of spatial-contextual information during the training
stage of the network as compared to the baseline CNN2D.

F. Effect of Using Different SE Sizes for the Dilation and
Erosion Operations

In order to evaluate the effect of using different sizes of the
SEs considered for the dilation and erosion operations in the pro-
posed MorphConvHyperNet network, several experiments
have been conducted over DIP, DUP, and UH datasets consid-
ering SEs of size 1, 3, 5, 7, 9, and 11 in the SpectralMorph
and SpatialMorph blocks of the proposed network, while
keeping the other experimental settings unchanged (as discussed
in Section III-B).

The achieved performances are shown in Fig. 11(a)–(c) in
terms of OA, AA, and κ, respectively, for the DIP, DUP, and UH
scenes (differentiated with the colors blue, orange, and green).
In general, the accuracy of the model varies with different SE

sizes, reaching the highest peak in terms of OA, AA, and κwhen
the size of the SE is 3 and decreasing for the remaining sizes, in
particular when using large SEs. This is due to the presence of
varying shape information that can be better captured through
an adequate size of the SE used to implement the morphological
operation. It is also clear from Fig. 11(a)–(c) that the proposed
model generally achieves the best OA, AA, and κ scores with
SEs of size 3, while SEs of size of 11 generally provide the
lowest scores for the aforementioned metrics.

G. Visual Analysis of the Obtained Classification Maps

In order to provide a qualitative visual comparison between
the classification maps provided by the proposed MorphCon-
vHyperNet and the other compared methods MLR, SVM,
MLP, RNN, LSTM, GRU, CNN1D, CNN2D, and CNN3D,
Figs. 12– 14 display the obtained classification maps for the
IP, UH, and UP datasets, respectively.

Focusing on the DIP scene, Fig. 12 shows that spectral-based
models MLR, SVM, MLP, RNN, GRU, LSTM, and CNN1D
contain “salt and pepper” noise due to the miss-classification
of many land-cover pixels surrounded by spectrally mixed
neighboring pixels. Indeed, although spectral models ultimately
differentiate the different areas visually, at their edges, there is an
important problem of “salt and pepper” noise, which produces
many pixels of different classes totally isolated in a completely
random mix at the edges between regions. This also happens in
the inner areas of the different land-cover regions. In particular,
the bottom left area with the “Corn min” ground cover is highly
affected by the spectral mixture, being miss-classified mostly as
“Soybeans min.” On the contrary, spatial and spectral–spatial
models overcome this drawbacks, including spatial information
to mitigate the effects of spectral variability and the uncertainty
introduced by it during the classification. In general, spatial
and spectral–spatial models attempt to consistently delimit the
different regions in such a way that they create sharply defined
borders between one region and another. As a result, the fron-
tiers are better defined, with few samples miss-classified within
the areas of different land-cover classes. Of course, there are
miss-classified border areas, as CNN2D shows. In particular, in
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Fig. 12. (a) False color representation of the first PC obtained from the IP scene. (b) Ground truth and classification maps obtained for the DIP dataset by
(c) MLR (80.33%), (d) SVM (84.12%), (e) MLP (82.95%), (f) RNN (79.07%), (g) LSTM (83.55%), (h) GRU (84.20%), (i) CNN1D (84.00%), (j) CNN2D
(87.25%), (k) CNN3D (83.60%), and (l) MorphConvHyperNet (87.45%) models.

Fig. 13. (a) False color representation of the first PC obtained from the UP scene. (b) Ground truth and classification maps obtained for the DUP dataset by (c)
MLR (72.23%), (d) SVM (77.80%), (e) MLP (82.05%), (f) RNN (77.07%), (g) LSTM (80.38%), (h) GRU (80.70%), (i) CNN1D (89.09%), (j) CNN2D (92.55%),
(k) CNN3D (89.43%), and (l) MorphConvHyperNet (95.51%) models.

contrast with CNN2D and CNN3D, the proposed MorphCon-
vHyperNet can accurately identify those regions covered by
“Alfalfa,” “Grass/pasture-mowed,” and their surrounding areas,
without introducing ‘Soybeans min” areas like CNN2D and
following more the trend of spectral models.

This behavior is repeated within DUP and UH scenes, as
we can observe in Figs. 13 and 14. On the one hand, MLR,
SVM, MLP, RNN, GRU, LSTM, and CNN1D generally contain
an important amount of “salt and pepper” noise, although,
visually, the different regions are easily discernible. On the
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Fig. 14. (a) False color representation of the first PC obtained from the UH scene. (b) Ground truth and classification maps obtained for the DUH dataset by
(c) MLR (80.33%), (d) SVM (84.12%), (e) MLP (82.95%), (f) RNN (79.07%), (g) LSTM (83.55%), (h) GRU (84.20%), (i) CNN1D (84.00%), (j) CNN2D (87.25%),
(k) CNN3D (83.60%), and (l) MorphConvHyperNet (87.45%) models.

other hand, spatial and spectral–spatial models produce the
characteristic classification maps, with less noise artifacts and
more solid regions in the sense that they attempt to remove
different land-cover pixels from inner regions. It is also worth
noting that the classification maps generated using CNN2D and
CNN3D contain noise artifacts in some classes, whereas the
classification maps of the proposed MorphConvHyperNet
are more accurate, smoother, and with better delineation of
borders.

IV. CONCLUSION

This article introduces MorphConvHyperNet, a new HSI
classification framework based on morphological CNNs. Our
network replaces the traditional linear convolution layer with
basic nonlinear morphological operations that are able to extract
better spectral and spatial-contextual information from the raw
remote sensing data, using a less complex structure. The mor-
phological convolution layer consists of two widely used (and
easily learnable) morphological filters: dilation and erosion. This
layer extracts highly discriminative features from the original
HSI data using two spectral–spatial morphological blocks, i.e.,
SpectralMorph and SpatialMorph. Our experiments,
conducted using five widely used HSI datasets, indicate that
the proposedMorphConvHyperNetoutperforms the baseline
architecture without the morphological layers (ConvHyperNet)
and all the other the compared methods. The effect of using
dilation and erosion operations with different SE sizes is also
thoroughly reported and investigated in terms of OA, AA, and
κ metrics. In the future, we will use more sophisticated mor-
phological operations for the design of the convolution layer,
including opening and closing by reconstruction and directional
morphological operations (which may be particularly useful in
urban environments).
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