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Abstract—Due to the need of practical application, multiple
sensors are often used for data acquisition, so as to realize the
multimodal description of the same object. How to effectively fuse
multimodal data has become a challenge problem in different sce-
narios including remote sensing. Nonsparse multi-Kernel learning
has won many successful applications in multimodal data fusion
due to the full utilization of multiple Kernels. Most existing models
assume that the nonsparse combination of multiple Kernels is
infinitely close to a strict binary label matrix during the training
process. However, this assumption is very strict so that label fitting
has very little freedom. To address this issue, in this article, we
develop a novel nonsparse multi-Kernel model for multimodal data
fusion. To be specific, we introduce a label softening strategy to
soften the binary label matrix which provides more freedom for
label fitting. Additionally, we introduce a regularized term based
on manifold learning to anti over fitting problems caused by label
softening. Experimental results on one synthetic dataset, several
UCI multimodal datasets and one multimodal remoting sensor
dataset demonstrate the promising performance of the proposed
model.

Index Terms—Label softening, manifold learning, multi-Kernel
learning, remote sensing, semantic-based multimodal fusion.

I. INTRODUCTION

TODAY, with the development of advanced sensors, multi-
modal data is becoming easier to obtain. Multimodal data

refers to the data obtained from different fields or views for
the same object, and each field or view describing these data is
called a modality [1], [2]. For example, in the field of remote
sensing [45], full-color images and multispectral images are
two modalities than can both be used for earth observation. In
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general, different modalities of the same object tend to contain
complementary information about the description of that object
[3]. However, different modalities may lead to significant gaps
in performance when methods and algorithms are designed and
developed separately. Therefore, how to effectively mine and
fuse information extracted from different modalities is still a
great challenging task.

Multi-Kernel learning as one of the commonly used data
fusion methods has been successfully applied in many scenarios
[4], [5]. To mine enough patterns from training samples, it uses a
set of predefined Kernels and learns an optimal linear or nonlin-
ear combination of them. Typically, when multi-Kernel learning
is used for classification tasks, it aims to learn a transformation
matrix that can transform the combination of Kernels into a
binary label matrix. Previous studies showed that transforming
the combination of Kernels into a strict binary label matrix often
failed to learn a very discriminant transformation matrix [6], [7].
This because such label fitting is very strict and has very little
freedom. To address this problem, in this article, a label softening
strategy is introduced to relax the binary label matrix. With this
strategy, the margins between different classes are enlarged so
that label fitting becomes freer. That is to say, transforming the
combination of Kernels into a soft binary label matrix can help
learn a discriminant transformation matrix due to the larger class
margins, hence improve classification performance. However,
more freedom of label fitting may bring overfitting problems.
To address overfitting, a regularized term derived from manifold
learning is used to control the training process [8]. The basic
idea is that samples in the same class should be kept as close
as possible when they are transformed into the label space by
multi-Kernel techniques. Based on label softening strategy and
the manifold regularized term, we develop a novel nonsparse
multi-Kernel learning model with regularized label softening
(NS-RLS-MKL) for multimodal data fusion. The contributions
can be summarized as follows.

1) A label softening strategy is introduced to soften the binary
label matrix which provides more freedom for label fitting.

2) A regularized term based on manifold learning is in-
troduced to solve over fitting problems caused by label
softening.

The rest is organized as follows. In Section II, we briefly
review several multimodal data fusion methods. In Section III,
we give detailed information about the proposed model includ-
ing the objective function, optimization, and algorithm steps.
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In Section IV, extensive experiments are conducted to evaluate
the performance of the proposed model. Finally, Section VII
concludes this article.

II. RELATED WORK AND BACKGROUND CONCEPTS

Multimodal data fusion methods can be roughly divided into
three categories: stage-based fusion, feature-based fusion, and
semantic-based fusion. In this article, we focus on semantic-
based fusion. Therefore, in following, we will summarize some
works related to semantic-based multimodal data fusion.

A. Semantic-Based Multimodal Fusion

The semantic-based multimodal fusion is to understand the
data meaning of each modal and the relationship between
features from different modalities and use the way of human
thinking to abstract the semantic meaning of different modalities
to complete multimodal data fusion. Typically, the existing
semantic-based multimodal fusion methods can be divided into
three categories: co-training based; multi-Kernel learning based;
and subspace learning based.

1) Co-Training: Co-training methods [9]–[11] maximize the
synergistic degree of the multimodal data by alternate training.
Co-training is one of the earliest strategies to solve the problem
of multi-modal data fusion. In co-training, three assumptions are
often required as follows:

1) Sufficiency: Each modal itself has sufficient data to com-
plete the corresponding analysis task.

2) Compatibility: The objective function based on multiple
modalities of symbiotic characteristics can predict the same class
labels with a high probability.

3) Conditional independence: Given the specific class label,
the modalities are conditionally independent.

In practice, the restriction of conditional independence is too
strong to satisfy, so some corresponding weak restrictions are
proposed. Co-training is based on single-modal learning, and is
widely used in the semisupervised learning fields. For example,
multimodal data is used to iteratively learn multiple classifiers,
and the obtained classifiers are applied to each other’s unlabeled
data classification prediction. Typical multimodal co-training
methods include: Co-EM models based on expectation maxi-
mization, support vector machine models based on Co-EM [12],
the co-training regression model CoREG [13], and so on.

Original co-training methods cannot test the reliability of
class labels obtained from each modality, but in practice even
very few samples of incorrect labels may greatly deteriorate the
performance of the learned model.

To solve this problem, some scholars have proposed a robust
co-training strategy, in which canonical correlation analysis
(CCA) is incorporated into the co-training process to check the
prediction results of unlabeled data [14]. Yu et al[15]. proposed
an improved co-training method based on Bayesian undirected
graph model, which can query <instance, modality > pairs to
improve the performance of learning results. Zhao et al[16].
integrated K-means clustering and linear discriminant analysis
into the co-training process, and the discriminant subspace of
another modality is found through the labeled samples from
automatic learning of one modality.

2) Multi-Kernel Learning: Multi-Kernel learning is one of
the commonly used Kernel-based machine learning strategies.
It uses a set of predefined Kernel functions to learn an optimized
linear or nonlinear combination based on Kernel function to
complete the analysis of specific data tasks. The Kernel is a
hypothesis based on data, which may be a concept of similarity,
a classifier, or a regressor. According to [17], there are two
ways of multi-Kernel learning: different Kernels correspond to
different similarity concepts, and the learning function selects
the best Kernel calculation results or integrates the calculation
results of all Kernels. This multi-Kernel learning uses all modal
data to complete the training of each kernel, which is not
suitable for multimodal fusion learning; and different Kernels
are trained by using different modal data, so the integration
of all Kernel learning results is equivalent to the fusion of
all modal information. Existing multi-Kernel result integration
algorithms can be divided into three categories: linear; nonlinear;
and data-dependent integration [18]–[20].

The main reason why multi-Kernel learning is used in multi-
modal analysis is that different Kernels naturally correspond to
different modalities in multi-Kernel learning, and proper inte-
gration of each Kernel can improve the performance of learning
results. For example, Poria et al. applied multi-Kernel learning to
multimodal emotion recognition and semantic analysis [21], and
obtained better results than single Kernel modal fusion by using
different Kernels for semantic, video, and text modal features.
In [22], the authors applied multi-Kernel learning to face recog-
nition, and proposed a classification learning algorithm based
on multi-Kernel sparse representation. The algorithm performs
sparse coding and dictionary learning in multi-core space at the
same time, and obtains the optimal weight of the Kernel through
possible Kernel combination and sparse coefficient calculation.

3) Subspace Learning: Multimodal data fusion algorithms
based on subspace learning assume that all modal data can be
projected into the same semantic shared subspace, and data min-
ing tasks, such as clustering and classification can be completed
in the subspace. Usually, the feature dimension of multi-modal
shared subspace is smaller than any one of the dimensions of
modal data, so the dimension disaster problem of multimodal
data can be solved to a certain extent through low dimensional
learning of shared subspace. In the existing papers, the earli-
est multi-modal shared subspace learning algorithm uses CCA
to maximize the correlation between two modalities, obtains
the maximum correlation subspace, and outputs the projection
matrix corresponding to each modality [23]. Based on this,
Pereira et al. [24] proposed the corresponding nonlinear im-
proved algorithm, namely multimodal shared subspace learning
algorithm based on Kernel CCA (KCCA). The algorithm first
maps the data points to the high-dimensional data space through
nonlinear transformation, and then uses linear CCA to complete
the subspace learning. Both CCA and KCCA are unsupervised
learning algorithms. In [25], a method of multimodal discrimi-
nant analysis (FDA) is proposed to find more effective projection
matrix by using labeled information and make the modal data
more relevant.

Another effective multi-modal subspace learning algorithm
is the algorithm based on matrix decomposition [26], [27]. In
the single modal data analysis, matrix decomposition decom-
poses the original data into basis matrix and potential feature
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representation, and can use the matrix to explain the potential
elements learned. Therefore, we can complete different data
learning tasks through each regularly decomposed matrix. With
people’s attention to the problem of multimodal data fusion,
more and more multimodal data fusion algorithms based on joint
matrix factorization have been offered [28], [29].In the existing
matrix factorization algorithms, nonnegative matrix factoriza-
tion (NMF) uses the idea of combining parts to form a whole to
reconstructs each data record through the linear combination of
nonnegative basis matrix, which is in line with the physiological
and psychological perception process of human brain. Now, it
has been widely used in the potential feature learning of data
[30]. For example: The multimodal nonnegative matrix decom-
position method Multi-NMF is proposed in [31]. It uses the
combined nonnegative matrix decomposition learning to obtain
the shared characteristics of multimodal data. In addition, the
regularization strategy is also introduced in the multiNMF algo-
rithm to make the results of different modal learning comparable
and ensure the consistent cross-modal sharing characteristics.
Multimanifold NMF [32], another multimodal fusion algorithm
based on NMF, integrates the uniform manifold structure and
the uniform correlation matrix to normalize the multimanifold
structure in the process of non-negative matrix decomposition,
so as to ensure the local geometric structure of each modal space
in the process of multimodal learning, and obtain more accurate
modal fusion features. In addition, some scholars have learned
the shared subspace of multimodal data based on Gaussian
process [33], [34], spectral embedding [35] and undirected graph
model [43], [44] and achieved good results.

B. Background Concepts

Since the proposed model NS-RLS-MKL is derived from
Kernel ridge regression, in this section, we will give some
background concepts.

By introducing the reproducing Kernel Hilbert space, the
original Ridge regression can be updated into its Kernel version,
that is [36]

min
A
‖XφA−Y‖22 + λ ‖A‖2F (1)

where Xφ = [φ(x1), φ(x2), . . . , φ(xN )]T ∈ RN×dφ in which
φ(xi) is the mapping of xi in the reproducing Kernel Hilbert
space. Like Ridge regression, the solution to Kernel Ridge
regression can be deduced as

A∗ = (Xφ
TXφ + ηIdφ

)−1XφY. (2)

We know that the dimension of the reproducing Kernel Hilbert
space is infinite. Therefore, it is usually infeasible to find the
mapping function φ. Therefore, instead of directly optimizing
(1), an alternative method is to optimize its dual problem,
that is,

min
A,ξ

1

2

N∑
i=1

ξ2i +
λ

2
‖A‖2F

s.t. φ(xi)
TA = yi − ξi, i = 1, 2, . . . , N (3)

where ξi is the training error of sample xi. By introducing
Lagrangian multipliers, the corresponding Lagrangian function

of the dual problem is

J(A, ξi, αi) =
1

2

N∑
i=1

ξ2i +
λ

2
‖A‖2F

−
N∑
i=1

αi(φ(xi)
TA− yi + ξi) (4)

where αi is the Lagrangian multipliers. With the Karush–
Kuhn–Tucker and by setting ∂J(A, ξi, αi)/∂A = 0,
∂J(A, ξi, αi)/∂ξi = 0, and ∂J(A, ξi, αi)/∂αi = 0, we
have

A = XT
φα/λ (5)

ξ = α (6)

XφA−Y + ξ. (7)

By substituting (5) and (6) into (7), we have

α∗ = λ(XφXφ
T + λIN )−1Y. (8)

Therefore, by substituting (8) into (5), we have

A∗ = Xφ
T (XφXφ

T + λIN )−1Y. (9)

By defining a Mercer Kernel matrix K, we have

K = XφXφ
T ∈ RN×N . (10)

Therefore, for an unseen sample x, its prediction can be
expressed as

f(x) = φ(x)A = φ(x)Xφ
T (XφXφ

T + λIN )−1Y

=

⎡
⎣ K(x,x1)

. . .
K(x,xN )

⎤
⎦
T

(K+ λIN )−1Y (11)

where K denotes the Kernel function. By substituting (5) to (1),
we find that the loss function in the reproducing Kernel Hilbert
space can be formulated as ‖Kα−Y‖2F , where K is a Mercer
Kernel matrix. Therefore, because of the diversity of Kernels,
we can redesign the representation of K to achieve multi-Kernel
learning.

III. NONSPARSE MULTI-KERNEL LEARNING MODEL

WITH REGULARIZED LABEL SOFTENING

In this section, we first define the objective function of our
proposed model NS-RLS-MKL. Then, we deduce the solution
to the objective function and list the detailed algorithm steps.

A. Nonsparse Multi-Kernel Regression

Multi-Kernel learning attempts to obtain better mapping per-
formance by combining different Kernel functions or Kernel
functions with different Kernel parameters. There are many
ways to combine Kernel functions, among which the linear
combination is the most used. Suppose that we have M different
Kernel functions, Kz represents the zth one, 1 ≤ z ≤ Z, then a
linear combination of these Kernel functions can be expressed
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as

K =

Z∑
z=1

θzKz (12)

where θz is the combination coefficient. How to learn θz can
determine the utilization of pattern information contained in
different Kernels. For example, if l1-norm is imposed on the
learning of θz , we will have a sparse distribution of θz , which
means only most of discriminant Kernels will be used. If lp-norm
(p > 1) is imposed, we will have s non-sparse distribution of θz ,
which means pattern information contained in all Kernels will
be used. Typically, we have a basic assumption that all Kernels
contain complementary patterns. It is important to use and fuse
such complementary information effectively. Therefore, in this
article, we use lp-norm (p> 1) to impose on the learning of θz to
generate non-sparse distribution so that the complementary in-
formation contained in each Kernel can be fully exploited. Thus,
the multi-Kernel regression with the lp-norm regularization can
be formulated as

min
A

∥∥∥∥∥
Z∑

z=1

θzKzA−Y

∥∥∥∥∥
2

F

+ λ ‖A‖2F

s.t
Z∑

z=1

(θz)
p ≤ 1, p> 1. (13)

B. Regularized Label Softening

When the nonsparse multi-Kernel regression model shown
in (12) is applied for multi-class classification tasks, Y must
be a strict binary label matrix. Previous studies showed that
excessively fitting a strict binary label matrix cannot learn a
discriminant model. To solve this problem, similar to [37], we
introduce two matrices D and M to soften the label matrix Y so
as to enlarge the margins between classes. The softening process
is formulated as

Ỹ = Y +D�M (14)

where � denotes the Hadamard operator, D and M are defined
as follows:

dij =

{
+1ifyij = 1
−1ifyij = 0

(15)

M =

⎡
⎢⎣

m11 · · · m1C

... mij

...
mN1 · · · mNC

⎤
⎥⎦

i = 1, 2, . . . , N, j = 1, 2, . . . , C,mij ≥ 0. (16)

After label softening, the original multi-Kernel regression
model in (12) can be updated as

min
A

∥∥∥∥∥
Z∑

z=1

θzKzA− (Y +D�M)

∥∥∥∥∥
2

F

+ λ ‖A‖2F

s.t
Z∑

z=1

(θz)
p ≤ 1,p> 1. (17)

Although label softening can enlarge the class margins and
hence improve classification performance, the overfitting will
occur owning to the freedom of fitting. Therefore, overfitting
should also be suppressed in the pursuit of more discriminative
models. To this end, based on manifold learning, we use a
regularized term to control data fitting. This regularized term
is designed permitted on an assumption that samples in the
same class should be kept as close as possible when they are
transformed into the label space. To specify this regularized
term, we first construct an undirected graph to capture the
relationships between samples, which is defined as

gij =

{
e−
‖xi−xj‖2

σ xi,xj are in the same class
0 otherwise

(18)

where σ is the Kernel width. From the above equation, we see
that if two samples are in the same class, the closer the distance,
the bigger the weight. If they are in different classes, the weight
is 0. Therefore, when samples are transformed into label space,
we can use the following objective to insure our assumption:

min
f

∑
ij

‖f(xi)− f(xj)‖2F gij (19)

where f(xi) is the decision function in the multi-Kernel feature
space that can be expressed as

∑Z
z=1 θzKz(x,xi)A. Thus, the

manifold regularized term can be changed into

min
A

∑
ij

‖f(xi)− f(xj)‖2F gij

= min
A

tr

(
AT

Z∑
z=1

θzKzL

Z∑
z=1

θzKzA

)
(20)

where L is the Laplace matrix that can be computed by L =
T−G, Z is a diagonal matrix in which each element can be
computed by tii =

∑
j gij . By substituting (20) into (17), we

have our final nonsparse multi-Kernel regression model

min
A

∥∥∥∥∥
(

Z∑
z=1

θzKz

)
A− (Y +D�M)

∥∥∥∥∥
2

F

+ λ ‖A‖22

+ γtr

(
AT

(
Z∑

z=1

θzKz

)
L

(
Z∑

z=1

θzKz

)
A

)

s.t
Z∑

z=1

(θz)
p ≤ 1,p> 1. (21)

C. Optimization

Regarding our final objective, there are three model parame-
ters, i.e.,αm,A andM should be optimized. The following three
theorems are proposed for handling such optimization problem.

Theorem 1: When θz and M are fixed, the objective function
converges to its minimum if only if A= (K̃T K̃+ γK̃TLK̃+

λIN )−1K̃T (Y +D�M), where
∑Z

z=1 θzKz = K̃.
Proof: When θz and M are fixed, suppose that∑Z
z=1 αzKz = K̃, then the optimization problem becomes

J(A) = min
A

∥∥∥K̃A− (Y +D�M)
∥∥∥2
F



6248 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

+ λ ‖A‖2F + γtr
(
AT K̃LK̃A

)
. (22)

By setting the derivative partial of J(A) w.r.t A to 0, that is

∂J(A)/∂A= 0

⇒ 2K̃T K̃− 2K̃T ((Y +D�M))

+ 2λA+ 2γK̃TLK̃A = 0

⇒ A= (K̃T K̃+ γK̃TLK̃+ λIN )−1K̃T ((Y +D�M)).
(23)

So, the proof of Theorem 1 is achieved.
Theorem 2: When θz and A are fixed, the objective func-

tion converges to its minimum if only if M = max(D�E, 0),
where E = (

∑Z
z=1 θzKz)A−Y.

Proof: When θz and A are fixed, suppose that
(
∑Z

z=1 θzKz)A−Y = E, then the optimization problem
becomes

J(M) = min
M
‖E−D�M‖22

s.t mij ≥ 0. (24)

We have the fact that the squared l2-norm of matrix can
be decoupled element by element. Therefore, the optimization
problem in (23) can be decomposed into N × C subproblems.
Regarding element mij of M, the corresponding subproblem
can be expressed as

J(mij) = min
M
‖eij − dijmij‖22

s.t mij ≥ 0 (25)

where eij and dij denote the ith row and jth column element in
matricesE andM. Owning to (dij)2 = 1, so (eij − dijmij)

2 =
(dijmij − eij)

2 holds. Additionally, due to mij ≥ 0, we have
mij = max(dijeij , 0). Therefore, regarding M, we have its
finally solution as follows:

M = max(D�E, 0). (26)

Theorem 3: When M and A are fixed, the ob-
jective function converges to its minimum if only if

θz= (ATKzA)
2

p+1 (
∑Z

z′=1 (A
TKz′A)

2p
p+1 )

−1
p .

Proof: According to [38], when M and A are fixed, the final
optimization problem of θz becomes

J(θz) = min
θz

1

2
AT

Z∑
z=1

Kz

θz
A+

η

2

Z∑
z=1

(θz)
p. (27)

By setting the partial derivative of J(θz) w.r.t θz to 0, we have

−1

2
AT

Z∑
z=1

Kz

(θz)
2A+ η(θz)

p−1 ‖θ‖2−pp = 0. (28)

Therefore, we have the following optimality condition:

∃ ξ ∀z = 1, 2, . . . ,M : θz = ξ(ATKzA)
2

p+1 . (29)

Because ATKzA �= 0, according the same argument as in
the proof of Theorem 1 in [38], the constraint

∑Z
z=1 (θz)

p ≤
1 in (21) is at the upper bound, that is to say,

∑Z
z=1 (θz)

p =

Algorithm 1: NS-RLS-MKL.

Input: Training data {xi, yi}Ni=1, regularized parameters
λ and γ

Output: θz , A, and M
Procedure:

1 Transform the label vector [y1, y2, . . . , yN ]T to a
binary label matrix.

2 Construct the Laplace matrix L according to the
training data.

3 Initialize M(0) and θ
(0)
z .

4 t← 0.
Repeat

5 t← t+ 1
6 Using
A= (K̃T K̃+ γK̃TLK̃+ λIN )−1K̃T (Y +D�M)
to update A(t).

7 Using M = max(D�E, 0) to update M(t).

8 Using θz= (ATKzA)
2

p+1 (
∑Z

z′=1 (A
TKz′A)

2p
p+1 )

−1
p

to update θ
(t)
z

Until ( ‖A(t) −A(t−1)‖2F < ζ ).

1 holds for an optimal θ. So, ξ = (
∑Z

z′=1 (A
TKz′A)

2p
p+1 )

−1
p .

Therefore, the proof of Theorem 3 is achieved.

D. Algorithm

The detailed algorithm steps of the proposed model are listed
in Algorithm1.

From Algorithm 1, we find that the time complexity of NS-
RLS-MKL mainly consists of updating A, updating M and
updating θz . Due to the matrix inversion, the asymptotic time
complexity of updating A is O(N3). The asymptotic time com-
plexity of updatingM isO(N). The asymptotic time complexity
of updating θz is O(N2). Hence, the final asymptotic time
complexity of NS-RLS-MKL can be approximated to O(N3).

IV. EXPERIMENTAL STUDIES

In this section, a synthetic multimodal dataset and several
UCI multimodal datasets are introduced for performance eval-
uation. Additionally, to highlight the proposed model, several
benchmarking models are introduced for comparison.

A. Datasets

We generate a three-modal dataset containing 600 samples
which is shown in Fig. 1. Each modality is derived from Fig. 1(a)
by projecting onto different coordinate planes. This synthetic
dataset simulates different modalities of data collected by dif-
ferent sensors on the same object.

Additionally, three UCI multimodal datasets, multiple fea-
tures (MF), image segmentation (IS), and water treatment plant
(WTP) are introduced for performance evaluation. Table I gives
the detailed information of these datasets.
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Fig. 1 Three-modal synthetic dataset. (a) Orginal data. (b) First modality
(mod-XY). (c) Second modality (mod-YZ). (d) Three modality (mod-XZ).

TABLE I
INTRODUCTION OF MULTIMODAL DATASETS

B. Settings

To highlight the classification performance of the proposed
model, we introduce Ridge as the baseline and MV-L2-SVM
and MV-TSK-FS as benchmarking models.

Ridge: It is taken as the baseline. We perform it on each
modality and record the corresponding classification accuracy.

Fig. 2 “All-single” Kernel and modality combination strategy.

TABLE II
CLASSIFICATION PERFORMANCE IN TERMS OF ACCURACY AND

CORRESPONDING STANDARD DEVIATION ON SYNTHETIC DATASET

TABLE III
CLASSIFICATION PERFORMANCE IN TERMS OF F1-MEASURE AND

CORRESPONDING STANDARD DEVIATION ON SYNTHETIC DATASET

The overall accuracy on all modalities is computed by linearly
combining the accuracy on each modality. The combination
coefficient can be used as the reciprocal of the training error.
The regularized parameter in Ridge is determined by 10 cross-
validation (10-CV) from [0.01, 0.02, …, 10].

MV-L2-SVM: It uses L2-SVM as the basic component and
view (modality)-consistence as the multimodal learning strat-
egy. There are two parameters should be set in advance. The
Kernel width is determined by 10-CV from [s/256, s/128, …,
256s], where s is the mean norm of the training data. The penalty
parameter is determined by 10-CV from [100, 101, …, 107].

MV-TSK-FS: It uses the one-order TSK fuzzy system as the
basic component and utilizes view (modality)-consistence and
view-weighting as two multimodal learning strategies. There are
four parameters should be set in advance. The number of fuzzy
rules is determined by 10-CV from [5, 10, …, 30]. The three
regularized parameters are determined by 10-CV from [10-3,
10-2, …, 103].

Regarding the proposed model, we adopt the same Kernel
combination strategy “all-single” used in [1] to combine modal-
ities and Kernels, as shown in Fig. 2. There are three parameters
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TABLE IV
CLASSIFICATION PERFORMANCE IN TERMS OF ACCURACY AND CORRESPONDING STANDARD DEVIATION ON UCI DATASETS

should be set in advance. The regularized parameter λ is de-
termined by 10-CV from [0.01, 0.02, …, 10]. The regularized
parameter γ is determined by 10-CV from [10-3, 10-2, …, 103].

For all models, we use accuracy and F1-measure to quantifi-
cationally evaluate their performance. Accuracy is defined as the
ratio of the number of corrected classified samples to the total
number of samples. F1-measure is defined as 2×P×R/(P+R),
where P = TP/(TP+FP) and R = TP/(TP+FN). TP represents
true positives, FP represents false positives, and FN represents
false negatives.

C. Experimental Results

Tables II and III show the classification performance in terms
of accuracy and F1-measure, respectively. “+” means that the
performance improvement of NS-RLS-MKL is significant at 5%
level when comparing with the corresponding model. The best
performance is marked in bold. Results in the parentheses are
the standard deviation. It observes that the proposed model NS-
RLS-MKL wins the best performance both in single modality
and multiple modalities. In particular, in the multimodal case,
the accuracy reaches 1, which is better than that of the view
weighting strategy used in MV-L2-SVM and MV-TSK-FS.

The advantages of classification performance can also be
observed from the results on real-life datasets, as given in Ta-
bles IV and V. To be specific, on dataset MF, except the modality
Mfeat-fac, our proposed model NS-RLS-MKL wins the best
on all single modality and multiple modalities. On dataset IS,
the proposed model NS-RLS-MKL wins the best on all single
modality and multiple modalities. Especially, the classification
performance is improved by 10% compared with the baseline.
On dataset WTP, except the modality Output and modality
Global performance input, our proposed model NS-RLS-MKL
wins the best on all single modality and multiple modalities. We

also have the similar conclusion when F1-measure is adopted as
the criterion.

Unlike MV-L2-SVM and MV-TSK-FS which both adopt
weighting learning as their fusion strategy, the proposed model
combines all modality features and use different Kernels to mine
the complementary pattern information. Moreover, nonsparse
coefficient can help maintain more enough patterns involved
in different modalities. Additionally, in our multiclassifica-
tion task, we use label softening strategy to enlarge the mar-
gins between classes to guarantee promising performance and
manifold-based regularization to antioverfitting problem. That is
why our model performs much better than ridge, MV-L2-SVM
and MV-TSK-FS.

D. Case Study

To evaluate the application ability of the proposed model NS-
RLS-MKL in remoting sensor data fusion, we select two types
of remoting sensor data. One is high resolution dataset North-
western Poly-Technique University and Very-high-resolution
Remote Sensing Images (NWPUVHR) [39] and another is low
resolution dataset University of California Merced Land Use
(UCMLU) [40], as shown in Fig. 3.

We select 1000 samples including four classes from each
modality in the article. We use our previous deep feature ex-
tractor [41] to extract 1024 deep features from each remoting
sensor image. Then we use the embedded-based feature selection
method [42] to select 15 features from the 1024 deep features
from each modality for NS-RLS-MKL. Tables VI and VII list
the final classification performance in terms of accuracy and
F1-measure.

From the results, it observes that NS-RLS-MKL always per-
forms the best among the comparison models and baseline. From
Fig. 3, we see that the high-resolution remoting sensor images
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TABLE V
CLASSIFICATION PERFORMANCE IN TERMS OF F1-MEASURE AND CORRESPONDING STANDARD DEVIATION ON UCI DATASETS

Fig. 3 Samples of multimodal dataset.

TABLE VI
CLASSIFICATION PERFORMANCE IN TERMS OF ACCURACY AND

CORRESPONDING STANDARD DEVIATION ON REMOTING SENSOR DATA

provide very detailed information (local information) while the
low-resolution remoting sensor images provide rough informa-
tion (global information). In the proposed model, we combine
them and use different Kernels associating with non-spare Ker-
nel coefficient to mine the complementary pattern information
from local information and global information. However, unlike
the proposed model, the comparison ones only determine which

TABLE VII
CLASSIFICATION PERFORMANCE IN TERMS OF F1-MEASURE AND

CORRESPONDING STANDARD DEVIATION ON REMOTING SENSOR DATA

modality is more important and assign a bigger weight to the
important one. Such combination strategy does not fully utilize
the deep correlation across different modalities.

V. CONCLUSION

How to effectively fuse different modal data and mine the
hidden value of data through the complementary information
between modalities is the main concern of big data research at the
present stage. In this article, we proposed a novel multi-Kernel
model for multimodal data fusion based nonsparse multi-Kernel
learning. In classification scenarios, we introduce a positive
matrix to soften the binary label matrix so that the margins
between classes are enlarged as much as possible. Therefore, the
label fitting becomes freer. Even the free label fitting may cause
overfitting, by using the manifold-based regularization, this
problem is solved to the maximum extent possible. Additionally,
our proposed model is derived from nonsparse multi-Kernel
learning, which is better suited for multimodal data fusion than
sparse based. We generate a synthetic multimodal dataset and
introduce several real-life multimodal datasets to demonstrate
the advantages of the proposed model. The comparison results



6252 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

with baseline and other multimodal models show that our model
performs better.

However, the model also faces a challenge that when the
dimension of the input feature space is very high, it will consume
a lot of memory spaces to store the Kernels. In our future work,
we will develop more effective optimization method to solve
this problem.
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