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Feature Selection for Cross-Scene Hyperspectral
Image Classification Using Cross-Domain I-ReliefF
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Abstract—In the classification of hyperspectral images (HSIs),
too many spectral bands (features) cause feature redundancy, re-
sulting in a reduction in classification accuracy. In order to solve
this problem, it is a good method to use feature selection to search
for a feature subset which is useful for classification. Iterative
ReliefF (I-ReliefF) is a traditional single-scene-based algorithm,
and it has good convergence, efficiency, and can handle feature
selection problems well in most scenes. Most single-scene-based
feature selection methods perform poorly in some scenes (domains)
which lack labeled samples. As the number of HSIs increases, the
cross-scene feature selection algorithms which utilize two scenes
to deal with the high dimension and low sample size problem are
more and more desired. The spectral shift is a common problem
in cross-scene feature selection. It leads to difference in spectral
feature distribution between source and target scenes even though
these scenes are highly similar. To solve the above problems, we
extend I-ReliefF to a cross-scene algorithm: cross-domain I-ReliefF
(CDIRF). CDIRF includes a cross-scene rule to update feature
weights, which considers the separability of different land-cover
classes and the consistency of the spectral features between two
scenes. So CDIRF can effectively utilize the information of source
scene to improve the performance of feature selection in target
scene. The experiments are conducted on three cross-scene datasets
for verification, and the experimental results demonstrate the su-
periority and feasibility of the proposed algorithm.

Index Terms—Cross-domain I-ReliefF, cross-scene feature
selection, hyperspectral images.

I. INTRODUCTION

MOST of the hyperspectral scenes include dozens or hun-
dreds of spectral bands which may cause the Hughes

phenomenon [1]. The high dimension and low sample size
problem is a great challenge for hyperspectral images (HSIs)
classification [2]–[4]. Some features are useful for pixel clas-
sification, while the other features have negative effects on
the classification accuracy. Therefore, how to select a feature
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subset required by the HSI classification through a certain al-
gorithm must be considered. An intuitive interpretation is that
the feature selection problem is a combinatorial optimization
problem which is used to compute the scores of different feature
subsets. Feature selection obtains a most useful feature subset
by eliminating irrelevant features. Irrelevant features will lead
to decreased accuracies and overfitting problems [5], [6]. Ac-
cording to the relationship with the learning model, existing
feature selection algorithms can be generally categorized as
filter methods, wrapper methods and embedded methods [7],
[8]. There are also some algorithms which combine the filter
and wrapper methods [9], [10]. Recently, Ghosh et al. [11] pro-
posed a wrapper-filter combination of ant colony optimization,
which introduces the subset evaluation using a filter method
instead of using a wrapper method to reduce computational
complexity. As for wrapper methods, the feature selection and
classification are separated, and conducted iteratively. Typical
examples are dynamic classifier [12], hybrid whale optimization
algorithm with simulated annealing [13], and modified ant lion
optimizer [14]. In the embedded methods, the feature selection
and classification are unified into one model. Typical examples
are sparse rescaled linear square regression [15] and weighted
Gini index feature selection [16]. However, the computational
cost of wrapper methods and embedded methods are high in
application. In contrast to the other methods, using filter meth-
ods for feature selection has two advantages: efficiency and
robustness. And many filter-based feature selection methods
have been proposed, such as clustering-based, sparsity-based,
and ranking-based methods. The clustering-based methods con-
struct the feature subsets for the HSIs by grouping the similar
features and separating dissimilar features within the cluster-
ing framework. The features around the cluster centroids are
considered as the most representative features and selected to
constitute the final feature subset. Typical examples are spectral
clustering [17], optimal clustering [18], dual clustering [19],
and kernel-based probabilistic clustering [20]. However, the
performance of clustering-based algorithm is usually sensi-
tive to the number of clusters. On the other hand, the best
feature subset in the cluster may not be the global best one.
In recent years, sparsity-based methods have been applied to
solve the feature selection problem, which make full use of
sparse coefficients of all features to select features [17]. Some
typical algorithms are as follows: Laplacian-regularized low-
rank subspace clustering [21] and dissimilarity-weighted sparse
self-representation [22]. However, the sparse coefficients are
sensitive to the convergence of defined optimization program.
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The ranking-based methods evaluate the contribution of each
feature to HSI classification, and select the top-ranked features.
Examples of ranking-based methods are minimum redundancy
maximum relevance [23], mutual information [24], [25], and
similarity-based ranking method [26]. In this article, we focus
on the ranking-based methods, because every selected feature
contains more useful information for classification.

It is conceivable that using abundant labeled samples can
improve the performance of feature selection. However, there
are some HSIs which lack labeled samples, because labeling
samples is a costly, time-consuming, and labor-intensive task.
On these HSIs with a small number of labeled samples, unsuper-
vised learning and semi-supervised learning have played huge
roles [12], [18], [27]. As the number of HSIs increases, it can
be found that many HSIs are related. For example, cities always
have the same land-cover classes, like land, trees, rivers, etc.
Therefore, it is useful to utilize the strongly related scene with
abundant labeled samples (named source scene) to improve the
classification accuracy of the scene which lacks labeled samples
(named target scene), that is, transfer learning. But when the
labeled samples from the source scene are directly merged with
a limited number of labeled samples from the target scene, the
classification results are often poor. This is caused by spectral
shift which is a common problem between different scenes [28].
The spectral features of the land-cover classes are affected in
many ways, e.g., the difference on illumination, atmosphere, hu-
midity, sensor, and even the angle of image acquisition. So how
to reduce the impact of the spectral shift on HSI classification and
promote the consistency of selected features between two related
HSI scenes are huge challenges. Transfer learning is usually
applied to classification and feature dimensionality reduction.
Domain adaptation is a popular research direction in trans-
fer learning, state-of-the-art classification algorithms include
discriminative transfer joint matching [29], joint correlation
alignment-based graph neural network [30], multiple domain
adaptation fusion method, and the multiple base classifier fusion
method [31]. And the typical examples of cross-domain feature
selection are corss-domain feature selection using clustering
(CDFSC) [32] and cross-domain information gain [33].

The measure of distance between samples is a commonly used
evaluation criterion in filter methods. Based on this evaluation
criterion, the following conditions need to be considered. The
feature distance between samples in the same class should
be as small as possible, while the distance between samples
in different classes should be larger. Following this principle,
Kira and Rendell proposed the representative feature selection
algorithm named Relief, which is simple and effective. Relief is
a filter method for feature selection to deal with binary classifi-
cation problems. Relief is also regarded as one of the successful
algorithms [34]. And the principle of this feature selection
algorithm is concluded as follows: in each iteration, a sample
xn is randomly selected by Relief, and the feature weights
are calculated depending on the distance between samples. The
feature weight will increase when the pairwise distance between
xn and the nearest hit is smaller than pairwise distance between
xn and the nearest miss; otherwise, the feature weight decreases.
Since Relief is not applicable to deal with the feature selection of

multiclass classification problems, Kononenko extended Relief
algorithm to ReliefF [35]. Though ReliefF is more effective, it
is still not perfect enough. ReliefF cannot completely eliminate
the influence of outliers (mislabeled samples or samples highly
corrupted by noise) on feature selection. So on the basis of
ReliefF, Sun [36] and Chen and Chen [37] proposed a new
improvement: iterative ReliefF (I-ReliefF). By introducing I-
ReliefF, the feature selection is based on a weighted feature
space and considers the influence of outliers.

I-ReliefF can solve the feature selection problems well on the
single HSI scenes. But the performance of each iteration is often
related to the number of labeled samples, so it does not perform
well in some scenes which lack labeled samples. To solve this
problem, a cross-scene feature selection algorithm is proposed
in this article based on I-ReliefF, which is named cross-domain
I-ReliefF (CDIRF). The contributions of this article include the
following.
� When the number of labeled samples in a scene is insuffi-

cient, we need to use the information contained in other
scenes to improve the feature selection performance of
target scene. In this case, the single-scene-based feature
selection algorithm is no longer applicable, and the method
we proposed can solve this problem.

� The original I-ReliefF is extended to a cross-scene feature
selection algorithm named CDIRF and a new cross-domain
rule of updating feature weights is proposed.

� There is spectral shift between different scenes. In order
to reduce the influence of spectral shift, CDIRF considers
the separability of selected features between different land-
cover classes and the consistency of the selected features
between two scenes at the same time.

� The influences of two different distance measures on fea-
ture selection are evaluated.

� The proposed CDIRF is robust to the outlier samples which
is proved by the experiments.

� The influence of the number of labeled samples on the
cross-scene algorithm is analyzed, and CDIRF is compared
with the state-of-the-art cross-scene feature selection algo-
rithms. The experimental results prove the effectiveness of
CDIRF.

The rest of this article is organized as follows. In Section II,
we introduce the concepts and related rules of the Relief, Reli-
efF, and I-ReliefF algorithms, and explain the advantages and
disadvantages of these algorithms. In Section III, we propose a
new feature selection algorithm called CDIRF, which is extended
form the original single-scene-based I-ReliefF. In Section IV, ex-
perimental results on three datasets are presented to demonstrate
the feasibility of the newly proposed method. Finally, Section V
concludes this article.

II. RELIEF AND I-RELIEFF

The multiclass feature selection algorithm ReliefF assigns
relevance to features based on their ability to disambiguate
similar samples, where similarity is defined by proximity in
feature space. In each iteration, ReliefF randomly selects a
labeled sample xn from dataset. For each class, ReliefF finds
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k-nearest neighbor samples by calculating the pairwise distances
between samples and xn. These nearest neighbor samples are
divided into two types. One is from the same class with xn

(Nearest Hit, H) and the other is from different classes (Nearest
Miss, M ). Then, the contributions of features are determined by
the following principles: 1) The average distance between xn

andH of this feature is smaller than the average distance between
xn and M of this feature. It means this feature is beneficial to
classification and the weight of this feature should be increased;
2) Otherwise, the feature has a negative effect on classification
and the weight of this feature is reduced. Following the above
principles, ReliefF selects N samples to iteratively modify the
feature weights.

ReliefF does not consider following aspects. First, although
ReliefF selects k nearest neighbor samples of each xn to reduce
impact of outliers on feature selection, it still performs poorly in
some datasets with a lot of outliers. Second, the main weakness
of ReliefF is that H and M are selected on the original feature
space. It means that ReliefF treats each feature with the same
weight. If the feature weights are calculated in the weighted
feature space and the pairwise distance calculations are updated
each time with the feature weights w in the previous iteration,
the low scoring feature from the previous iteration will have
less impact on feature distance in the current iteration [34]. In
order to solve these problems, a new way to select the nearest
neighbor samples was proposed in [36]. I-ReliefF regards all
samples, except xn, as the potential nearest neighbor samples,
rather than only k-nearest neighbor samples. In each iteration,
I-ReliefF calculates the probability of each sample being the
nearest neighbor sample of xn. This method also avoids the
consideration of whether the nearest neighbor sample is an
outlier, because the impact of an outlier on the whole dataset
is extremely limited.

Since I-ReliefF is applicable to multi-class datasets, it is
necessary to define some sets to distinguish the samples which
have the same and different class labels with xn: Hn = {i : 1 ≤
i ≤ N, yi = yn, i �= n}, Mn(C) = {i : 1 ≤ i ≤ N,C �= yn},
where yn denotes the label of xn. First, the objective function is
defined which needs to be optimized. Suppose that the nearest
hits and misses of each xn are known. The indices of these
nearest neighbors are saved in the set Sn = {(Sh, Sm(C))},
where Sh ∈ Hn and Sm(C) ∈Mn(C). To represent whether
xn is an outlier, a set of binary parameters o = [o1, o2, . . . , on]
is defined. Such that on = 0, if xn is an outlier; or on = 1 oth-
erwise. It should be mentioned that I-ReliefF uses two distance
measures.

1) Absolute distance, which is calculated as

dAbs
w (xn,xi) =

∑
f

wf

∣∣∣(xn)f − (xi)f

∣∣∣ . (1)

2) Squared Euclidean distance [38], which is calculated as

dEuc
w (xn,xi) =

∑
f

wf

∣∣∣(xn)f − (xi)f

∣∣∣2 . (2)

In this section, these two distance measures are represented by
dw(xn,xSh

). And (·)f means the f th element of vector. Under

the above assumptions, the average difference between within-
class distance and between-class distance can be calculated by

U (w) =
1

N

N∑
n=1

on

( ∑
C �=R

ηCdw
(
xn,xSm(C)

)

− dw (xn,xSh
)

)
.

(3)

P (C) denotes the probability of class C in the whole dataset,
and ηC = P (C)

1−P (R) is the weight of class C. Among them, R
represents the class of xn. Since set Sn = {(Sh, Sm(C))} and
the vector o are unknown, I-ReliefF can proceed by deriving
the probability distributions of the unobserved data if I-ReliefF
assumes the elements ofSn = {(Sh, Sm(C))} ando are random
variables. In order to optimize (3), the following works need to
be completed. By calculating the pairwise distances between
the xn and the potential nearest hits or misses, the probability
of the ith sample in Mn(C) being the nearest miss of xn can be
defined as

PC
m (i|xn,w) =

g (dw (xn,xi))∑
j∈Mn(C) g (dw (xn,xj))

, ∀i ∈Mn(C).

(4)
In (4), g(·) is a kernel function. One commonly used example

is g(d) = exp(−d/σ), where the kernel widthσ is a user-defined
parameter. Other kernel functions can also be used. Similarly,
the probability of the ith sample in Hn being the nearest hit of
xn can be defined as

Ph (i|xn,w) =
g (dw (xn,xi))∑

j∈Hn
g (dw (xn,xj))

, ∀i ∈ Hn. (5)

For brevity of notation, I-ReliefF calculates the pairwise
distances betweenxn and other samples, and obtains the average
distance in each class. The number of samples in each class is
denoted as N(C). Among them, the average distance between
xn and the samples in different classes with xn is denoted as

dist (C �= R) =
∑
C �=R

(∑
i∈Mn(C) g (dw (xn,xi))

N(C)

)
. (6)

Similarly, the average distance between xn and its within-
class samples is denoted as

dist(R) =

∑
i∈Hn

g (dw (xn,xi))

N(R)
. (7)

Then, the probabilityPo thatxn is not an outlier can be defined
as

Po (on = 1 | w) =
dist(R)

dist (C �= R) + dist(R)
. (8)

The purpose of I-ReliefF is to find a feature set following
the large margin principle. So based on above definitions,
I-ReliefF uses the idea of expectation maximization (EM)
algorithm to calculate feature weights. In order to introduce
this algorithm more clearly, we have following notations:
let αi,n(C) = PC

m(i|xn,w
(t)), βi,n = Ph(i|xn,w

(t)),
γn = Po(on = 1|w(t)). Then, we denotes γn = E(on = 1),
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∑
i∈Mn(C) αi,n(C)xi = E(xscm),

∑
i∈Hn

βi,nxi = E(xsh).
Then, the algorithm of I-ReliefF can be completed through two
steps.

Step 1: Before selecting the xn, the feature weights need
to be initialized. Assuming that the weight of each feature
wf = 1/

√
F , where F denotes the feature dimension of sam-

ples. In each iteration, I-ReliefF selects N samples, and calcu-
lates the average difference between within-class distance and
between-class distance of each xn. Here we approximate the
expectation by the average U value along limited number of
samples. The average difference can be defined as function Q in
the (t+ 1)th iteration. Then, function Q can be expressed as

Q
(
w | w(t)

)
= E{S,o} [U (w)]

≈ 1

N

N∑
n=1

γn

⎡
⎣∑
C �=R

⎛
⎝ηC

∑
i∈Mn(C)

αi,n(C)dw (xn,xi)

⎞
⎠

−
∑
i∈Hn

βi,ndw (xn,xi)

]
.

(9)
If i ∈Mn(C), mi,n = |xn − xi|, and if i ∈ Hn, hi,n =
|xn − xi|. Then, (9) is simplified to (10) before applying it to
update the weights.

Q
(
w | w(t)

)
≈ 1

N

N∑
n=1

γn

⎡
⎣∑
C �=R

⎛
⎝ηC

∑
i∈Mn(C)

αi,n(C)dw (xn,xi)

⎞
⎠

−
∑
i∈Hn

βi,ndw (xn,xi)

]

=
1

N

N∑
n=1

γn

⎡
⎣∑
C �=R

⎛
⎝ηC

∑
i∈Mn(C)

αi,n(C)
∑
f

wf (mi,n)f

⎞
⎠

−
∑
i∈Hn

βi,n

∑
f

wf (hi,n)f

⎤
⎦

=
1

N

N∑
n=1

γn

⎡
⎢⎢⎢⎢⎢⎢⎣
∑
C �=R

⎛
⎜⎜⎜⎜⎜⎜⎝
∑
f

wfηC
∑

i∈Mn(C)

αi,n(C) (mi,n)f︸ ︷︷ ︸
(m̄n(C))f

⎞
⎟⎟⎟⎟⎟⎟⎠

−
∑
f

wf

∑
i∈Hn

βi,n (hi,n)f︸ ︷︷ ︸
(h̄n)f

⎤
⎥⎥⎥⎥⎥⎥⎦

= wT 1

N

N∑
n=1

γn

⎛
⎝∑

C �=R

ηCm̄n(C)− h̄n

⎞
⎠

= wT 1

N

N∑
n=1

γn
(
m̄n − h̄n

)
. (10)

Algorithm 1: I-ReliefF.
Input:

Dataset X.
Number of iterations T .
Kernel width σ.
Parameter of stop criterion θ.

Output:
Feature weight vector w.

1: Set w(0)
f = 1/

√
F , f ∈ [1, 2, . . . , F ].

2: for t = 1, 2, . . . , T do
3: Calculate pairwise distances with respect to w(t−1)

using (1) or (2).
4: Calculate the probability that each sample becomes

the nearest neighbor sample PC
m , Ph, and Po

using (4), (5), (8).
5: Update weights using (13).
6: if ‖w(t+1) −wt‖ ≤ θ then
7: break
8: end if
9: end for

Some detailed denotations are as follows:

h̄n =
∑
f

∑
i∈Hn

βi,n (hi,n)f (11)

m̄n =
∑
C �=R

ηC
∑
f

∑
i∈Mn(C)

αi,n(C) (mi,n)f

=
∑
C �=R

ηCm̄n(C). (12)

Step 2: Finally, on the basis of (10), feature weights can be
obtained by (13).

w(t+1) = argmax
w∈W

Q
(
w | w(t)

)

= argmaxwT 1

N

N∑
n=1

γn
(
m̄n − h̄n

)
.

(13)

Denoting v = 1
N

∑N
n=1 γn(m̄n − h̄n), we get

w(t+1) = argmax
w∈W

Q
(
w | w(t)

)
= argmaxwTv

= (v)+ /
∥∥(v)+∥∥

2
. (14)

It should be mentioned that w cannot increase without
bound, and a limit is given: W = {w : ‖w‖22 = 1,w ≥ 0}.
The above two steps alternatively iterate until the convergence:
‖w(t+1) −w(t)‖ ≤ θ. The detailed derivation in (14) about
(v)+/‖(v)+‖2 can be referred to [36]. (v)+ means process vf
as (vf )+ = max(vf , 0). The pseudocode of I-ReliefF is shown
in Algorithm 1.
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III. THE PROPOSED CROSS-DOMAIN I-RELIEFF

Traditional single-scene-based algorithms are often affected
by the insufficient number of samples. In order to solve this
problem, we need to extend I-ReliefF to a cross-scene feature
selection algorithm CDIRF. In order to increase the reliability
of the algorithm, the following constraints need to be imposed
on the cross-scene algorithm: 1) The separability of different
classes; and 2) the consistency of selected features between two
scenes should be guaranteed [33].

Suppose there are a large number of labeled samples in the
source scene, and only a small number of labeled samples in the
target scene. When extending I-ReliefF to CDIRF, in order to
mitigate the effect of spectral shift and improve the reliability of
feature weights, we need to give several definitions to distinguish
samples between source and target scenes.
� HT T : the samples belonging to the same class with xTn

from the target scene;
� MT T (C): the samples belonging to the different classes

with xTn from the target scene;
� HST : the samples belonging to the same class with xTn

from the source scene;
� MST (C): the samples belonging to the different classes

with xTn from the source scene;
� HT S : the samples belonging to the same class with xSn

from the target scene;
� MT S(C): the samples belonging to the different classes

with xSn from the target scene;
� HSS : the samples belonging to the same class withxSn from

the source scene;
� MSS(C): the samples belonging to the different classes

with xSn from the source scene.
In the above definitions, the superscript S (or T ) of the xn

represents that xn is taken from the source scene (or the target
scene). In the superscript of the samples M (or H), the first item
represents which scene the M (or H) is taken. The second item
has the same meaning as the superscript of xn. The first four
definitions mean that once CDIRF selects a sample xn from the
target scene, the potential H and M need to be found in both
source and target scenes. To improve the consistency between
the two scenes, we not only select xn from target scene, but
also select xn from source scene. So the average difference
between within-class distance and between-class distance can
be calculated by

U (w) = UT (w) + US (w) . (15)

In (15), UT (w) represents that the selected samples xTn are
from target scene. UT (w) is defined as

UT (w) =
1

NT

NT∑
n=1

oTn

( ∑
C �=R

ηTCdw
(
xTn ,x

T
STm(C)

)

− dw

(
xTn ,x

T
STh

)
+
∑
C �=R

ηSCdw
(
xTn ,x

S
SSm(C)

)

− dw

(
xTn ,x

S
SSh

))
.

(16)

In (15), US(w) represents that the selected samples xSn are
from source scene. US(w) is defined as

US (w) =
1

NS

NS∑
n=1

oSn

( ∑
C �=R

ηSCdw
(
xSn,x

S
SSm(C)

)

− dw

(
xSn,x

S
SSh

)
+
∑
C �=R

ηTCdw
(
xSn,x

T
STm(C)

)

− dw

(
xSn,x

T
STh

))
. (17)

One of the differences between CDIRF and Target domain
iterative ReliefF (TDIRF) is that the possibility ofxTn (xSn) being
the outlier needs to be considered in both source and target scene.
Combined with the source scene, the possibility that xTn is not
an outlier can be calculated by

P To (on = 1 | w) =
distS(R) + distT (R)

totaldist (xTn)
. (18)

In (18), totaldist(·) is defined by

totaldist
(
xTn
)
= distS (C �= R) + distT (C �= R)

+ distS(R) + distT (R).
(19)

The possibility that xSn is not an outlier can be calculated by

P So (on = 1 | w) =
distS(R) + distT (R)

totaldist (xSn)
. (20)

For brevity of notation, let γTn = P To (on = 1 | w), and γSn =
P So (on = 1 | w). In order to incorporate the samples from
source and target scenes, we extend (10) to (21).

Q(w | w(t)) = E{ST ,SS ,oT ,oS} [U (w)]

≈ 1

NT

NT∑
n=1

γTn
(
NMT T −NHT T +NMST −NHST

)

+
1

NS

NS∑
n=1

γSn
(
NMT S −NHT S +NMSS −NHSS

)

= wT

⎡
⎣ 1

NT

NT∑
n=1

γTn

(
mT Tn − h

T T
n +mSTn − h

ST
n

)

+
1

NS

NS∑
n=1

γSn

(
mT Sn − h

T S
n +mSSn − h

SS
n

)⎤⎦ .
(21)

NS (or NT ) means the number of selected samples xn in
source scene (or target scene). For the new cross-domain rule
in (21), an intuitive explanation is that CDIRF tends to increase
the weights of features with large average differences in both
target and source scenes. Otherwise, the weights of features are
reduced. At the same time, the weights of features whose average
difference is inconsistent in the two scenes are also reduced.
It is also beneficial to increase the consistency of the sample
distribution of the two scenes. The following formulas are the
first four items of (21), and xTn is selected in the target scene.
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NMST and NHST consider the cross-scene consistency, which
make the sample distributions more similar between two scenes.
NMST means that the samples in different classes also need to
be far away from the xTn even if they are in different scenes. And
NHST encourages within-class similarity.
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(22)
The probability of each sample becoming the nearest neighbor

sample of xn needs to be calculated in the scene which the
sample belongs to. We use αTi,n(C), βTi,n, αSi,n(C), and βSi,n to
represent these probabilities, respectively, e.g., βTi,n indicates
that the probability of whether the xTi is the nearest neighbor
sample of xTn should be calculated in the target scene. There
are two reasons for choosing xSn in the source scene. Abundant
labeled samples will improve the performance of the feature
selection algorithms. In addition, the source and target scenes
are strongly correlated. And the following formulas are the last
four items of (21), andxSn is selected in the source scene. In (21),
NMSS and NHSS denote that no matter the samples from the
source scene or target scene, the pairwise distances between M
and the xn should be far, and the pairwise distances between H
and the xn should be close. NMT S and NHT S also improve the
cross-scene consistency, which makes the sample distributions
more similar across source and target scenes.
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(23)
The proportion of the number of samples in each land-cover

class to the total number of samples in the scene is defined as the
class weight. It should be noted that the values of the class weight
on different scenes are different, that is, ηTC �= ηSC . In (21),
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(24)

Algorithm 2: Cross-Domain I-ReliefF (CDIRF).
Input:

Dataset XT , XS .
Number of iterations T .
Kernel width σ.
Parameter of stop criterion θ.

Output:
Feature weight vector w.

1: Set w(0)
f = 1/

√
F , f ∈ [1, 2, . . . , F ].

2: for t = 1, 2, . . . , T do
3: Calculate pairwise distances with respect to w(t−1)

using (1) or (2).
4: Calculate the probability that each sample in the two

scenes becomes the nearest neighbor sample PC
m ,

Ph, P To , P So as (4), (5), (18) and (20).
5: Update weights using (25).
6: if ‖w(t+1) −wt‖ ≤ θ then
7: break
8: end if
9: end for

Following the large margin principle, the feature weights can
be calculated by

w(t+1) = argmax
w∈W

Q
(
w | w(t)

)
= argmax

w∈W
wTv

= (v)+ /
∥∥(v)+∥∥

2
. (25)

The v in (25) is expressed as
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(26)

The pseudocode of CDIRF is shown in Algorithm 2.

IV. EXPERIMENTS

A. Datasets

In this section, we choose three representative cross-scene
HSI datasets for verification. The first dataset is EShanghai-
EHangzhou dataset. Shanghai and Hangzhou are two big cities
in the east of China. Both scenes were captured by the EO-1
Hyperion hyperspectral sensor. As the source scene, the EO-1
Shanghai (EShanghai) scene is sized 1600× 230× 198. The
EO-1 Hangzhou (EHangzhou) scene is the target scene sized
590× 230× 198. The data cubes and groundtruth maps are
illustrated in Fig. 1. Labeled samples of three land-cover classes
are collected in EShanghai-EHangzhou dataset, which are listed
in Table I.

The second dataset is DPaviaU-DPaviaC, which was taken
by hyperspectral airborne sensor DAIS in Italy. It contains two
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Fig. 1. The data cubes and groundtruth maps of EShanghai-EHangzhou dataset. The upper one is the source scene (EShanghai), while the lower one is the target
scene (EHangzhou). (a) Data cubes. (b) Groundtruth maps.

TABLE I
NUMBER OF LABELED SAMPLES IN EACH LAND-COVER CLASS WITHIN ESHANGHAI-EHANGZHOU DATASET AND THE NUMBER OF USED SAMPLES

TABLE II
NUMBER OF LABELED SAMPLES IN EACH LAND-COVER CLASS WITHIN DPAVIAU-DPAVIAC DATASET AND THE NUMBER OF USED SAMPLES

scenes. The source scene is DAIS Pavia University (DPaviaU)
with the size of 243× 243× 72, and the target scene is DAIS
Pavia Center (DPaviaC) with the size of 400× 400× 72. The
groundtruth maps and data cubes are illustrated in Fig. 2.
DPaviaU and DPaviaC scenes contain six land-cover classes.
And the number of labeled samples in each class is listed in
Table II.

The third dataset is RPaviaC-RPaviaU, and the data were
collected by the ROSIS (reflective optics system imaging
spectrometer) sensor. RPaviaC-RPaviaU dataset still contains
two scenes: the ROSIS Pavia University (RPaviaU) and RO-
SIS Pavia Center (RPaviaC). RPaviaC is the source scene
sized 1096× 715× 102. As for the target scene, RPaviaU

originally has 103 bands. In order to have the same spectral
bands as RPaviaC, we dropped the last band, so RPaviaU is sized
610× 340× 102. In addition, RPaviaU and RPaviaC originally
contain nine land-cover classes, and we select seven related
land-cover classes. The groundtruth maps and data cubes are
illustrated in Fig. 3. And the number of labeled samples in each
class is listed in Table III.

B. Compared Algorithms and Parameter Settings

On these datasets, we apply six feature selection algorithms,
and compare their classification accuracies when the dimension
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TABLE III
NUMBER OF LABELED SAMPLES IN EACH LAND-COVER CLASS WITHIN RPAVIAC-RPAVIAU DATASET AND THE NUMBER OF USED SAMPLES

Fig. 2. Data cubes and groundtruth maps of DPaviaU-DPaviaC dataset. The
upper one is the source scene (DPaviaU), while the lower one is the target scene
(DPaviaC). (a) Data cubes. (b) Groundtruth maps.

Fig. 3. Data cubes and groundtruth maps of RPaviaC-RPaviaU dataset. The
upper one is the source scene (RPaviaC), while the lower one is the target scene
(RPaviaU). (a) Data cubes. (b) Groundtruth maps.

of selected features is the same. The overview of the six algo-
rithms is as follows.
� Cross-domain information gain (CDIG) [33]: It is a cross-

scene extension of Information Gain (IG), and a feature
with larger IG contributes more to the classification.

� Cross-domain feature selection using clustering
(CDFSC) [32]: CDFSC combines density-based clustering
method and IG to solve cross-scene feature selection
problems.

� Target domain ReliefF (TDRF) [35]: The original ReliefF
is applied to the samples from target scene.

� Cross-domain ReliefF (CDRF) [35]: It is a cross-scene
extension of TDRF, which can be executed on two scenes.

� Target domain iterative ReliefF (TDIRF): The original I-
ReliefF algorithm applied to only target scene. The detailed
introduction can be seen in Section II. And TDIRF updates
feature weights by (13). In these experiments, we use two
distance measures: 1) TDIRF1 using absolute distance, as
seen in (1); 2) TDIRF2 using squared Euclidean distance,
as seen in (2).

� Cross-domain iterative ReliefF (CDIRF): CDIRF is the
proposed algorithm in this work, which considers the sepa-
rability of different land-cover classes and the consistency
of the selection features between two scenes. In these
experiments, we use two distance measures: 1) CDIRF1

using absolute distance, as seen in (1); 2) CDIRF2 using
squared Euclidean distance, as seen in (2). And feature
weights are updated by (25).

We do the same preprocessing on the three datasets to ensure
the reliability of experiments. In order to reduce the impact
of adverse factors, such as light and weather on the source
and target scenes, we normalize all spectral vectors x to unit
�2 norm (x← x/‖x‖2) as data preprocessing. After this, we
randomly select 200 labeled samples for each class in the source
scene, and select five labeled samples for each class in the
target scene, which are listed in Tables I–III. These samples
are used in feature selection. The remaining samples in the
target scene are utilized as a test subset. It is worth noting
that the samples in the source scene are only used for feature
selection, and the samples in the target scene are used to train
a model and test the accuracies. The EShanghai-EHangzhou
dataset is easy for classification. So we test the classification
accuracy of each algorithm separately when the dimension of
selected features is taken as NF ∈ {2, 4, 6, . . ., 20}. Compared
with EShanghai-EHangzhou dataset, DPaviaU-DPaviaC dataset
and RPaviaC-RPaviaU dataset are more difficult to classify.
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Fig. 4. Accuracies on EShanghai-EHangzhou dataset obtained by CDIRF1 and CDIRF2. (a) OA. (b) AA. (c) κ.

Fig. 5. Accuracies on DPaviaU-DPaviaC dataset obtained by CDIRF1 and CDIRF2. (a) OA. (b) AA. (c) κ.

So more features are required and we take the dimension of
selected features as NF ∈ {5, 10, 15, . . ., 60}.

In addition to CDIRF1 and CDIRF2, there are six algo-
rithms included in the experiments. CDRF and TDRF have
two parameters: the number of the nearest neighbor samples
k and the number of iterations T . We set k ∈ {1, 2, 3, 4}
and T ∈ {50, 100, . . . , 300}, respectively. After traversing all
combinations of k and T values, we choose the highest ac-
curacy as the final result. CDIRF and TDIRF set the same
parameters σ ∈ {0.1, 0.2, . . ., 0.9, 1, 1.5, 2, 10, 100}, T = 100,
θ = 10−5. To validate the performance of feature selection,
we choose to use support vector machine (SVM) with radial
basis function kernel as the classifier [39]. SVM is an effec-
tive way to verify the results of feature selection algorithms,
and has been applied in various algorithm verifications [9],
[17]. The parameters are set as γ ∈ {2−10, 2−9, . . . , 210} and
C ∈ {10−2, 10−1, . . . , 103} [40]. Since the randomly obtained
sample subsets have a great impact on the accuracies of the
experiments, we repeat the experiment for 10 times. Then, we
calculate the average accuracy as the final result. In addition,
we used three different accuracy evaluation criteria: overall
accuracy (OA), average accuracy (AA), and kappa coefficient
(κ).

C. Parametric Analysis

The analysis of parameter σ is also involved in the algorithm
TDIRF proposed by Sun [36]. In TDIRF, σ is not a critical
parameter and has little effect on the result of feature selection.

In this article, we also analyzed the influence of σ on CDIRF.
On the EShanghai-EHangzhou dataset, when we take the feature
dimension NF = 4, the classification accuracies of CDIRF un-
der different σ are shown in Fig. 4. In order to reduce the impact
of randomly selected sample subsets on experimental accuracy,
we repeat experiment for 10 times. It can be seen that when
σ ∈ {0.1, 0.2, . . ., 2}, the accuracies of CDIRF do not have
much difference. We also experimented on DPaviaU-DPaviaC
and RPaviaC-RPaviaU datasets. When the feature dimension
NF = 20, the classification accuracies of CDIRF using different
σ are shown in Figs. 5 and 6. It can be seen that the classification
accuracies of CDIRF on the these two datasets are floating,
but there is no much difference in general. It means that the
performance of CDIRF is not sensitive to the choice of σ. In
summary, we suggest σ ∈ {0.1, 0.2, . . ., 2}.

D. Experimental Results

The first experiment is conducted on EShanghai-EHangzhou
dataset. Classification accuracies with respect to the dimension
of selected features on EShanghai-EHangzhou dataset are shown
in Fig. 7. In this experiment, each algorithm takes the most accu-
rate result among different parameters. First of all, we compared
algorithms based on I-ReliefF. As we can see, the accuracy of
CDIRF2 is always higher than CDIRF1 especially when the
dimension of selected features is small. CDIRF2 obtains the
highest accuracy at NF = 4, which is also the highest accu-
racy among all compared algorithms. The accuracy of CDIRF1

reaches its peak at NF = 8, which means that CDIRF2 can use
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Fig. 6. Accuracies on RPaviaC-RPaviaU dataset obtained by CDIRF1 and CDIRF2. (a) OA. (b) AA. (c) κ.

Fig. 7. Accuracies on EShanghai-EHangzhou dataset obtained by CDIG, CDFSC, TDRF, CDRF, TDIRF1, TDIRF2, CDIRF1, and CDIRF2. (a) OA. (b) AA.
(c) κ.

fewer features to get better classification accuracy. It means that
squared Euclidean distance is more suitable for CDIRF. We
also compared CDIRF2 with TDIRF2 which also uses squared
Euclidean distance. The accuracy of TDIRF2 is floating, but
still lower than CDIRF2. In addition, we compared CDIRF1

with TDIRF1. And the accuracy of TDIRF1 is always lower
than CDIRF1. It can be seen that CDIRF is superior to TDIRF
on the EShanghai-EHangzhou dataset. Compared with absolute
distance, squared Euclidean distance can select a better feature
subset when the dimension of selected features is low.

We also compared cross-scene algorithms in Fig. 7. When
NF = 12, the accuracy of CDRF reaches the peak, which is still
lower than proposed CDIRF1 and CDIRF2. Especially when
the dimension of selected features is low, the accuracy gaps
between these algorithms are larger. As for CDIG, the accuracy
of CDIG reaches the peak when NF = 14, but still lower than
CDIRF1 and CDIRF2. The accuracy of CDFSC is higher than
CDIRF1 when the dimension of selected features is low. But
as the feature dimension increases, the accuracy of CDIRF1 is
higher than CDFSC. And the accuracy of CDIRF2 is always
higher than CDFSC. The accuracy of TDRF has a great rise when
the dimension of selected features is low, but still far worse than
CDIRF1 and CDIRF2. It can be seen that CDIRF has a certain
superiority. For the eight feature selection algorithms, the feature
selection results with feature size NF = 20 from one running
experiment are illustrated in Fig. 8. It can be seen that the features
selected by CDIRF2 are more dispersed. The other algorithms
relatively prefer to select continuous bands. As for a good feature

TABLE IV
ACCURACIES ON ESHANGHAI-EHANGZHOU DATASET

selection algorithm, the selected features should be irrelevant,
so we believe that CDIRF2 is better than remaining algorithms.
In addition, Pearson correlation coefficient is usually used to
analyze the correlation between feature subsets of HSIs [41]. So
we also perform correlation coefficient analysis on the feature
subsets selected by eight algorithms in Fig. 9. It can be seen
that most of the features selected in the EShanghai-EHangzhou
dataset are related. CDIRF1 and CDIRF2 selected both pos-
itively related features and negatively related features on the
EShanghai-EHangzhou dataset. In addition, Fig. 10 contains
the classification maps obtained by each algorithm on a set of
experimental data when NF = 6. And we can find CDIRF2 has
advantages on the land cover class Water.

In Table IV, we list the average accuracies of the eight
algorithms across different feature dimensions. It can be seen
that the feature subset selected by CDIRF2 performs well on
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Fig. 8. Selected features on EShanghai-EHangzhou dataset. (a) CDIG.
(b) CDFSC. (c)TDRF. (d) CDRF. (e) TDIRF1. (f) TDIRF2. (g) CDIRF1.
(h) CDIRF2.

classification in EShanghai-EHangzhou dataset. The mean ac-
curacies (AA, OA, and κ) of CDIRF2 are higher than the other
seven algorithms. CDIRF2 obtains the highest accuracy 0.9339
at OA, which has the increases of 0.0381 and 0.0551 compared
with the two single-scene-based algorithms TDIRF2 and TDRF,
respectively. As for cross-scene feature selection algorithms, the
OA of CDIRF2 has the increases of 0.0304, 0.0124, and 0.0380
compared with CDRF, CDFSC, and CDIG. The experiments are
based on the same dimension of selected features and training
samples, so it has a significant improvement even if the promo-
tion of accuracy is small.

For the second cross-scene HSI dataset DPaviaU-DPaviaC,
the classification accuracies with respect to the dimension of
selected features are shown in Fig. 11. First of all, we compared
algorithms based on I-ReliefF. By comparing CDIRF1 with
CDIRF2, it can be seen that their accuracies in different feature
dimensions are similar, but CDIRF2 always performs better.
It can be seen that using squared Euclidean distance makes

TABLE V
ACCURACIES ON DPAVIAU-DPAVIAC DATASET

classification results better. We also compared CDIRF2 with
TDIRF2. When the dimension of selected features is small,
the accuracies of CDIRF2 and TDIRF2 are close. But with
the increase of feature dimension, the classification accuracy
of the CDIRF2 increases rapidly, and enlarges the accuracy gap
between CDIRF2 and TDIRF2. It reflects the effectiveness of the
cross-domain feature selection. In addition, TDIRF1 performs
well than CDIRF1 when the dimension of selected features
is small, e.g., NF ∈ {5, 10}. But with the increase of feature
dimension, the accuracy of CDIRF1 rises quickly and keeps a
certain advantage over TDIRF1.

In addition, the classification accuracy of CDRF is higher than
the accuracy of TDRF, but they are still lower than CDIRF1 and
CDIRF2. As for CDIG, CDIG performs poorly when the feature
dimension is NF ∈ {5, 10, . . ., 40}, and is always lower than
CDIRF1 and CDIRF2. The accuracies of CDIRF1 and CDIRF2

are always higher than CDFSC when the feature dimension is
NF ∈ {5, . . ., 40}. In general, although the accuracy curves are
partially overlapping when the dimension of selected features
is small, it can be seen that CDIRF2 performs best in different
feature dimensions among these algorithms. For these feature
selection algorithms, the selected feature subsets sizedNF = 20
from one running experiment are illustrated in Fig. 12. We
also perform correlation coefficient analysis on these feature
subsets in Fig. 13. It can be seen that the correlation of feature
subsets selected by CDIRF on the DPaviaU-DPaviaC dataset is
lower than other algorithms. In addition, Fig. 14 contains the
classification maps obtained by eight algorithms on a set of
experimental data when NF = 20. And we can find CDIRF2

has advantages on the land cover class Bitumen.
The mean accuracies (OA, AA, and κ) of these algorithms

across different feature dimensions are summarized in Table V.
It can be seen that among the eight algorithms, the proposed
CDIRF2 obtains the highest accuracies in the three accuracy
evaluation criteria. Compared with single-scene-based algo-
rithms TDIRF2 and TDRF, OA of CDIRF2 is increased by
0.0208 and 0.0282, respectively. In the comparison of cross-
scene algorithms, the OA of CDIRF2 has the increases of
0.0241, 0.0071, and 0.0332 compared with CDRF, CDFSC, and
CDIG.

For the third cross-scene HSI dataset RPaviaC-RPaviaU, the
classification accuracies with respect to the dimension of se-
lected features are shown in Fig. 15. At first, we compared
algorithms based on I-ReliefF. By comparing CDIRF1 with
CDIRF2, it can be seen that when the feature dimension is
low, e.g., NF ∈ {5, 10}, the accuracy of CDIRF1 is lower than
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Fig. 9. Correlation coefficient matrices of feature subsets selected by eight algorithms on EShanghai-EHangzhou dataset. (a) CDIG. (b) CDFSC. (c) TDRF.
(d) CDRF. (e) TDIRF1. (f) TDIRF2. (g) CDIRF1. (h) CDIRF2.

Fig. 10. Classification maps of EShanghai-EHangzhou dataset. (a) Groundtruth map. (b) The classification map over the selected features of CDIG. (c) The
classification map over the selected features of CDFSC. (d) The classification map over the selected features of TDRF. (e) The classification map over the selected
features of CDRF. (f) The classification map over the selected features of TDIRF1. (g) The classification map over the selected features of TDIRF2. (h) The
classification map over the selected features of CDIRF1. (i) The classification map over the selected features of CDIRF2.

Fig. 11. Accuracies on DPaviaU-DPaviaC dataset obtained by CDIG, CDFSC, TDRF, CDRF, TDIRF1, TDIRF2, CDIRF1, and CDIRF2. (a) OA. (b) AA. (c) κ.
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Fig. 12. Selected features on DPaviaU-DPaviaC dataset. (a) CDIG.
(b) CDFSC. (c)TDRF. (d) CDRF. (e) TDIRF1. (f) TDIRF2. (g) CDIRF1.
(h) CDIRF2.

CDIRF2. As the feature dimension increases, CDIRF1 grad-
ually reduces the gap with CDIRF2, but it is still lower than
CDIRF2. This means that the squared Euclidean distance has a
better impact on the performance of the CDIRF algorithm. We
compared CDIRF2 with TDIRF2. The accuracy of TDIRF2 is
always lower than CDIRF2. We also compared CDIRF1 with
TDIRF1. When the feature dimension is low, the accuracy of
TDIRF1 is slightly higher than CDIRF1. But with the increase
of the feature dimension, the performance of CDIRF1 is better
than TDIRF1. Overall, CDIRF performs better than TDIRF on
the RPaviaC-RPaviaU dataset.

In addition, We compared CDIRF2 with CDRF. The accu-
racy of CDRF is always lower than CDIRF2. The accuracy
of CDIRF1 is similar to CDRF when the feature dimension

TABLE VI
ACCURACIES ON RPAVIAC-RPAVIAU DATASET

is low, but as the feature dimension increases, the accuracy of
CDIRF1 is much higher than CDRF. As for CDIG, the accuracy
of CDIG is floating, and is always lower than CDIRF1 and
CDIRF2. The accuracy of CDFSC is also lower than CDIRF1

and CDIRF2. We also compared CDIRF2 with TDRF; we can
see that TDRF is significantly lower than CDIRF2. For these
feature selection algorithms, the feature subsets sized NF = 20
from one running experiment are illustrated in Fig. 16. And
the correlation coefficient matrices on these feature subsets are
shown in Fig. 17. It can be seen that CDIRF selects more weakly
correlated features on the RPaviaC-RPaviaU dataset, while other
algorithms prefer to select a feature subset of strongly correlated
features. In addition, Fig. 18 contains the classification maps
obtained by eight algorithms on a set of experimental data when
NF = 20. And we can find CDIRF2 has advantages on the
land-cover classes Meadows and Bitumen.

In Table VI, we list the average accuracies of the eight algo-
rithms across different feature dimensions. It can be seen that
the accuracy of CDIRF2 is the highest accuracy in OA, AA, and
κ. Comparing with TDIRF1 and TDIRF2, the OA of CDIRF2

increased by 0.0158 and 0.0084, respectively. In addition, the
OA of CDIRF2 is 0.0196, 0.0300, and 0.0714 higher than
CDRF, CDIG, and CDFSC, respectively. Comparing CDIRF2

with TDRF, the OA of CDIRF2 has increased by 0.0234.
In summary, CDIRF2 not only has the highest classification

accuracies on the three datasets, but also more accurate in select-
ing features. This is very meaningful in the HSI classification.

E. Robustness Analysis

To study the robustness of these algorithms, we still use
the training set and testing set of the three datasets used in
Section IV-D. For each dataset, we add outliers to the training
set taken from the target scene. Specifically, we modify the label
of one sample to an incorrect class in each class, so there is an
outlier in each class. The experimental results on algorithms are
listed in Table VII. It can be seen that when there are outliers
in the training set, the accuracies of CDIRF1 and CDIRF2

are still higher than other compared algorithms. It means that
the proposed algorithms CDIRF1 and CDIRF2 perform better
than other compared algorithms in dealing with outliers. As for
CDIRF1 and CDIRF2, the accuracies of CDIRF1 are higher than
CDIRF2 on the EShanghai-EHangzhou and DPaviaU-DPaviaC
datasets. Combined with the results in Section IV-D, the perfor-
mance of CDIRF2 is better than CDIRF1 on datasets with a few
outliers, while CDIRF1 has better robustness.
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Fig. 13. Correlation coefficient matrices of feature subsets selected by eight algorithms on DPaviaU-DPaviaC dataset. (a) CDIG. (b) CDFSC. (c) TDRF.
(d) CDRF. (e) TDIRF1. (f) TDIRF2. (g) CDIRF1. (h) CDIRF2.

Fig. 14. Classification maps of DPaviaU-DPaviaC dataset. (a) Groundtruth map. (b) The classification map over the selected features of CDIG. (c) The classification
map over the selected features of CDFSC. (d) The classification map over the selected features of TDRF. (e) The classification map over the selected features of
CDRF. (f) The classification map over the selected features of TDIRF1. (g) The classification map over the selected features of TDIRF2. (h) The classification map
over the selected features of CDIRF1. (i) The classification map over the selected features of CDIRF2.

Fig. 15. Accuracies on RPaviaC-RPaviaU dataset obtained by CDIG, CDFSC, TDRF, CDRF, TDIRF1, TDIRF2, CDIRF1, and CDIRF2. (a) OA. (b) AA. (c) κ.
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Fig. 16. Selected features on RPaviaC-RPaviaU dataset. (a) CDIG.
(b) CDFSC. (c)TDRF. (d) CDRF. (e) TDIRF1. (f) TDIRF2. (g) CDIRF1.
(h) CDIRF2.

F. Effect of Sample Size on Algorithm Performance

In order to test the performance of compared algorithms in
the case of high dimension and small sample size, we reduced
the number of samples in the experiment and set the following
number of samples: {50-3, 100-3, 200-3, 200-5}, where NS -
NT means that we selected NS samples from source scene
and selected NT samples from target scene. The experimen-
tal results can be seen in Figs. 19–21. First, we compared
200-3 with 200-5. As the number of labeled samples in the
target scene decreases, the accuracies of the compared algo-
rithms are greatly reduced. But the accuracies of the proposed
CDIRF1 and CDIRF2 are always higher than other compared
algorithms. In addition, we also analyzed the three cases of

TABLE VII
ROBUSTNESS ANALYSIS ON OUTLIER SAMPLES. SIGNIFICANCE OF BOLD

ENTITIES ARE HIGHEST ACCURACY AMONG COMPARED METHODS.

TABLE VIII
COMPUTATIONAL COMPLEXITY

50-3, 100-3, and 200-3. It can be seen that the accuracies
of compared algorithms have not changed significantly. And
the accuracies of CDIRF1 and CDIRF2 are still higher than
other compared algorithms. In conclusion, the performance
of CDIRF1 and CDIRF2 is better than other compared algo-
rithms when dealing with high dimension and small sample size
problem.

G. Computational Complexity

The complexity of each algorithm is shown in the Ta-
ble VIII, where T is the total number of iterations, F is the
feature dimensionality, F ′ is size of selected feature subset
specified by algorithm, and N , NS , NT are the numbers of
samples.
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Fig. 17. Correlation coefficient matrices of feature subsets selected by eight algorithms on RPaviaC-RPaviaU dataset. (a) CDIG. (b) CDFSC. (c) TDRF.
(d) CDRF. (e) TDIRF1. (f) TDIRF2. (g) CDIRF1. (h) CDIRF2.

Fig. 18. Classification maps of RPaviaC-RPaviaU dataset. (a) Groundtruth map. (b) The classification map over the selected features of CDIG. (c) The classification
map over the selected features of CDFSC. (d) The classification map over the selected features of TDRF. (e) The classification map over the selected features of
CDRF. (f) The classification map over the selected features of TDIRF1. (g) The classification map over the selected features of TDIRF2. (h) The classification map
over the selected features of CDIRF1. (i) The classification map over the selected features of CDIRF2.

Fig. 19. Accuracies on EShanghai-EHangzhou dataset obtained by CDIG, CDFSC, TDRF, CDRF, TDIRF1, TDIRF2, CDIRF1, and CDIRF2. (a) OA. (b) AA.
(c) κ.
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Fig. 20. Accuracies on DPaviaU-DPaviaC dataset obtained by CDIG, CDFSC, TDRF, CDRF, TDIRF1, TDIRF2, CDIRF1, and CDIRF2. (a) OA. (b) AA. (c) κ.

Fig. 21. Accuracies on RPaviaC-RPaviaU dataset obtained by CDIG, CDFSC, TDRF, CDRF, TDIRF1, TDIRF2, CDIRF1, and CDIRF2. (a) OA. (b) AA. (c) κ.

V. CONCLUSION

In this article, we developed a cross-scene feature selection
algorithm called CDIRF. Under the premise of supervised learn-
ing, CDIRF uses the information of source scene to help the
feature selection of target scene. Hence, the feature selection
performs well in the target scene, which lacks labeled sam-
ples. As a cross-scene extension of the traditional I-ReliefF,
CDIRF updates the weights on the basis of the weighted feature
space, and also considers the influence of spectral shift between
source and target scenes. In order to improve the separability of
selected features between different land-cover classes and the
consistency of the selected features between different scenes,
CDIRF considers eight types of samples. CDIRF also combines
the information from two scenes to determine the possibility of a
sample being an outlier. Under this novel feature weight updating
rule, experimental results on three datasets demonstrate that the
newly proposed method CDIRF can effectively select feature
subsets to improve the classification accuracy. And compared
with squared Euclidean distance, absolute distance is more
robust for CDIRF. We also analyzed the impact of the number
of labeled samples on CDIRF, and it can be seen that CDIRF
has great performance in dealing with high dimension and small
sample size problem.

However, despite the high classification accuracies achieved
by the feature subset selected by CDIRF, CDIRF does not guar-
antee low redundancy of the selected feature subset. In future
work, we may try to incorporate the low redundancy criterion
into CDIRF.
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