IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

5903

A Novel Single Fuzzifier Interval Type-2 Fuzzy
C-Means Clustering With Local Information for
Land-Cover Segmentation

Chengmao Wu

Abstract—In the process of land cover segmentation from remote
sensing image, there are some uncertainties such as ‘“‘significant dif-
ference in class density”, “different objects with same spectrum”,
and ‘“‘same object with different spectra”. Existing fuzzy c-means
clustering is not sufficient to describe the high-order fuzzy uncer-
tainties and cannot achieve accurate segmentation. Type-2 fuzzy set
is perfect for handling with interclass multiple uncertainties, and
clustering algorithm can suppress the noise of remote sensing image
effectively by incorporating local information. Therefore, on the
basis of integrating local information, this article proposes a robust
single fuzzifier interval type-2 fuzzy local C-means clustering based
on adaptive interval-valued data for land cover segmentation. First,
interval-valued data modeling is performed for remote sensing
data, and remote sensing features are represented as interval-
valued vectors, and the robust interval-valued distance measure
that can maximize the distance between interval-valued numbers
is used to generate an interval type-2 fuzzy set through robust fuzzy
clustering. Second, this article adopts an efficient type reduction
method to seek equivalent type-1 fuzzy set adaptively, and realizes
the segmentation of land cover by the principle of maximum type-1
fuzzy membership. The test results of multispectral remote sensing
images show that the segmentation performance of this proposed
algorithm outperforms existing state of the art adaptive interval
type-2 fuzzy clustering algorithms, and it is beneficial to the inter-
pretation of remote sensing image.

Index Terms—Fuzzy c-means clustering, fuzzy local information,
interval type-2 fuzzy sets, interval-valued data, land cover
segmentation.

1. INTRODUCTION

UZZY theory, as the basis of fuzzy analysis, is constantly
F updated and developed. The defects of type- 1 fuzzy cluster-
ing algorithm in dealing with uncertainty are gradually exposed,
and type-2 fuzzy clustering algorithm has certain potential ad-
vantage in dealing with high-order uncertainty. Zadeh intro-
duced type-2 fuzzy set (T2FS) as the extension of the concept of
ordinary fuzzy set. In essence, it is a “fuzzy set”. In particular,
T2FS is widely used to deal with various uncertainties in the
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clustering process [1]. Such as, Rhee and Hwang put forward
type-2 fuzzy C-means algorithm (T2FCM) based on the classical
fuzzy C-means (FCM). By assigning type-1 membership degree,
the membership of each pattern is extended to type-2 fuzzy
membership degree. In the presence of noise, T2FCM can get
a more accurate cluster center than FCM [2]. Hwang and Rhee
[3] proposed the so-called interval T2FCM (IT2FCM), which
focuses on the representation and management of uncertainty
in fuzzy membership and is related to the change of fuzzifier
m. T2FS can analyze all kinds of complex uncertainties, i.e.,
T2FSs can describe the uncertainty of data by constructing
membership intervals, which is better than type-1 fuzzy sets.
It can be also used to deal with remote sensing images with
multiple uncertainties [4].

However, the land cover types of remote sensing are inher-
ently uncertain and there exist the phenomena of “different
objects with same spectrum” and “same objects with different
spectra”, it leads to the problems of existing remote sensing
segmentation algorithm with weak robustness, low accuracy,
and so on. With the development of remote sensing imaging
technology, remote sensing image has the characteristics of high
spatial resolution, hyperspectral resolution, and high temporal
resolution. The complexity and noise diversity of remote sens-
ing image segmentation are greatly increased. Existing remote
sensing segmentation algorithms can not meet the needs of
complex high resolution remote sensing data processing [5].
In addition, if the problem to be treated has high uncertainty
or complexity, it can be easily dealt with by interval type-2
fuzzy logic systems (IT2FS) or interval-valued fuzzy set [6]. In
view of potential advantages of interval T2FS, the application
of IT2FS in clustering has emerged in large numbers. Ngo
proposed to apply IT2FCM to land cover segmentation from
multispectral satellite images [7]. Qiu et al. [8] proposed a
modified IT2FCM with spatial information constraints, which
is used for the segmentation of synthetic image and magnetic
resonance (MR) image. Qiu et al. [9] also proposed an enhanced
IT2FCM, which optimizes the initialization of clustering centers
and type reduction. Yu et al.[10] applied IT2FCM earlier to solve
the problem of remote sensing data processing. Mai and Ngo
[11] used the spatial information between pixels to calculate the
interval-valued membership degree, and proposed an improved
IIT2FCM to solve the problem of land cover segmentation from
multispectral satellite images. Ngo and Mai [12] proposed a
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semisupervised interval type-2 fuzzy c-means clustering with
spatial information constraints, and it is applied to land cover
segmentation from multispectral remote sensing images. Guo
and Huo [13] constructed an enhanced IT2FCMx algorithm for
remote sensing image segmentation by utilizing spatial informa-
tion and spectral index. Huo ez al. [14] used spectral uncertainty
and the ranking of interval numbers to construct an improved
IT2FCM3 algorithm to solve the problem of land cover segmen-
tation. Zhang [15] proposed an adaptive interval type-2 fuzzy
clustering (AIT2FCM) with weighted neighborhood distance,
but its time complexity is very large. Xing et al. [16] proposed
an interval type-2 fuzzy clustering with neighborhood informa-
tion. Jiang et al. constructed a triangular fuzzy set to describe
object uncertainty, and used interval-valued distance to generate
interval T2FSs in view of two fuzzifiers. Thus, an enhanced
interval type-2 fuzzy clustering algorithm (TFSV-IT2FCM) for
high resolution remote sensing images segmentation is obtained
[17].

Type reduction is the key and difficulty of type-2 fuzzy system
method. Its essence is the extension of accurate operation in
type-1 system, but it is usually much more complex than type-1
system and computationally expensive [18]. In the early days,
Karnik Mendel (KM) algorithm was a popular method for type
reduction. Its disadvantages are that the number of iterations
is too many, the calculation is complex and time cost is large,
and it is sensitive to the initial endpoint value [19]; Wu and Tan
[20] proposed an efficient type reduction strategy by looking
for equivalent type-1 fuzzy set. The key idea is to regard T2FS
as the combination of multiple representative type-1 fuzzy sets,
and the type reduction is simplified as how to select equivalent
type-1 fuzzy sets. Based on the idea of type reduction [20], He
etal. [18] introduced the adaptive factor and intraclass compact-
ness measure into the type reduction process, and proposed an
AIT2FCM.

In the face of remote sensing image interpretation, its inherent
uncertainty has restricted the development of remote sensing
image segmentation technology. The specific performance is
that the gray value of ground objects in the image changes within
a relatively concentrated range, while the interval valued data
can reflect the variability and uncertainty of the observation
data, and then can be used to describe the uncertainty and
fuzziness of remote sensing image [22]. Interval-valued fuzzy
set is widely used in clustering. Yu et al. [22] proposed to apply
IVFCM to remote sensing data processing. He ez al. [S] proposed
interval-valued fuzzy c-means clustering algorithm (AIVFCM)
algorithm, which not only considers the anisotropy of remote
sensing data, but also considers the object ambiguity of remote
sensing data, further reducing the misclassification caused by
spectral aliasing. Feng et al. proposed a new AIVFCM, which
combines the interval-valued data model with the priority adap-
tive method. It can adjust the interval width according to the
clustering compactness measure and the boundary factor, and
then determines the optimal feature set of the data [23]. Xu
et al. [24] proposed a new fuzzy clustering algorithm, which
combines adaptive interval-valued modeling, spatial informa-
tion with fuzzy c-means clustering to improve the separability
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of remote sensing data. He er al. [25] proposed the adaptive
interval type-2 fuzzy clustering algorithm (AIVIT2FCM) algo-
rithm based on interval-valued data to generate interval T2FSs.
The type-2 fuzzy theory is introduced to further describe the
high-order fuzzy uncertainty between classes and improves the
classification accuracy.

It is worth noting that the type-2 fuzzy clustering algorithm
mentioned previously does not introduce fuzzy local information
into the calculation of membership degree and clustering cen-
ter, while the spatial information of neighborhood pixels may
be used to suppress the influence of noise on remote sensing
image segmentation [26]. It can be seen that the segmentation
performance of remote sensing image can be improved by
utilizing local information. On the other hand, too much local
information will lead to poor classification effect, loss of the
details and other defects. To ensure the adaptability and antinoise
robustness of the proposed algorithm for the segmentation of
remote sensing image with different distribution and noise, this
article introduces appropriate local information and sets the size
of local window to 3 x 3, which makes the proposed algorithm
more suitable to effectively process various remote sensing data.
In addition, to reduce the dependence of type-2 fuzzy clustering
on the prior information of double fuzzifiers, many scholars have
improved the double fuzzifiers interval type-2 fuzzy clustering
algorithm to describe the uncertainty in the clustering; however,
asingle fuzzifier interval type-2 fuzzy clustering by using differ-
ent distances is proposed. It not only reduces the dependence on
fuzzifier, but also retains the uncertainty description of member-
ship function, and it is applied to solve the segmentation problem
of remote sensing image. In particular, anumber of scholars [15],
[17], [21], [25] have verified the feasibility of interval type-2
clustering with different distance measures in remote sensing
image segmentation. Therefore, to reduce the dependence on
two fuzzifiers in the classical interval type-2 fuzzy clustering,
this paper introduces two interval-valued distances into interval
type 2 fuzzy clustering, and proposes a novel single fuzzifier
interval type-2 fuzzy clustering based on interval-valued data
model. The main contributions of this article are summarized as
follows.

1) The concept of single fuzzifier is applied to interval type- 2
fuzzy clustering. At the same time, fuzzy local information
is embedded in interval type-2 fuzzy clustering.

2) Two robust interval-valued distances are used to gen-
erate interval T2FSs in interval type-2 fuzzy local
c-means clustering. A novel adaptive type reduction
method is used to realize remote sensing image coverage
segmentation.

The rest of this article is organized as follows. Section II
introduces interval-valued type-2 fuzzy clustering-related algo-
rithms. Section III analyses a series of interval-valued distances,
and verifies that two important interval-valued distances have
very good ability to cluster interval-valued data with overlapping
clusters. Section IV proposes a novel robust interval type-2 fuzzy
clustering algorithm and provides the overall implementation.
Compare experimental results are reported in Section V and
Section VI is the conclusion.
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II. RELATED VARIANTS OF INTERVAL TYPE-2 ALGORITHM

A. Fuzzy Local Information C-Means

FCM is one of the standard fuzzy clustering procedures [27].
Its objective function is described as follows:

D) W 0

=1 k=1

’HL UV

sty g =1,Visug € [0,1],Vi, k50 <> uig < n, V.
k=1 i=1

Where n is the number of samples; c is the number of clusters;
u; 1s the membership degree of the ith sample belonging to
the kth cluster, vy, is the center of the kth cluster, d?k is square
Euclidean distance between sample z; and cluster center vg, m
is fuzzifier, usually m = 2.0.

To improve the robustness of FCM, Krindis and Chatzis [28]
proposed a fuzzy C-means clustering algorithm based on local
information (FLICM). And its objective function is described as
follows:

T (U, V) = ZZulkd + G )

i=1 k=1

where the definition of fuzzy factor G, is defined as follows:

Gir=>_ (L—up)"d}/(sdij +1). 3)
JEN:,j#i
Andzi, j represent current pixel x; and its neighborhood pixel
x;, respectively; sd;; represent the spatial distance between
pixel x; and pixel x;; N;represent the neighborhood window
around pixel x;; u 1, represent the membership degree of neigh-
borhood pixel ; belonging to the kth cluster.
The iterative expressions of membership degree u,; and clus-
tering center vy, are described as follows:

c -1
wip = <Z (@ + G/ (2, + qu»”(m‘”) @)

q=1

n -1 n
vV = <Z u%) . Z uyfcxl (5)
i=1 i=1

B. Type-2 Fuzzy Clustering

1) Interval Type-2 Fuzzy C-Means Clustering: In general, the
interval type-2 fuzzy clustering has two fuzzifiers m; and mo,
and its objective function is described as follows [3]:

Jm1(U7 V) = E Zk 1 um1d2 (6)
sz(U,V) = Zz 1 Zk 1 umde .

This fuzzy clustering is called IT2FCM, and its upper and
lower membership functions are given as follows:

1 ¢ _ B
T = Ek;’ (>_y=1 (dix/diq)) <t o
ugk , otherwise
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1 c B B
Uik = Ekiv (Do (din/dig)) ™ > ¢! ®
B Ek , otherwise
2

uly) = (S0, (diwfdig) ™) uly) =
2
(XCget (din/dig)m=1)~ 1.

To meet the constraint condition of upper and lower member-
ship functions u < g, (7) and (8) are redefined
ik

where

{ G, = max{uly), uly)}
_ e T ©)
wir = min{u,,”, u;,” }

This upper and lower membership degrees are used to update
the endpoints vy, andvrof the cluster centers by means of KM
type reduction method [19]. But its computational complexity
is higher. So that, this article will use an adaptive type reduction
strategy with efficient and better segmentation accuracy.

2) Adaptive Interval T2FCM: He et al. [18] proposed an
AIT2FCM with single fuzzifier, which constructs interval T2FSs
through fuzzy uncertainty of distance measurement. Its core lies
in the construction of interval-valued membership and the full
consideration of the influence of the width of interval-valued
membership on the segmentation results.

The upper and lower membership degrees of AIT2FCM are
described as follows:

i (25) = (g (dig/dig)™ D)7
(i) = (Yo (sik/siq)> ")

where, 1 < i <n, 1 <k <c¢ mis the single fuzzifier, ay(x;)
and u (z;) denote the upper and lower bounds of the interval-
Tk

(10)

valued membership degree of data z;belonging to the kth
cluster, the interval-valued membership degree is expressed
as [u (x;),ur(x;)], dik, i represent the mean and maximum

distance between x; and the jth cluster, respectively, d;; =
mean?”_, (d',), si = maxl“’ 1(dL)), where [ is the number of
data dimensions, d! . 18 Buclidean distance between the [ th
dimension feature of sample x,; and cluster center v, which
is specifically expressed as dm = |xg — v

In 2019, He et al. [25] put forward an AIVIT2FCM for
interval-valued data. And the upper and lower bounds of interval-
valued fuzzy membership degree are described as follows:

uf(7;) = (D=1 (dij/diq)z/wfi))_l "
up (%) = (35— (sij/5iq) /(m=1))-1
Lower and upper of membership function is given as
u (F;) = min {ul(%;), ul (F;
:k(~ ) { k(~) ];(~ )} (12)
1y, (%;) = max {uf (Z;), u} (%;) }

where @y (Z;) and u (Z;)denote the upper and lower bounds of

the interval-valued membership degree of interval-valued data
sample z; to cluster center vy, respectively, the interval-valued
membership degree is expressed as [u (Z;), @ (Z;)], dik, six, are

the mean and maximum distance between Z; and cluster center
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Ok; dig = mean!’_ (dL,), s;x = maxi®_, (d',), d',, is Euclidean
distance between the [th dimension feature of interval-valued
sample Z; and cluster center v, which is specifically expressed
as follow:

iy = ((m(&a) — m(0))? + (1/3) - (w(Fa) — w(ﬁkz))Z)(ll/Sz)
where m(§) = 0.5(7 +y), w(g) = 0.5(5 —y). § € {Fu, Uua},

y, y are upper and lower bounds of the interval-value data .

III. DISTANCE METRIC METHOD

Interval-valued distance has also become the premise of the
accurate cluster analysis for interval-valued data. Given interval-
valued number Z = [z, Z] and § = [y, 3], Square Euclidean dis-

tance is extended to the interval-valued number, which is defined
as follows:

Dy(#,9) = ((z —y)* + (z — §)2)1/2.

(14)

Equation (14) only uses the endpoint information of interval
-valued numbers. However, the midpoint and half-range of the
interval value are not fully utilized. Therefore, a new definition
of interval-valued distance is constructed [29]

Da(&,§) = ((m(Z) —m(7))*+6(w(&) — w(§))*)/*  (15)
where m(2) = (z 4+ 2)/2, w(Z) = (2 — 2z)/2, represent mid-
point and half-range of interval-valued number, respectively;
6 € R™ is called the influence factor of interval width, usually
0=1.

Liem proposed an interval-valued distance considering all

points in two interval-valued numbers based on double integral
(30]

D2(3,§) = / /U m(®) — m(§) + 20w (@) — fu(@))|dads

= (m() —m()) + (1/3)(w?(@) +w*(7))
where U = {(a, B)| — 12 < a, 5 < 1/2}

Ds(%,5) = ((m(z) — m())?
+(1/3) - (w?(@) + w?())) /2.

Obviously, the definition of D3(Z, §) does not satisfy the con-
dition: D3(Z,3) =0 < & =g, i.e., for two completely equal
interval-valued numbers, the distance is still not zero. And for
any interval number %, ¢, there is always D3(Z, ) > 0.

Similarly, considering the difference between the correspond-
ing points in two interval-valued numbers, the following defini-
tions are given [31]:

(16)

0.5
Di) = [ m(a)+20u(@) = (m(7) + 200() Fdo

0.5
- / (m(F) - m() + 20(w(z) — w(@)da

0.5
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= (m() = m(§))* + (1/3) - (w(@) — w())*

Dy(%,9) = ((m(&) = m(9))* + (1/3) - (w(&) — w(@))*)"/*.
A7)

The distance measure considers the deviation of the corre-
sponding points in two interval-valued numbers, and the accu-
racy of the results is improved relatively.

Souza and Carvalho [32] defined the dissimilarity measure
which named as city-block distances, this measure is an appro-
priate extension of Minkowski distance metric to interval-valued
datax andyas

Ds5(%,9) = [z —y| + |z — gl (18)

And theoretical studies indicate that the methods based on
city-block distance is more robust than those based on Euclidean
distance in the presence of outliers [33].

Bao [34] proposed DP distance, which not only considers the
difference between the expected values of two interval-valued
numbers, but also considers the difference of their widths

D?(%,§) = (|m(%) = m(@)” + (1/3) - [w(&) — w(@)?)"/"
19)
where p > 1
De(7,9) = [m(z) —m(y)[ + (1/3) - [w(Z) — w(g)].

It can be proved that it satisfies nonnegativity and symmetry
obviously. The triangle inequality is proved as follows:

Dg(z, ) = [m(2) — m(7)| + 1/3|w(@) — w(7)|
< Im(2) = m(Z)| + [m(2) — m(y)|
+1/3(lw(@) — w(Z)| + [w(Z) — w(@)])
= D(Z, 2) + De (%, 7).

Carvalho [35] simplified the directed Hausdorff distance of
the interval-valued number, and a novel Hausdorff distance of
interval-valued number is described as follows:

(20)

De(#, ) = max{|z — g1, |z — y|}. @)

It can be proved that it obviously satisfies reflexivity and
symmetry; The triangle inequality is proved as follows:

D1 (2,9) = max{[z — g|, [z — y[}

< max{|Z — z| + |z — [, |z — 2| + |z — y[}

IN

max{|Z — z[ + [z — 2|} + max{|z — y[ + |z — y[}

= D7(z,2) + D7(2,9).

Therefore, using two-dimension interval-valued numbers to
construct a simply interval-valued dataset with noise, as shown
in Fig. 1, and the interval-valued datasets are used to judge the
robustness of different interval-valued distances.

The structure of single-valued dataset « = {x1,...x10} is
shown in Table I. Similarly, the corresponding interval-valued
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Single value data Set Interval value data set

Fig. 1 Left figure shows single value dataset, right figure shows interval
value dataset.

TABLE I
SINGLE VALUED DATASET

X, X Xy X X X X, Xg X, X0

diml 10 10 10 15 15 15 20 20 20 60
dm2 30 25 20 30 25 20 30 25 20 25

4 5 6

TABLE II
INTERVAL VALUE DATASET
diml  dim2 diml  dim2
X [3,14] [23.,45] X [9,28] [7,39]
X, [8,23] [25,27] %, [17,21] [24,46]
X5 [4,12] [14,30] Xy [9,27] [13,44]
X, [15,19] [20,46] X, [9,29] [18,30]
X [12,22] [12,41] X,  [56,65] [24,36]

dataset X = {&1,..., %10}, 7 = [z ,2;] (1 <i<10) is also

constructed in Table II, where :f:z(lZ <i<9) is used as the
original data, and 21 is used as outlier.

The main idea to verify the robustness of each distance is to
test the influence of outlier on the original data. In particular,
the influence is embodied as the deviation of mean value before
and after adding outlier. For the original data &; = [z , Z;], (1 <

3

i <9), the mean value of original data is expressed as vy =
[Qjo,@o], Vo = mean(fci, 1< < 9), and then, N(D(f“’f)o))
represents that interval-valued distance D(Z;,7g) are normal-
ized to [0, 1], so as to obtain the corresponding membership
degree U(u;) =1 — N(D(Z;,7)), calculate the new mean
value Tpew = [ = (Ciu) ™ (X (w2 ),
new new 2
Tnew = (D_; ui) ™t - (32, (wi - &;)), and obtain the deviation of
Unew and 0g is Bias = |[Opew — To| = v — 130| + |Onew —
new

s Unew|» v

Tg|, thus, the experimental data are obtained as follow.

According to the deviation results of each mean value in the
above Table III, the order of robust performance from strong
to weak is: D3 > Dy > Dy > Dy > Dg > D5, which shows
that the robust performance of D7 is better and the antinoise
ability of Dg is average. However, for a clustering method,
the clustering performance is not only related to the robustness
of distance measure, but also takes into account the clustering
model involving distance measure. Therefore, this article still
adopts the distance measure Dg, D7 as the clustering distance
of interval type-2 fuzzy clustering algorithm.
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TABLE III
DEVIATION OF CLUSTER CENTER

7, v, =[9.5556,17.3333] v, =[21.6667, 38.6667]
”new Voo Vo Bias
D, [9.6513,17.2184] [21.7684, 38.8290] 0.4751
D; [9.6000, 17.4733]  [21.7207, 38.4922] 0.4129
D, [9.6568,17.2322] [21.8620, 38.7177] 0.4487
D [9.6911,17.1504] [21.9094, 38.7648] 0.6594
D, [9.6976, 17.2801]  [21.9428, 38.6968] 0.5015
D. [9.6677,17.3251] [21.7472, 38.8942] 0.4284

@ (b)

Fig.2 Interval datasets. (a) Dataset 1 without overlapping classes. (b) Dataset
2 with overlapping classes.

TABLE IV
QUANTITATIVE EVALUATION OF DIVISION RESULTS OF DIFFERENT
INTERVAL-VALUED DISTANCES

Interval dataset 1 Interval dataset 2

SA Jaccard CR SA Jaccard CR
IFCM_DI1  0.7714  0.6279  0.5900  0.6171 0.4463  0.3191
IFCM D3 0.7714  0.6279  0.5900 0.6171 0.4463  0.3191
IFCM D4 0.7714  0.6279  0.5900  0.6171 0.4463  0.3191
IFCM D5 0.7714  0.6588  0.6085 0.6171 0.4463  0.3191
IFCM D6 0.7943  0.6588  0.6085  0.6200  0.4493  0.3289
IFCM D7 0.7943  0.6588  0.6085  0.6200  0.4493 0.3226

On the other hand, to further verify the effectiveness of Dy
and D- distances in the classification of interval-valued dataset
with serious interclass overlap, this article first constructs two
different interval-valued datasets by the method in [35], where
interval-valued dataset 1 has good interclass separation, and
interval-valued dataset 2 has serious interclass overlap. The
following Fig. 2 shows the constructed interval-valued data sets
1 and 2. Then, interval-valued fuzzy c-means clustering (IFCM)
algorithms with different interval-valued distances are used to
analyze them, and the SA, Jaccard, CR (the corrected Rand)
indexes [35] are applied to evaluate the clustering performance
of IFCM with different distance measure. From Table 1V, it
is seen that IFCM algorithms with D6 and D7 outperform other
IFCM algorithms, and it shows that interval-valued distance such
as D6 and D7 has certain potential in interval-valued dataset
analysis. Therefore, interval-valued distances including D6 and
D6 is selected to solve the segmentation problem of remote
sensing image with serious high-order fuzzy uncertainty.
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Module 1  Interval-valued data modeling

Interval-valued vector
distance meteic ||f|]:| | Interval-valued data

Module 2 Generate Interval Type-2 Fuzzy Set

Module 3 Adaptive type reduction

Interval type-2 fuzzy

| Local information
clustering

fuzzy factor

Normalized intra- = Adaptive expansion
class mean square error factor

Fig.3 Main framework of the proposed algorithm.

IV. PROPOSED ALGORITHM
A. Basic Idea of the Proposed Algorithm

As shown in Fig. 3, the algorithm proposed in this arti-
cle is mainly divided into three modules. The first part is
interval-valued data model, including interval-valued dataset
and interval-valued distance measure; The second part is to
generate interval T2FSs, which depends on interval type-2 fuzzy
clustering algorithms incorporating fuzzy local information; The
third part is the adaptive type reduction, which depends on the
type reduction strategy with adaptive control factors.

B. Interval-Valued Data Model

In data analysis, it is difficult for single-valued variables to
accurately describe and analyze samples, while interval-valued
data can reflect the variability and uncertainty of observed data.
Therefore, the application of interval-valued data in remote
sensing image can more comprehensively reflect the spectral,
spatial, and temporal characteristics of land cover.

Given the original remote sensing data x;, the interval-value
data model Z; is defined as follows:

i’i = [@,i‘l] = [1'74—)\,*0'“.114-)\,*0'1]
i

(22)

wherexi = (-Tila v ,inw)T, g; = (O'il, ey O’iw)T, 1 < ) <n,
1 <1 < w, z; is original data and o; is the standard deviation
of local information. A € [0, 1] is a control factor, is also used to
tune the width of the interval-valued number.

For interval-valued data, the reasonable definition of distance
is also the key premise of the accurate clustering analysis.
Therefore, this article uses interval-valued distance measures
(20) and (21) to construct an interval type-2 fuzzy clustering
algorithm for land cover segmentation.

C. Adaptive Interval Type-2 Fuzzy local Information C-Means
Clustering Based on Interval-Valued Data

It is worth noting that existing interval type-2 fuzzy clustering
for land cover segmentation does not embedded with local
information, which makes it difficult to effectively solve the
serious misclassification problem caused by “different objects
with same spectrum” and “same object with different spectra”.
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Fortunately, the algorithm based on type-2 fuzzy clustering can
solve the former problem. The algorithm based on interval-
valued data modeling can solve the latter problem.

Therefore, this article introduces the robust interval-valued
distance into interval type-2 fuzzy clustering, and integrate
fuzzy local factor of current pixel into interval-valued distance
measure. In the end, a novel interval type-2 fuzzy clustering with
single fuzzifier is constructed. And the optimization model of
the proposed algorithm is described as (23) shown at bottom
of this page, where 1 <1 < n, n is the number of samples;c
is the number of clusters; and u¢ (Z;), u? (%;) denote the upper
and lower bounds of the interval-valued membership degree of
interval-value data z; belonging to cluster center g, respec-
tively; d#2(%;,gx) and s72(Z;,gx) represents the interval-
valued distance between interval-valued data T; and cluster
center g based on Dg and D distances, respectively; G’f,i’l

and Gf’;’” are two different fuzzy local factors based on robust
interval-valued distance measures, which will be described in
detail in the following section. Fuzzy partition membership
matrix U = (u?(%;))nxcand U = (ul(Z;))nxe» cluster pro-
totype matrix G = (G5 )1 xe-

1) Initialization Method: Initialization of cluster center: re-
mote sensing image X = {z;|1 < i < n}, ¢ is the number of
clusters. At first, the gray level in the range min] ,{z;} ~
max} ,{x;} isdivided into c equal parts, the grayscale level with
zero frequency number is then eliminated. Finally, the average
value of pixels in each equal gray level range is used to initialize
the corresponding cluster center. So, cluster center v,go)
obtained.

Initialization of membership degree: the abovementioned ini-
tialization of cluster center v,(co)
FCM algorithm.

2) Calculation of Cluster Center: The upper and lower
bounds [g , x| of interval-valued cluster center g, are calculated

can be

is used to obtain ugg)through

k
as follows:

S ) e
gy = ———————m, 24)

where 1 < k <, ugfln (7;) is represented by an initial type-1
membership degree ugg) in the first iteration. u](:q)(:i:,;) is the
membership degree after type reduction, and will be described
in detail in the following section.
Update single-valued cluster center vy,
n -1 n
=Y (W™ ) - > (uEZ‘”)mxi

i=1 i=1

(25)

where 1 < k < ¢, uz(.iq) is the membership degree after type
reduction, and x; is original remote sensing data.
3) Generating T2FSs for Clustering: For the multiobjective

optimization model (23) of single fuzzifier interval type-2 fuzzy
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clustering with local information constructed in this article,
the upper and lower fuzzy membership degrees are derived by
Lagrange multiplier method as follows.

At first, we construct the Lagrange function of the optimiza-
tion model (23) with the constraint of membership degree as

(&)

LOUYG) = 33 (uf ()" [d*2(3:,x) + GL]

=1 k=1

+ 375 @ (@) " 152 (i) + G
1=1 k=1

+ Z i (1 - UZ(@))
=1 k=1

+> pi <1 - UZ(L)> (26)
i=1 k=1

where A; and p; are Lagrange multiplier coefficients.
The necessary condition of this function with minimum value
is as follows:

LU, UYG) 0 LU, UYG)
oug(@) 0 oul(@)
aL(U*,U*G) _ ~ OL(U*U*G) _
o =0 =0, (27)
- k ~
aL(U*,U",G) _ 0 aL(U*,U",G) _ 0
OA; - Ipi - v

By solving the abovementioned equations, we can obtain Eq.
(28) shown at bottom of this page.
Upper and lower membership function are modified as
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respectively. Namely
d#2(zi, g) = (Do (&4, G1))”
= (Im(&:) = m(ge)| +1/3 - [w(&:) — w(gr)|)?
s#2 (%5, i) = (Dr(&:, 1))’ (30)

= (max{|z; — gi|,|z —g [})?
i g

The fuzzy local factor of current interval-valued number z; is

defined as

Gh =

Gfli’ = Zre]\ﬂ;w#i (1 - yk(fr))s#’2(ir, gk)/(SdTi =+ 1)

(€29

where sd,.; represents the spatial distance between current Z; and
its neighborhood interval-valued number Z,.; and d#*2(Z,, ),
s%2(%,, gr) represents different interval-valued distance mea-
sures.

4) Adaptation of Interval-Valued Data and Interval T2FSs:
In the process of iteration, this article gives adaptive method for
interval-valued data modeling and membership type reduction
in view of clustering compactness measure [5].

The interval-valued data modeling of remote sensing data x;
is described as

EreNi,r#i (1 - ﬂk(i‘T))d#z(i‘T’ gk)/(Sdri + 1)

7

[@; — B * 04, x; + B * 04 (32)

where x; € Ci(1 <k <c¢), Cj is the set of sample points
belonging to the kth cluster; o; is the standard deviation of local
information of sample point x;; 3 € [0, 1] is the contraction
expansion control factor, which is used to control the width of
interval-valued data.

— o a( - b ~
k(&) = mz?x(uk (Cf’)’ ulg (%Z)) (29) An adaptive type reductor is described as
uk(T;) = min(ug(Z;), uy (T:))
u? = (@)~ B fn(@) —u (@) ()
where v (Z;) and 4 (Z;) denote the lower and upper bounds k
k c n
of the membership degree of sample Z; belonging to the kth (eq) (eq)
.t L =1,0< b <
cluster, and the interval-valued membership [u (Z;), g (Z;)] ® P lu”‘ Z;uzk "
“k = i—
are obtained. d*?(%;,jx) and s72(Z;,qs) denote different
distance measures between sample Z; and cluster center g, where ul(.,';q) is the equivalent type-1 membership matrix.
min Jy (U, G) = S0, Y5y (uf (20) " [d#2 (@0, ) + Gy (23)
min Jo(U%, G) = 320y Sojy (uh (@)™ [5%2(34, ) + G|
st.(1)0 < uld (), ul(#) < 1,i=1,2,...,n,k=1,2,...,¢
@)Y ub@)=),  w@)=Li=12...mn
(3)0< > up(@), > uh(@) <nk=12...c
. c o / o 1 1/(m—1)
up (i) = (Zl ((d#2(%:, g;) + G /(d*2 (&3, 90) + GF)) )
j:
(28)

<
™~
—
S
o

I
—
N

<.
I
—

((s#2(3:,35) + GE") (s#2(33, ) + G1))

1/(m-1)

)



5910

= Y
Fig. 4. (a) Influence of non 3, when v = 1. (b) Influence of v on /3, when
n=0.97.

Fig. 5. (a) Curve of the control factor 5(3) with changing iteration times (the

third class). (b) Curve of the normalized intraclass means square error e(3) with
changing iteration times (the third class).

The definition of an adaptive contraction expansion factor /3,
in (30) and (31) is expressed as follows [5]:

Br=flex) =1 —n*exp(—v*ei) (34)

where n € (0,1), v > 0, ej is normalized intraclass deviation
of the kth cluster, and its expression is described as follows:

ek =ng' - Y ulkd(wi, gr)

1E€CK

(35)

where u;, is the membership degree of sample x; belonging
to the kth cluster; In the first iteration, u; is represented by

the initial type-1 membership ugg), and it is also represented

by the type reduced membership ul(.zq) in the later iterations;
0(xi,gx) = ||zi — gi|| is the deviation between sample data x;
and cluster center g, gr, = (ng) " * - Zieck x;, ny, is the number
of samples belonging to the kth cluster. The influence of constant
parameters X and -y on the scaling factor fj, is shown in the figure
as follows.

From Fig. 4(a) and (b), the control factor adjust the interval-
value data and membership type reduction adaptively to achieve
the best fuzzy partition, the control factor 3 should change
rapidly with the increase of the intraclass deviation, so as to
select the empirical optimal value: 77 is around 0.9 and +y is around
1[5].

In the actual clustering process, the value of 3, will oscillate
at the early stage, but with the increase of iteration times, the
intraclass deviation tends to a minimum value, and (3, also tends
to a stable value, meanwhile the type-1 membership degree tends
to be stable, which means that the type reduction is completed
[18]. As shown in Fig. 5, it is the test results of Hengqin by the
algorithm proposed in this article.

D. Pseudocode of the Proposed Algorithm
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The proposed AIVIT2FLICM algorithm.
1 Input: Image x;, fuzzifier m, the number of clusters c,
2 stopping error €.
3 (1) Initialization: Initialize interval-valued data
4 i‘l(-o) = [2(0, @5‘”] using (22); initialize cluster center

o

5 and fuzzy membership ugg)using FCM algorithm; set

6 initial iteration number ¢ = 0; Set maximum number of
7 iterations 1" = 150.

8 (2) Iteration process:

9Fort=1toT

10 Step1. Update interval-valued cluster prototype

11 g,(f): Calculate the upper and lower bounds[g(t), g
Tk

12 using (24).
13 Step2. Generate interval T2FSs (IT2FS):

14 Calculate interval-valued distances matrices df,i’Q and
#,2
Sik

)

15 using (30); solve the corresponding fuzzy local factors

16 Gf,i’/ and Gf,i’// using (31); Calculate membership
matrix

17 4" (37, u® (" )using (29).

18 Step3. Type rkeduction: update control factor Sy,

19 using (34); Calculate the equivalent type-1
membership

20 degree u'? using (33).

21 Step4. Update interval-valued data model: Update

22 interval-valued data 7\ = [z(t+D), :EZ(-HI)] using

(32);
23 Step5. Update single-valued cluster center v,(:H)
24 using (25).
25 Step6. Stopping criterion:
26 If ||v,(f+1) - v,(f)H < eort > T, break;
27 Else Sett =t + 1 and go to Step 1.
28 End
29 (3) Segmentation: Using the membership partition
30 matrix, the label matrix is obtained by the maximum
31 membership principle.
32 Output: Segmentation image y;, membership degree
33 u{??, cluster center vj,.

V. EXPERIMENTAL RESULTS AND ANALYSIS
A. Data Description

To verify the superiority of this proposed algorithm, four
remote sensing images are tested, and the attributes of remote
sensing image are introduced in Table V, and land cover com-
ponents of remote sensing image are listed in Table VI. The
experiment is tested by MATLAB R2014b in Intel core i5 with
8-GB RAM. Markov random field iterated conditional modes
[40], FCM [27], AIVFCM [28], FLICM [24], IT2FCM [3],
AIT2FCM [18], AIVIT2FCM [25], and the proposed algorithm
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TABLE V
ATTRIBUTE OF REMOTE SENSING IMAGE AND ALGORITHM PARAMETER

Resolution

Dataset Satellite Imaging location Parameter Reference
(meters)

Salinas 3.7 AVIRIS Salinas Valley, California ¢=6, m=2  [39]

Hengqin 10 SPOTS5 Pearl River Delta, Zhuhai ¢=5, m=2.5 [27,28]

Zhuhai 10 SPOTS  Coastal area of Zhuhai ~ ¢=6, m=2.5 [18]

PaviaU 1.3 ROSIS Pavia, Northern Italy. c=6,m=2 [39]

TABLE VI
COMPOSITION OF LAND COVER CATEGORIES IN REMOTE SENSING IMAGE

RS IMAGE Land Cover description

Vineyard-untrained
Grapes-untrained

Fallow-smooth
Salinas

(399x429) Fallow-rough-plow

Stubble
Celery
Unlabeled
Water: rivers, reservoir, raise oysters, wetland

Grass: arable land, lawn, weed
Small Hengqin

Woodland: mountain forest, artificial forest
(400x400)

Bare land: vegetable fields, garden plot, tracks

construction sites: golf course runway, rock

Water: rivers, ponds
‘Woodland: natural forests, cultivated forests

. Another green land: grassland, belts, bushes
Zhuhai

(288x281) Agricultural land: vegetable field, orchard,

cultivated land, artificial turf
Buildings: building complex, construction site

Tidal flat: offshore beach

Meadows & trees
Bare soil
Gravel & brick
Asphalt & bitumen
Metal sheets
Shadows

PaviaU
(610%340)

(AIVIT2FLICM) are tested, respectively, and after the actual
segmentation test, the best fuzzifier m € [2, 3], and the size of
optimal window is 3 x 3. To ensure the comparability of results,
set the parameters of the test-related algorithm to consistent
values. The test results are shown in Fig. 6. The overall seg-
mentation accuracy, running time, and partition coefficient are
used to evaluate the performance of different algorithms. These
performance indexes are described follows.
1) Partition Coefficient (PC) [36]:

PCzn_l-iiu?k

i=1 k=1

(36)

PC € [1/e, 1]; the larger the partition coefficient is, and the
better the clustering performance is.
2) XB Index (Xie and Beni) [36]:

: 2
Z?:l 22:1 U?k”xi — vg|

. 2
n(r,g;g lve — vs”)

Vxe(U,V, X, ) = (37)
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The smaller the value Vxg(c) is, the better the clustering
performance is.
3) Segmentation Accuracy (SA) [36]:

SA = (ijl Ci~ Zk:l | A N C|

where Ay, is the kth pixel set of the segmented image and CY, is
the kth pixel set of the ground truth; the larger the value of SA
is, the closer the segmentation result is to the ideal segmentation
result.

4) Indexes of Ideal Partition Image [25]:

[ 1, z; €k [ 1, k = arg max(u;x)
770, otherwise > 7 ] 0, otherwise :

(38)

So, we can get: TP =3 ", >, LixLig; TN =
D ZZ:1 LipLiy; FP = D i1 k=1 Likiik?FN:Z?ﬂ
> k=1 LikLik

Acc=(TP+TN)/(TP+TN+FP+FN) (39
Sen = TP/(TP + FN) (40)
Jaccard = TP/(TP + FP + FN). 41)

The larger the values of Acc, Sen, and Jaccardare, the better
the segmentation performance is.
5) Kappa Coefficient [25]:

Kappa = (po + pe)/(1 — pe) (42)

where p, is the sum of the number of correctly classified samples
divided by the total number of samples. The actual number of
samples in each class is aq, a9, . . ., a., and predicted number of
samples in each class is by, bs, ..., b., the number of samples
isn,sop. =n"2- Zle a;by. It is distributed between O and 1,
and the closer it is to 1, the higher the consistency is.

6) Modified Peak Signal Noise Rate (PSNR) [37]::

PSNR = 10log, (255> /MSE) (43)

where MSE =n~1 - > | (I1(2;) — Ia(;)). 11 is the ideal
segmented image and I, is the actual segmented image. The
higher the PSNR value is, the stronger the robustness of the
algorithm is.

B. Test and Analysis of Remote Sensing Image

1) Salinas: The first row of the Fig. 6 shows the partition
results of the data collected by the 224-band AVIRIS sensor in
Salinas Valley, CA, USA. The analysis shows that the spectral
characteristics of each land cover classification in the data are
highly similar, and all the land cover classifications in the scene
are very smooth. First, Markov random field theory (MRF_ICM)
is applied to segment this scene, and no satisfactory segmen-
tation results are obtained. For example, in row 1, column
(b), Grapes-untrained is almost completely classified as Celery
class. FCM has achieved a good segmentation of this scenario,
especially in Table VII, the kappa coefficient of FCM is 0.6293,
which is second only to 0.6294 of the algorithm proposed in
this article; However, In row 1, column (d), the segmentation
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Salina

Hengqin

Zhuhai

PaviaU

-

(@ (b) © @ © o @ b R

Fig. 6. Segmentation results of remote sensing images with different resolutions by different algorithms. (a) Is the original data, (b)—(i) is MRF_ICM, FCM,
AIVFCM, FLICM, IT2FCM, AIT2FCM, AIVIT2FCM, and the algorithm proposed in this article. (j) Ground truth; Remote sensing images from top to bottom
are Salinas, Hengqin, Zhuhai, and PaviaU.

TABLE VII
EVALUATION INDICATORS OF DIFFERENT ALGORITHMS IN REMOTE SENSING IMAGES

RS IMAGE INDEX MRF ICM  FcMm AIVFCM FLicM IT2FCM AIT2FCM  AIVIT2FCM  PROPOSED
PC NULL 0.8329 0.8270 0.8888 0.7302 0.7832 0.8174 0.9004
XB NULL 0.0558 1.6050 0.0907 2.6512 0.0774 0.0772 0.0632
Acc 0.8358 0.9046 0.9008 0.8853 0.8995 0.9011 0.8969 0.9046
Salinas Sen 0.4059 0.5803 0.5635 0.4953 0.5578 0.5651 0.5463 0.5804
Kappa 0.2686 0.6294 0.6146 0.5539 0.6125 0.6200 0.6011 0.6295
SA 0.3230 0.6661 0.6527 0.5985 0.6482 0.6540 0.6390 0.6662
Time 17.633 2.09 20.184 16.534 20.922 20.688 28.785 14.628
PC NULL 0.4326 0.3276 0.5073 0.4002 0.4377 0.3738 0.5381
XB NULL 0.2131 0.2669 0.2007 0.2456 0.2401 0.3834 0.2393
Small Acc 0.8361 0.9081 0.9019 0.9369 0.8902 0.9074 0.9134 0.9683
Henggin Sen 0.5904 0.7702 0.7548 0.8423 0.7254 0.7685 0.7834 0.9207
Kappa 0.4557 0.7000 0.6823 0.7914 0.6451 0.6973 0.7156 0.8953
SA 0.5904 0.7702 0.7548 0.8423 0.7254 0.7685 0.7834 0.9207
Time 12.854 4.48 32.91 97.55 73.69 21.36 32.84 233.67
PC NULL 0.4412 0.3548 0.5149 04114 0.4407 0.4285 0.5152
XB NULL 0.3453 2.9054 0.2694 1.0927 0.3702 0.4143 0.2691
Acc 0.8500 0.9383 0.8844 0.9531 0.9183 0.9357 0.9275 0.9553
Zhuhai Sen 0.5049 0.7592 0.5998 0.8110 0.6932 0.7510 0.7279 0.8194
Kappa 0.5009 0.8323 0.6380 0.8855 0.7626 0.8232 0.7933 0.8927
SA 0.5913 0.8599 0.6967 0.9050 0.8013 0.8523 0.8274 0.9110
Time 7.195 2.40 17.12 30.05 34.52 11.43 17.84 132.31
PC NULL 0.5085 0.4857 0.6417 0.6234 0.5396 0.5460 0.6317
XB NULL 0.4158 0.3744 0.1950 1.4214 0.1934 0.4068 0.2187
Acc 0.8255 0.8850 0.8925 0.9091 0.9165 0.9198 0.8557 0.9276
PaviaU Sen 0.3700 0.5608 0.5992 0.6428 0.6648 0.6754 0.4856 0.7086
Kappa 0.2260 0.4724 0.5152 0.5518 0.5847 0.5999 0.3901 0.6376
SA 0.3700 0.5608 0.5992 0.6428 0.6648 0.6754 0.4856 0.7086

Time 21.746 15.577 25.407 26.896 33.812 26.413 37.555 95.608
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effect of AIVFCM is worse than that of FCM, and the analysis
is that local information is not used in AIVFCM; FLICM loses
the correct information of Fallow-smooth class after introducing
local information, but it plays a very good role in suppressing
noise in the partition of other classes; The segmentation result
of IT2FCM is similar to that of MRF _ICM, and the same
misclassification occurs. Compared with IT2FCM, AIT2FCM
with adaptive type reduction has corrected the misclassification
of IT2FCM. The AIVIT2FCM algorithm has noise generaliza-
tion in the marked area (H1), which leads to the deterioration
of the segmentation result. Therefore, based on the previous
algorithm, this article introduces local information into interval
type-2 fuzzy clustering algorithm with interval-valued models,
and obtains the test results, which are closest to the ideal seg-
mentation image; On the other hand, in the quantitative analysis
of Table VII, under the premise of setting the same parameters
of these algorithms, all indexes of the proposed algorithm are
superior to other comparison algorithms, especially the SA value
and Kappa coefficient are more prominent, but the disadvantage
is that the proposed algorithm is time consuming.

2) Henggin: The segmentation result of small Hengqin can
be obtained from row 2 of Fig. 6. The visual effect of MRF_ICM
used in this scene is poor, for example, the marked area (B1) in
the second row 2 column(b), its woodland and grass area cannot
be separated; In the marked area (B2), the dark pixels belonging
to forest land are misclassified as water bodies, which indicates
that the phenomenon of “same object with different spectra”
related to forest land cannot be solved. FCM cannot distinguish
land cover with overlapping spectra, e.g., in the marked area
(C1), part of the woodland is misclassified as grassland, the
mountain shadow in the marked area (C2) is misclassified as
water body, and the edge of a small lake like the reservoir is
misclassified as bare land, resulting in the area of reservoir is less
than its actual area. In the marked area (D1), which show that
AIVFCM has less misclassification of woodland and grassland,
and the bare land and water at the edge of small reservoir
can be correctly distinguished. FLICM can effectively suppress
the spots in the marked area (E2), but the small reservoir is
completely misclassified as bare land. In Fig. 6, row 2, column
(f), compared with FCM, IT2FCM cannot improve the mis-
classification of AIT2FCM can correctly classify woodland and
grassland in Fig. 6(F1), but the shadow part of the marked area
(G2) is misclassified as water body. AIVIT2FCM can accurately
separate woodland and other green space in the marked area
(H1), and it has obvious effect on shadow removal in the marked
area (H2). However, AIVIT2FCM still blurs all kinds of bound-
ary partition and produces many noise points to interfere with
boundary partition. However, the proposed algorithm with fuzzy
local information constraints can suppress noise and enhance
the boundary partition, there are few wrong-segmentation in the
marked areas (H1, H2). In addition, the evaluation results of
different algorithms for small Hengqin are shown in Table VII.
As can be seen from Table VII, the proposed algorithm has
the highest SA and kappa values, and other evaluation indexes
also have obvious advantages. Therefore, the proposed algo-
rithm can more effectively improve the accuracy of land cover
segmentation.
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3) Zhuhai: The segmentation result of Zhuhai can be ob-
tained from the row 3 in Fig. 6. The visual effect of MRF_ICM
used in this scene is poor, such as the marked area (B1) in the
column (b), and the woodland and grassland areas cannot be
separated; In the marked area (B2), the Tidal flat is misclas-
sified as water bodies, which indicates that the phenomenon
of “different objects with same spectrum ” associated with
water bodies cannot be solved. In the marked the area (C1),
a small part of agricultural land is misclassified as buildings via
FCM, while in the marked the area (C2), Only a small beach is
misclassified as water body. The results of AIVFCM are worse
than those of FCM in two marked areas. Compared with FCM,
FLICM has better segmentation performance, stronger antinoise
ability and more accurate boundary segmentation ability. In the
marked the area (F1, F2), IT2FCM does achieve the correct
partition for two marked areas. Compared with IT2FCM, the
segmentation accuracy of AIT2FCM in the marked area (G2) is
improved to a certain extent. AIVIT2FCM cannot classify the
overlapping area correctly. The results of the proposed algorithm
are shown in the marked area (I1, 12). The misclassification of
two marked regions is obviously reduced. In addition, it can be
seen from Table VII, the SA and kappa indexes of the proposed
algorithm are obviously better than those of other algorithms.
These test and analysis results show that the proposed algorithm
can improve the segmentation results of high-resolution remote
sensing images.

4) PaviaU: From the row 4 of Fig. 6 above, we obtain the
partition result of hyperspectral data from ROSIS optical sensor.
First, it is stated that to reduce the computational complexity,
all kinds of features are simplified and merged, and finally
we choose six types of features as the main components. At
the same time, in this scene, there is a complex ground ob-
ject coverage distribution, and the spectral difference between
different categories is small, and there are many local “same
object with different spectra”. The experimental results of each
algorithm are analyzed: for the result of MRF_ICM, there are
mixed points between Bare soil class and Gravel and brick class
in the identified areas B1 and B2 in row 4 column (b), which
indicates that the algorithm cannot distinguish the features of
similar spectra; For the result of FCM, as shown in row 4,col-
umn (c), there is mixed classification between Bare soil class
and Gravel and brick class, and mixed classification between
Asphalt and bitumen class and Gravel and brick class outside
the marked area. On the whole, the overall accuracy SA of FCM
in Table VII is almost 20% higher than that of MRF_ICM.
Compared with FCM, the segmentation result of AIVFCM
solves the misclassification phenomenon in the marked areas D1
and D2. Then, for the result of FLICM, it is correctly classified in
the identification areas E1 and E2, and the overall segmentation
accuracy SA is improved by 4% compared with the previous
algorithm; IT2FCM can be correctly classified the identification
areas F1 and F2. Compared with FLICM, IT2FCM has the
stronger ability to deal with high-order fuzzy uncertainty, so that
the Kappa coefficient is improved by 2% compared with that of
FLICM algorithm. Compared with IT2FCM, AIT2FCM with
adaptive type reduction has a slight advantage in segmentation
performance. However, for AIVIT2FCM with interval-valued
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TABLE VIII
COMPUTATIONAL COMPLEXITY OF DIFFERENT METHODS

Algorithms Computational complexity degree
MRF-ICM O(8nw’l + ncl)
FCM O(ncl)
AIVFCM O((nc +n)l +n(2w* +¢))
FLICM O(new’l)

IT2FCM O((2nc +6l'ne)l)

AIT2FCM O((2nc +n)l +nc)
AIVIT2FCM O((ne +2n+)l +n(c+n+2w))
Proposed O((2nc¢ + 2new” +3n)l + n(c +2w?))

TABLE IX
LABEL DESCRIPTION OF SIMPLE REMOTE SENSING IMAGE

Image Description Label
Residential Houses, buildings. -
building Trees, shadows. -

Pavement, bare land.
Trees, shadows .
The Bare road, Shady side of building class 1. [
Pentagon Sunny side of building class 1. -

Building class 2.

model, there is misclassification between Bare soil class and
Shadows class outside the marking area. On the basis of the
previous algorithm, this article adds fuzzy local information and
proposes an interval type-2 fuzzy clustering method with single
fuzzy factor. It makes the segmentation result smoother and
the clustering effect is better than other compared algorithms.
The overall accuracy rate SA is up to 70.86%, and a good
visual effect is obtained. In addition, the quantitative analysis
is shown in Table VII, the Kappa coefficient and total accuracy
SA of the proposed algorithm are the highest when the same
parameters of these algorithms are set. The test results have
proved that the algorithm proposed in this article can effectively
interpret hyperspectral remote sensing images and ensure high
classification accuracy; The disadvantage is that the proposed
algorithm needs more time.

C. Time Cost for Algorithm

The time complexity of different fuzzy clustering-related
segmentation algorithms are shown in Table VIII , where n is
the number of pixels in the image, c is the number of clusters, [
is the number of iterations of segmentation algorithms, [’ is the
number of iterations of KM centroid reduction, w is the size of
local window. As shown in Table VIII, this proposed algorithm
has much higher time complexity.

From Fig. 7, compared with other compared algorithms, the
proposed algorithm needs more time. The reason is that the
proposed algorithm embedded with fuzzy local information has
a great impact on time cost, but the segmentation results of the
proposed algorithm is more in line with the actual coverage situ-
ation, the accuracy is improved, the visual effect is satisfactory.
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Fig. 7. Comparison of different algorithm iteration time of each test image.
(a) Salinas (b) Hengqin. (c) Zhuhai. (d) PaviaU.

@ ®  (© )

Fig. 8. Remote sensing images and ground truths. (a) Residential building.
(b) Ground truth of residential building. (c) Pentagon. (d) Ground truth of the
Pentagon.

D. Antinoise Performance of Algorithm

To verify the antinoise performance of the proposed algo-
rithm, and two kinds of remote sensing images corrupted by
different types of noise are selected to test the robustness of
different fuzzy clustering-related algorithms in this article. The
parameters are set to m = 2for residential building, m = 1.5for
the Pentagon respectively, stopping error ¢ = 107>, and the
maximum number of iterations 7" = 100.

For residential building [38] and the Pentagon in Fig. 8(a)
and (c), it is corrupted by Gaussian noise ofyy = 0 ando = 25,
salt and pepper noise of p = 0.15, and speckle noise of o= 57.
These noisy images are tested by different algorithms, and their
segmentation results are shown in Fig. 9, and the corresponding
evaluation results are given in Table X.

As can be seen from Fig. 9, the segmentation results of the
proposed algorithm are the most satisfactory and contain almost
no noise. AIVIT2FLICM has strong ability to suppress salt and
pepper, Gaussian or speckle noise, it has a significant advantage
in suppressing different type noises. From Table X, the test
results show that the proposed algorithm is superior to other
comparison algorithms in different evaluation indexes, which
indicates that the proposed algorithm can effectively segment
remote sensing images with different types of noise in the
actual environment. To further study the robust performance
of different algorithms, the Pentagon image with different types
and intensities of noise is used to test. The test results of different
algorithms are shown in Fig. 10.

It can be seen from Fig. 10, the proposed algorithm has the
largest Jaccard and Acc values, and has obvious advantages in
Kappa coefficient and PSNR. With the increase of intensity of
noise, the variation curves of different evaluation indexes of the
proposed algorithm drop gently, which still has certain advan-
tages compared with other fuzzy clustering-related algorithms.
It happens that most high-resolution remote sensing data contain
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Fig. 9. Remote sensing images with noise and their segmentation results. (a)—(h) noisy image, MRF_ICM, FCM, AIVFCM, FLICM, IT2FCM, AIT2FCM,
AIVIT2FCM, the proposed.

TABLE X
EVALUATION INDICATORS OF DIFFERENT ALGORITHMS FOR NOISY REMOTE SENSING IMAGE

IMAGE NOISE INDEX MRF_ICM  Fcm AIVFCM FLicm IT2FCM  AIT2FCM  AIVIT2FCM PROPOSED
PC NULL 06223  0.6724 07443 06141 0.6081 0.7482 0.7810

Gaussian Acc 0.9300  0.8730  0.8747 09789  0.8745  0.8598 0.9073 0.9792

0.25) Jaccard  0.8099  0.6799  0.6836 09386  0.6832  0.6525 0.7559 0.9395

’ Kappa  0.8344  0.8095  0.7010 0.9497  0.7055  0.6726 0.7802 0.9504

PSNR  13.0327 10.1535  9.8836  17.6589 102125  9.7653 11.2725 18.4604

PC NULL  0.6656  0.6172 0.5256  0.7006  0.6376 0.6531 0.7312

Residential |, deal Ace 0.8573 07963  0.8388 0.8995  0.8109  0.7836 0.8917 0.9686
building epp(eor *1“5‘ S Jaccard  0.6473 05319 0.6105 0.7381  0.5580  0.5098 0.7204 0.9101
13) Kappa  0.6662 05243  0.6490 07611  0.5575  0.5051 0.7146 0.9256

PSNR 104648  8.8371  8.8071 11.0035  9.0548  8.9820 10.8396 16.9598

PC NULL  0.6053  0.6458 07215 06780  0.5892 0.7278 0.7515

Soeck] Acc 0.8985  0.8348  0.8768 0.9665  0.8391  0.8288 0.8314 0.9666

12‘;‘;) € Jaccard 07357  0.6029  0.6880 0.9043 06112  0.5914 0.5963 0.8883

Kappa 07604  0.6159  0.7063 0.9202  0.6249  0.6024 0.6037 0.9263

PSNR  10.8302  8.8914 99868 150790 89150  8.6989 8.2786 15.1029

PC NULL 07548  0.8241 08813 06132 0.7538 0.8257 0.8907

Gaussian Acc 0.8625 07867  0.7644 0.9657 07910  0.7647 0.8660 0.9682

0.25) Jaccard  0.5518 04149  0.3839 0.8597 04234 03726 0.6034 0.8682

’ Kappa  0.5303 03707 03216 0.8882 03817 03156 0.5840 0.8959

PSNR  11.3080  9.6750 92407  17.3018  9.7605  9.2522 11.3882 17.6117

PC NULL 07872 0.7408 0.6300  0.6703  0.5643 0.7555 0.8540

Pepperand salt A 0.8667  0.8059  0.8322 0.6899  0.8075  0.7905 0.8271 0.9457

The Pentagon () 1) Jaccard  0.5645 04817  0.5224 02274 04792 04555 0.5196 0.7974
Kappa 05497 04047  0.4946 0.1380 04027  0.3579 0.4804 0.8196

PSNR 103620 87810 109257  7.9805  8.8589  8.4573 10.8224 14.7982

PC NULL 07306  0.6716 08142 05947  0.7108 0.7227 0.8280

Acc 0.8541 07970  0.7936 09106  0.8019  0.7843 0.7809 0.9195

Spflcfe Jaccard 05282 04440 04566  0.6911 04545 04167 0.4351 0.7203

(114) Kappa 05004 03741  0.3885 0.7198 03851  0.3491 0.3611 0.7459

PSNR 11.0855 9.6333 9.3187 13.4983 9.7380 9.3731 9.1007 14.1094




5916

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Sltad s

® i)
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(a)—(d), (e)—(h), ()—(1), are the variation curves of each performance index in the presence of Gaussian noise, salt and pepper noise, and speckle noise,

respectively. The evaluation indexes are as follows: partition accuracy Acc; Jaccard coefficient; Kappa coefficient; Peak signal-to-noise ratio PSNR.

salt and pepper or speckle noise. The proposed algorithm in this
article has an outstanding ability to suppress these kinds of noise.
Therefore, the proposed algorithm is more suitable to interpret
remote sensing image in real environment.

VI. CONCLUSION

This article proposes a novel interval type-2 fuzzy clustering
algorithm for remote sensing image segmentation. Through the
segmentation test of four remote sensing images with complex
ground objects, and the antinoise performance test of two simple
remote sensing images with different types and intensities of
noise, the effectiveness of the proposed algorithm is verified by
experiments, and the following conclusions are drawn finally.

1) Embedding fuzzy local information makes the algorithm
have high time complexity, but good segmentation perfor-
mance can make up for this shortcoming.

2) Interval-valued data model can better solve the problem
of “same object with different spectra”.

3) Interval valued distance can improve the classification of
interclass overlapping.

4) The self-adaptive adjustment factor can achieve more
effective and accurate fast type reduction and make the
segmentation result more accurate.

Finally, the quantitative evaluation result in the experimental
part also verifies the effective segmentation ability and antinoise
robustness of the proposed algorithm, which shows that the
proposed algorithm can obtain satisfactory segmentation results
for complex remote sensing images with similar or overlapping
spectra, and it can keep good effect on the image corrupted by
noise in practical application.
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