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Research Progress on Models, Algorithms, and
Systems for Remote Sensing Spatial-Temporal

Big Data Processing
Yang Liu , Lanxue Dang , Shenshen Li , Kun Cai , and Xianyu Zuo

Abstract—With the rapid development of high-resolution earth
observation systems, the data processing, algorithm design, and
system development of remote sensing spatial-temporal big data
(RS-STBD) have gradually become the bottleneck problems in
the application and development of earth observation system. The
research on the model, algorithm, and system of RS-STBD pro-
cessing involves complex scientific problems, technical bottlenecks,
and inconstant requirements of engineering applications. This ar-
ticle summarizes the data type and processing theory model of
RS-STBD, the high-performance algorithm design based on cloud
service and intelligent computing, and the architecture design and
engineering development methods of the complex remote sensing
application system. Furthermore, the existing problems in the cur-
rent research are analyzed, and the related solutions are given.
Finally, the future development trend of scientific exploration,
technical research, and application development of RS-STBD has
prospected.

Index Terms—Remote sensing spatial-temporal big data, spatial-
temporal data model, remote sensing cloud computing, remote
sensing algorithm, remote sensing system architecture, high-
resolution earth observation system.

I. INTRODUCTION

I T IS a kind of spatial-temporal big data (STBD) that the
data acquired by remote sensing (RS) information system,

geographic information system (GIS), geological information
system, smart city system, traffic information system, environ-
mental information system, meteorological information system,
and other complex systems. As an important source of infor-
mation extraction, RS data are a typical STBD with temporal
dimensions and spatial dimensions, meanwhile, which contain
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the observation information and spatial-temporal attributes of
ground objects. The essence of RS data is the space-time sam-
pling of the ground object by the RS information system, which
uses different temporal resolutions, spatial resolutions, radiation
resolutions, and spectral resolutions. RS is an irreplaceable
global observation tool, with the advantages of macrodynamics,
and has become the basic technical support for the implementa-
tion of sustainable development strategy [1].

As a strategic and forward-looking infrastructure of national
major science and technology, RS system engineering involves
RS platform, data acquisition systems, information processing
systems, and knowledge application systems. In 1980, NASA
proposed the U.S. Global Change Research Program and es-
tablished the earth observation system (EOS) in 1991 [2]. With
the development of science, technology, and engineering of RS,
a high-resolution earth observation system (HREOS) has been
built in the world now. In 2013, China’s long-term scientific
and technological development (2006–2020) launched a major
project of China’s high-resolution earth observation system
(CHEOS) [3], which is planned to be initially completed around
2020. However, with the development of global HREOS, the
efficient and rapid processing of remote sensing spatial-temporal
big data (RS-STBD) has gradually become the bottleneck of its
application [4]. Therefore, it is necessary to explore the frontier
scientific issues, common key technologies, and engineering
application bottlenecks in the construction of HREOS, and sort
out the research progress of models, algorithms, and systems for
RS-STBD processing.

For the processing of RS-STBD, this article focuses on
the data model and processing model of RS-STBD, as well as
the research progress of RS algorithm and system application.
The remainder of this article is structured as follows. Section II
summarizes the existing theoretical model of RS-STBD. Section
III introduces the typical RS algorithm and process controls tech-
nology. Section IV reviews the latest architecture of information
processing, RS data, and product distribution system. Section
V presents the current RS system engineering and complex
application system. Finally, In Section VI, the existing problems
and solutions are given, and conclude this article and provide
recommendations for future development work.

II. THEORETICAL MODEL OF RS PROCESSING

The observation data of RS sensors generally include matter
information of electromagnetic, optics, and acoustic detection,
such as the intensity, degree of polarization, and phase difference
of acoustic, optical, and electromagnetic waves [5]. Using the
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TABLE I
CLASSIFICATION OF COMMON SPATIAL-TEMPORAL DATA MODELS AND SPATIAL-TEMPORAL TARGET MODELS

TABLE II
COMMON SYSTEM ARCHITECTURE FOR RS SOFTWARE

functional relationship between measurable data and target state,
the RS model can be constructed to retrieve and obtain the
physical [6], chemical [7], or biological [8] target information
from the RS measured data. Efficient RS-STBD processing
involves RS data model, RS processing theory, RS inversion
model, RS processing workflow, and other theoretical models.

The processing of RS-STBD involves the representation and
organization of RS data, storage, and distribution of RS data,
intelligent processing, and data mining theory of RS data. Here,
the representation and organization of STBD are the basis of
data precision and information extraction of RS data; the storage
and distribution of STBD are the premise of implementing RS
service; the intelligent processing and mining of STBD are the
guarantee of RS socialized application. RS-STDB model is the
theoretical basis of RS information extraction and processing,
temporal geographic information system (TGIS) [9], and global
position system (GPS). The RS-STBD model includes describ-
ing the structure model of spatial-temporal data, describing the
information model of spatial-temporal objects, the intelligent
computing model of RS, the spatial-temporal analysis, and the
processing model of RS.

A. Commonly Used High-Resolution Satellite and RS Data

At present, the development of satellite RS has formed three
independent and interrelated systems: commonweal RS system,
commercial RS system, and military RS system. With the de-
velopment of HREOS, the system has produced a large num-
ber of data with the technical characteristics of the diversified

observation methods, diverse observation objects, and various
information acquisition capabilities [10]. Generally speaking,
the payload of the satellite of HREOS covers the main RS bands
including visible light, infrared, ultraviolet, microwave, etc.,
and forms a full band detection capability. The main satellite
RS data and parameters of the global HREOS are described in
Tables III–VI. Currently, RS-STBD with large capacity, mul-
titype, high dimension, multiscale, and nonstationary has been
formed, which has 5H (high spatial resolution, high temporal
resolution, hyperspectral resolution, and high radiation resolu-
tion) characteristics [11].

B. Target Information Model and Data Structure Model
of RS-STBD

As given in Table I, the spatial-temporal models of target
mainly include spatial-temporal state model of target, spatial-
temporal change model of target, and spatial-temporal relation-
ship model of target. The spatial-temporal state model of target
separates the spatiotemporal object from the concrete space and
time state, which reflects the independence of space and time
relative to the object. The space-time state triples are used to
describe the target state. State:= (O, S, T), O�OBJ, S�SPACE,
T�TIME; OBJ, SPACE, and TIME are object domain, space
domain, and time domain, respectively. The spatial-temporal
change model of target is the change of attribute, position, and
shape of spatiotemporal entity, or the change of topological
relationship. The spatial-temporal change is complex, and the
object variable, space variable, and time variable can change
independently in their respective domains. The spatial-temporal
relationship model of the target is a spatial-temporal model based
on the object-oriented spatial-temporal relationship.

Spatial-temporal data model, which describes data struc-
ture, includes storage model, logical model, and conceptual
model. At present, the existing spatial-temporal data model
and spatial-temporal target model have achieved fruitful re-
sults, for example, the space-time cube model [12], sequent
snapshots model [13], space-time composite model [16], cel-
lular automata [19], multimode tensor expression model [23],
three-domain model [21] based on spatial-temporal and seman-
tic, event-based spatial-temporal model [20], object-oriented
data model, process-oriented spatial-temporal data model [18],
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ontology-based spatial-temporal data model [22], and the im-
proved models of these models. Throughout the development
of the above-mentioned spatial-temporal models, most of them
are based on traditional GIS, which is difficult to realize the
integration of space and time. Because of the separation of
time and space of the traditional model, the spatial-temporal
relationship of the data is also separated. So the spatial-temporal
connotation is simple, which cannot map the temporal and
spatial functions of RS objects and their relationship, and it
is difficult to map the occurrence, growth, and extinction of
RS ground objects. Cellular automata provide a framework for
spatial-temporal modeling of RS data. Cellular automata is a
kind of grid dynamic model with local spatial interaction and
temporal causality in the discrete spatiotemporal state, which
has the ability to simulate the dynamic spatiotemporal evolution
process of a complex system. It can simulate the very complex
system processes and phenomena of observed objects. Cellular
automata have great flexibility and openness and have a broad
application prospect in the spatial-temporal evolution relation-
ship modeling of observation objects in RS. Cellular automata
have unique advantages in modeling pollution systems with
hydrodynamic characteristics [24]–[28].

C. Intelligent Computing Model and Data Mining Theory
of RS-STBD

Intelligent computing and automatic analysis are the premise
of RS-STBD for data mining, information extraction, and knowl-
edge transformation from RS observation data. The processing
of RS data has experienced three development stages from quali-
tative RS to quantitative RS [29], and then to intelligent RS [30].
Generally, the qualitative model and conceptual model are used
to realize the qualitative analysis of RS. Using mathematical
model, physical model, chemical model, and biological model,
the quantitative inversion model is constructed to realize the
quantitative measurement of RS. Intelligent computing model
and spatial-temporal semantic model are used to analyze and
calculate the semantic information of RS so as to realize the
semantic representation, semantic extraction, semantic retrieval,
and semantic understanding of intelligent RS spatial-temporal
information. With the development of machine learning, intel-
ligent computing of RS will become the core technology and
mainstream algorithm of RS information extraction.

Intelligent computing of RS-STBD involves information ex-
traction theories such as target detection [31] and image segmen-
tation [32], target classification and recognition [33], target loca-
tion [34], path tracking [35], path prediction, target information
extraction [36], information fusion [37], information retrieval
[38], and other information extraction theories. The spatial-
temporal analysis aims to quantitatively analyze and mine
spatial-temporal semantic relations and patterns of RS-STBD,
including observation objects by means of machine learning,
artificial intelligence, and mathematical statistics and analysis.
This is a special spatial-temporal function of RS-STBD, which
is different from the general image processing system. For the
analysis and mining of RS-STBD, the main methods and theories
include spatial-temporal classification [39], spatial-temporal
clustering [40], spatial-temporal anomaly [41], change detection
[42], spatial-temporal correlation analysis [43], spatial-temporal
evolution analysis [44], spatial-temporal prediction [19], and

other analysis and data mining methods of spatial-temporal
information.

D. Workflow Theory of RS Computing

Workflow originates from the field of production organization
and office automation. It mainly defines the concept of business
process activities in the work. Its purpose is to decompose the
work into well-defined tasks or roles, implement, and monitor
these tasks according to certain principles and processes, so as
to improve efficiency, control process, improve customer ser-
vice, enhance effective process management, and other business
purposes. Workflow is the core technology of business process
automation. It constructs a workflow model or process model by
analyzing the business process. The representation of the theo-
retical model of workflow generally adopts description language
[45], object model, rule-based method, and graph or net-based
method, such as directed graph [46], conditional directed graph,
and Petri net [47].

According to the application fields of workflow, it is gen-
erally divided into Business WorkFlow (BWF) and Scientific
WorkFlow (SWF) [48], [49]. BWF focuses on the automation
of the business process, which can further be divided into process
workflow, project workflow, and case workflow. RS computing is
data-centric, which mostly involves the processing, sharing, and
transmission task of high-throughput data. RS data processing
and computing have a distinct pipeline processing nature, and
the process of RS-STBD calculation and processing can be
described systematically by SWF theory [50]. In other words, the
different algorithms in the RS processing process are organized
together, and the logical rule of the sequence mode, branch
mode, and repetition mode is used to represent and implement
RS computing.

III. RS ALGORITHM AND CLOUD COMPUTING TECHNOLOGY

A. Types and Characteristics of RS Algorithms

RS algorithm has the characteristics of strong profession-
alism, involving many industries, and large data scale. RS
algorithm has a distinct hierarchy and parallelism, which be-
longs to the computational intensive algorithm. According to
the processing sequence, processing object, and algorithm idea,
the RS algorithm can be divided into remote sensing data
processing algorithm (RS-DPA), remote sensing information
extraction algorithm (RS-IEA), and remote sensing application
processing algorithm (RS-APA).

RS-DPAs include radiometric correction [51], registration
[52], [53], terrain correction [54], [55], geometric calibration
[56], [57], atmospheric correction [58], and other RS pre-
processing algorithms; and it also includes image processing
algorithms such as image filtering, image enhancement [59],
mosaic [60], cutting, uniform color, fusion [61], [62], and other
image processing methods. The preprocessing of RS data has
strong pertinence, the processing process and parameters are
very complex and diverse, and the sensor data formats of various
satellites are not the same, which often brings great trouble to
the design of its universal system.

RS-IEA is the core algorithm of RS data inversion. According
to RS observation objects, it can also be divided into land
RS inversion algorithm [63], [64], atmospheric RS inversion
algorithm [65], and water RS inversion algorithm [66]. RS-IEA
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is also the main function of the RS application system. RS-IEA
includes image segmentation [67], spectral-based classification
[68], scene classification, and other pixel-based image process-
ing methods, as well as target detection [31], target change and
tracking [69], target classification, target recognition [33], and
other target-based information extraction algorithms.

RS-APA is an important data source of various industry
business systems based on RS application. According to dif-
ferent RS industries, RS-APAs are generally divided into the-
matic maps production methods applied in agriculture, forestry,
surveying, mapping, meteorology, water conservancy, ocean,
national defense, energy, transportation, geology, earthquake,
health, engineering, statistical planning, ecological environment
protection, disaster monitoring, land, resources exploration, and
other industries. Moreover, different industries have different
requirements for the accuracy and speed of the RS-APAs.

B. Workflow Customization and Control Technology of RS

In view of the complex RS business services and industry
application requirements, it is necessary to reasonably configure
the RS product production process of different businesses and
realize intelligent RS algorithm customization and processing
flow control. Considering the hierarchy and modularity of RS
data processing, SWF technology well adapted for carrying
out dynamic and intelligent process assembly, automatic task
scheduling, and autonomous task control.

RS workflow technology involves the definition, assembly,
and visualization of workflow, the management, and schedul-
ing of workflow tasks. The definition, organization, mapping,
and execution environment of workflow generally use eXten-
sible Markup Language (XML) or JavaScript Object Notation
(JSON) to describe each serial and parallel processing flow. The
hierarchical workflow based on the directed acyclic graph is
constructed by using various workflow control structures such as
conditional execution, iteration and repetition, and user-defined
functions [70]. The computing task of RS can process the data
in blocks and decompose the tasks, which is the theoretical basis
of parallel processing of RS images. The essence of RS com-
puting based on workflow is a kind of hierarchical and orderly
collaborative computing of multimachines and multitasks.

C. RS Cloud Computing and Cloud Service Technology

As an interdisciplinary science and technology, RS computing
has strong professionalism. In order to realize the cross-industry
sharing of RS data services and computing services, it is highly
necessary to encapsulate RS data and RS computing into RS
services, and use cloud computing and cloud services to build
RS cloud so as to realize the resources sharing of RS data and
RS computing. Generally, RS cloud provides four levels of RS
cloud computing services [71]: RS infrastructure service, RS
platform service, RS data service, and RS software computing
service (see Fig. 1). The essence of RS cloud computing is to
provide a service technology through an Internet platform.

In order to realize the computing services and data distribution
services of RS cloud, according to the current development of
information technology and cloud computing, RS cloud service
can be implemented by remote procedure call (RPC) [72], web
application programming interface (Web API) [73], Java remote

Fig. 1. Diagrammatic sketch of RS cloud storage, RS cloud computing, and
RS cloud services.

method invocation (RMI) [74], windows communication foun-
dation (WCF) [75], and web service technology (WST) [76].

1) RPC technology adopts the client/server mode to call
remote computer program process through the network
to realize remote request and service [77]. Different from
local procedure call, which uses task-shared memory, it
can synchronize tasks and send information to each other
for conversation in a multitasking operating system. RPC
runs in the distributed operating system, constructs the
software environment of distributed RS computing, and
realizes the communication between remote processes.
RS service calls based on RPC protocol can be divided
into synchronous calls and asynchronous calls. RS data
sharing and RS computing service are realized by using
the RPC interface. In essence, Web API, RMI, WCF, and
WST are special cases of RPC.

2) Web API is a microservice architecture technology, which
realizes web applications based on intelligent process
services, such as storage services, message services, infor-
mation services, search services, computing services [78].
Web API represents and provides access services, which
can build RS services for various clients. We use HTTP
verbs, such as get, post, put, and delete, and web API to
implement create, retrieve, update, and delete operations
of distribution service, and solve the function of adding,
deleting, modifying, and searching remote information.
Web API uses a web server, application server, database
server, and storage and communication components to
provide loosely coupled, autonomous, and decentralized
RS services.

3) RMI technology uses a set of Java application program-
ming interfaces of RPC to realize the development of
distributed applications [79]. RMI uses a Java language
interface to define remote objects. It combines Java seri-
alization and RMP Protocol. It can make objects in one
Java virtual machine (JVM) call methods of objects in an-
other JVM. The distributed RS application constructed by
RMI has the characteristics of transparent call, distributed
garbage collection, and convenient access to stream. RMI
is composed of a stub/skeleton layer, remote reference
layer, and transport layer to provide distributed RS service
system. RMI starts a stub and skeleton process in each of
the two JVMs. The two processes transfer parameters and
return values through socket communication to solve the
call problem between different RS JVMs.
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4) WCF technology is a series of application frameworks
supporting data communication developed by Microsoft.
It sends and receives messages between customers and
services through processes or different systems, using the
Intranet or Internet [80]. WCF integrates the functions
of Web services, .Net remoting, message queuing, and
enterprise services, and can be used for the development
of RS service-oriented distributed applications. WCF can
define the protocol of RS network service, the protocol
of business service, the declaration of data type, and
the related information of transmission security. In WCF
architecture, a contract is used to define the parameters,
messages, and service methods of the RS data service
message system. WCF supports HTTP, TCP, named pipe,
Microsoft message queue, and peer-to-peer TCP proto-
cols. WCF uses endpoints to send or receive messages (or
do both).

5) WST is a kind of remote calling technology that uses
HTTP protocol to transfer data between client and server to
realize cross-programming language and cross-operating
system platform [81], [82]. WST is a self-describing and
self-contained available network module. Its essence is
to call the resources of other websites through a re-
mote network. WST contains the standard protocol for
communication between RS applications. The RS sys-
tem functions provided by web services include security,
distributed transaction coordination, and reliable commu-
nication. WST follows SOAP Protocol, encapsulates RS
data by XML, and transmits RS data by HTTP protocol.
SOAP uses XML message to call a remote method, WST
interacts with the remote machine through the post and get
methods of the HTTP protocol, and uses UDDI, WSDL,
XML, SOAP technology to realize RS service discov-
ery. WST can realize web-based RS applications with
platform-independent, low coupling, self-contained, pro-
grams. WST also uses the open XML standard to describe,
publish, discover, coordinate and configure RS network
applications, and develop a distributed and interoperable
RS application system.

The above five technologies have their own advantages and
disadvantages. In the design of a cloud computing platform to
achieve cloud services, we need to choose according to business
needs. RPC supports cross-language services, while RMI only
supports Java language. WST transfers XML text files over
HTTP protocol, which is independent of language and platform.
WCF is not an open-source, but can be called across platforms,
and can only be deployed in applications, IIS, or Windows
services. Web API is an open-source framework supporting
mobile applications on .Net platform.

The mainstream technical solution of cloud computing is
to reasonably select the above programming technologies and
to realize cloud services of public cloud and private cloud by
using core technologies such as distributed computing, par-
allel computing, utility computing, network storage technolo-
gies, virtualization, load balance, and content delivery network.
Generally, large enterprises tend to set up business private
cloud and provide a public cloud for external services, such
as Google cloud, VMware cloud, Microsoft Azure, Amazon
Web services (AWS), Tencent cloud, Huawei cloud, and Alibaba
cloud.

D. Technical Specification of RS Cloud Service

The input–process–output specification of RS-STBD cloud
service based on cloud computing is described as follows.

1)Service Description: Service name, service function, service
parameters, and types, return results, and types.

2)Service Name: XXX_Service
3)Technology: WCF || RMI || RPC || Web API…
4)Input: Data 1; Data 2;…; Data M; Parameter 1; Parameter

2;…; Parameters N; Method.
5)Process:
Step 1: Product = Method (Data, Parameters);
Step 2: Information = Process (Product, Parameters);
Step 3: Provide Services;

… …
Step N: Provide Services;
5)Output: Product 1; Product 2;…; Product K; Information.

For the complicated structure of input parameters or return
information, it is generally recommended to using structured
format XML or JSON to encapsulate the input parameters or
return information describing RS services.

IV. ARCHITECTURE OF RS APPLICATION AND THE

DEVELOPMENT OF COMPLEX SYSTEM ENGINEERING

A. System Architecture Design of RS Software

According to the functional requirements of RS data process-
ing, RS information extraction, and RS product distribution,
the design of RS software system architecture should make
tradeoffs in processing performance, stability, rationality, and
convenience. In order to facilitate the system development and
maintenance of software engineering, the architecture design
of the RS software system needs to meet the SOLID principle
of object-oriented programming, namely single responsibility
principle, open–closed principle, Liskov substitution principle,
law of Demeter, interface segregation principle, dependence
inversion principle [83]. As given in Table II, the popular
software system architectures of RS at present mainly include
layered architecture, event-driven architecture [84], microkernel
architecture [85], and microservice architecture [86].

Here, the layered architecture is a general framework that
meets the SOLID principle. The event-driven architecture is a
popular distributed asynchronous framework pattern for creat-
ing scalable RS applications. The microkernel architecture is
a framework derived from the operating system design, also
known as a plug-in architecture pattern. The ideal system ar-
chitecture is composed of a core system and plug-in module.
The core system, also known as microkernel, usually contains
minimal RS business logic and ensures that plug-ins required
for RS applications can be loaded, unloaded, and running.
Microservice architecture is also a service-oriented architecture
[87]. Its RS service is fine-grained and its protocol is lightweight.
The core of the microservice architecture is separate deployable
units and RS service component, which contains RS business
logic and processing flow. Separate deployable units are highly
scalable, easy to deploy and deliver; RS service components are
decoupled, distributed, independent from each other, and can be
accessed using known protocols.
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B. High-Efficiency Product Production Framework of RS
Intelligent Processing

It is a complex system engineering to realize highly efficient
RS intelligent computing. RS intelligent computing has the
characteristics of data storage distribution, algorithm processing
parallelism, and swarm intelligence coordination. Considering
the industry demands characteristics of RS-STBD, parallel com-
puting and intelligent computing must be considered in the
design of the RS system architecture to achieve high-efficiency
product production. RS parallel system can be designed in
three forms: temporal parallelism (time overlap and pipeline
time-division multiplexing), spatial parallelism (resource dupli-
cation and multidevice or multiprocessor), and spatial-temporal
parallelism (time overlap and resource repetition) [88].

From the point of view of program and algorithm design of
software engineering, RS-STBD parallel processing is divided
into data parallelism and task parallelism. Data parallelism
resolves a big data processing task into several subtasks with
the same function, and each subtask processes different data
at the same time. Task parallelism, also known as function
parallelism or control parallelism, can further be divided into
processes parallelism, thread parallelism, and instruction par-
allelism according to the granularity of task parallelism. High-
performance computing of RS cloud platform generally adopts
multicomputer cluster (such as Hadoop [89] and MapReduce
[90]), multiprocess parallelism (such as MPI [91] and Spark
[92]), multicore or multithread parallelism (such as OpenMP
[93]), heterogeneous parallelism (such as GPU [94]), and other
parallel processing technologies.

The key to improve the precision of intelligent processing
is the design of intelligent processing models and algorithms
for RS-STBD. The main problem is that intelligent processing
algorithms are often dedicated and poor in generality. It is
urgent to develop a general intelligent model and theory for RS
intelligent information extraction.

C. Design Model of RS Cloud Computing

Cloud computing provides available, convenient, and on-
demand network resources, computing resources, storage re-
sources, software resources, and other network resource sharing
services [95]. It includes various applications based on net-
work services, software, and hardware facilities that provide
these services in the data center. Cloud computing system has
the advantages of supporting virtualization, quality of service,
reliability, and scalability. For the research of distributed RS
cloud computing system architecture, it is necessary to study
the development mode, computing model, service model [96],
and RS data management. The application and development of
RS cloud computing need to consider the system availability,
data management, design and implementation, message process-
ing, management and monitoring, performance and scalability,
flexibility, security, and other complex system problems. For
these key problems of RS cloud computing, we can solve them
according to different development modes and design logic. The
literature [97] provides sharing, scaling, and elasticity patterns;
reliability, resiliency, and recovery patterns; data management
and storage device patterns; virtual server and hypervisor con-
nectivity and management patterns; monitoring, provisioning,
and administration patterns; cloud service and storage security

patterns; network security, identity, and access management and
trust assurance patterns; and common compound patterns. There
are more than 100 cloud computing design patterns of eight
categories. The document [98] provides 24 common design
patterns of Microsoft cloud computing (see Table VII). The
development of RS cloud computing needs to choose different
design patterns reasonably according to the unique business
requirements.

At present, the research on high-performance intelligent pro-
cessing of RS-STBD in RS cloud service mostly focuses on
the preprocessing algorithm, but relatively less on the post-
processing. In RS cloud computing, parallel processing algo-
rithms are often dedicated. The algorithms of different satellite
data are very different and cannot be used universally. With
the increase of data scale, the performance of cloud services
tends to decline rapidly. The key to improve the intelligent
processing performance of RS-STBD is the architecture design
of the parallel system.

D. Development of RS Application System

The engineering business of the RS application system in-
volves land, planning, agriculture, forestry, water conservancy,
environmental protection, emergency relief, surveying and map-
ping, and military applications. RS can provide comprehensive
and high-level surveying and mapping data acquisition and geo-
graphic information services for various industries. The mission
of HREOS includes the observation of the earth’s atmosphere,
hydrosphere, lithosphere, and ecosphere, and can also be sum-
marized as the observation of the atmosphere, water, and land.
Among them, the observation of the atmosphere, water, and land
involves the monitoring of the environment and disaster. The
typical system engineering of HREOS is generally composed
of satellite system, launch vehicle system, launch site system,
measurement and control system, ground system, and appli-
cation system, which constitute a set of complex information
system.

As shown in Fig. 2, HREOS can roughly be divided into
three systems: satellite system, ground system, and applica-
tion system. According to the level of processing function,
the application system is divided into RS basic platform, RS
preprocessing system, RS information extraction system (such
as measurement, analysis, segmentation, classification, and eval-
uation), GIS, RS, and GPS information fusion, and industry
application system (such as smart city and city brain). Among
them, the RS data acquisition system uses the detection carrier
wave (such as infrared, visible, ultraviolet, electromagnetic,
sound, and gravity) to generate RS data. The RS data retrieval
system processes the RS data to extract the RS information
on the ground objects, and further uses the RS information
application system to process and form knowledge and thematic
products.

At present, mainstream business platforms of RS image pro-
cessing software are ERDAS image, environment for visualizing
images (ENVI), and PCI Geomatica (see Table VIII). In addi-
tion, there are ESA Digital Twin Earth and other software. In the
RS cloud platform, as shown in Fig. 3, the systems that support
cloud data management and provide data as a service (DaaS)
include Google’s Hadoop distributed file system (HDFS), AWS,
data cube of Amazon, digital globe’s geospatial big data platform
(GBDX), data and information access services (DIAS), etc.; the
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Fig. 2. HREOS architecture.

Fig. 3. GEE, ESE, ERDAS Apollo, and Data Cube system architecture. (a)
ERDAS Apollo. (b) GEE. (c) ENVI services engine. (d) Data cube.

systems that support online data processing and analysis and
provide software as a service (SaaS) include ArcGIS online and
NASA EOSDIS. Among them, the cloud computing platforms
corresponding to Google Earth Engine (GEE) [99], [100], data
cube, ENVI Services Engine (ESE), and ERDAS Apollo can
provide both DaaS and SaaS service modes.

The development of the RS application system can adopt wa-
terfall development, iterative development, spiral development,
agile development, and other software engineering development
model. For the rapid development of the RS application system,

the secondary development is usually based on the API or SDK
provided by the RS image processing platform. For example,
ENVI’s interactive data language, GEE RS cloud platform,
ERDAS imagine spatial modeler and C Developer’s toolkit,
and PCI Geomatica’s software toolkit with geomatics generic
database technology can realize the rapid development of RS
application system.

V. PROBLEMS AND SOLUTIONS

1) Data representation and storage of RS-STBD: Due to the
particularity of the development of RS, the research of
RS engineering and technology in various countries is
relatively independent. As a result, the sensor parameters
of different satellite systems are complex and diverse, and
all kinds of RS data and metadata are not universal, which
brings great difficulties to the sharing and processing
of RS data. It is an important problem of RS-STBD to
establish a public data format and data exchange standard
for different satellite systems. In addition, according to the
characteristics of RS data, constructing a multilevel and
distributed storage structure suitable for efficient process-
ing, rapid display, and intelligent information extraction
of RS data is also a very noteworthy issue in RS-STBD
research.

2) The research of the RS-STBD processing model: The
emphasis on the RS-STBD processing model is to realize
the application and construction of EOS, and also to be
compatible with the construction requirements of GIS
and GPS. However, the existing RS-STBD models have
basically improved data models based on the TGIS model.
At present, it is urgent to establish an RS-STBD model
that can map the complex spatial-temporal changes of
ground features, meet the high-performance image pro-
cessing, and easy to realize the intelligent processing of
RS data.

3) The algorithm designs of RS-STBD: The RS algorithm
has strong pertinence. How to build a common algorithm
is the bottleneck of the development and application of RS
information technology. It is the key to the popularization
and application of RS-STBD to study the RS algorithm
and process flow, and establish a generally shared RS
algorithm. In particular, RS brain and mind-inspired com-
puting technology is a prospective problem of RS-STBD
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intelligent information extraction. This technology uses
intelligent perception and cognition to simulate visual
interpretation and image interpretation and can achieve
tasks such as RS scene classification, target detection,
target classification, and target recognition.

At present, deep learning has made great progress in the
application of RS, especially in the perceptual information
extraction of high-resolution RS images. However, due to the
poor interpretability of deep learning, it is impossible to an-
alyze the cognitive mechanism of ground objects. In order to
realize the real intelligent RS system, we need to process both
information perception and information cognition. RS brain
and mind-inspired computing for RS-STBD will provide strong
theoretical and technical support.

4) EOS construction for RS-STBD: The construction of EOS
is a complex system problem. It involves a lot of profes-
sional knowledge, science, and technology, which needs
the cooperation and joint development of all walks of
life. The application system design of EOS must consider
the uncertainty, sparsity, incompleteness, and imbalance
of RS data, the complexity, nonlinearity, and dynamic
evolution of RS algorithms, the diversity and hierarchy
of RS applications, and the integrity, openness, and self-
organization of the RS system. Only by making full use
of high-performance computing, cloud computing, and

artificial intelligence technologies can we effectively build
a practical application system of HREOS.

VI. CONCLUSION AND PROSPECT

The research on models, algorithms, and systems for RS-
STBD processing involves complex scientific problems, tech-
nical bottlenecks, and inconstant requirements of engineering
applications. This article summarizes the data types and pro-
cessing theoretical models of RS-STBD, the high-performance
algorithm design based on cloud computing, and the architecture
design and engineering development methods of complex RS
applications. Finally, the existing problems of current research
are analyzed, and the relevant solutions are given.

We believe that with the development of scientific exploration,
technical research, and application development of RS-STBD,
RS satellites will tend to be miniaturized in the future, and
efficient data acquisition will be realized through the network-
ing of unmanned autonomous smart satellites constellation.
In the future, intelligent RS satellite systems would become
the mainstream system; “AI+RS” would provide more effi-
cient information extraction algorithms and application system
solutions.

APPENDIX A

TABLE III
EOS SATELLITE PARAMETERS AND RS DATA OF AMERICA
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TABLE IV
EOS SATELLITE PARAMETERS AND RS DATA OF EUROPE

TABLE V
EOS SATELLITE PARAMETERS AND RS DATA OF ASIA
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TABLE VI
EOS SATELLITE PARAMETERS AND RS DATA OF CHINA
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APPENDIX B

TABLE VII
MICROSOFT’S 24 DESIGN PATTERNS FOR RS CLOUD COMPUTING

APPENDIX C

TABLE VIII
MAINSTREAM RS DATA PROCESSING SOFTWARE AND SYSTEM
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