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Abstract—Deep learning is increasingly popular in remote sens-
ing communities and already successful in land cover classification
and semantic segmentation. However, most studies are limited to
the utilization of optical datasets. Despite few attempts applied
to synthetic aperture radar (SAR) using deep learning, the huge
potential, especially for the very high resolution (VHR) SAR, are
still underexploited. Taking building segmentation as an example,
the VHR SAR datasets are still missing to the best of our knowledge.
A comparable baseline for SAR building segmentation does not
exist, and which segmentation method is more suitable for SAR
image is poorly understood. This article first provides a benchmark
high-resolution (1 m) GaoFen-3 SAR datasets, which cover nine
cities from seven countries, review the state-of-the-art semantic
segmentation methods applied to SAR, and then summarize the
potential operations to improve the performance. With these com-
prehensive assessments, we hope to provide the recommendation
and roadmap for future SAR semantic segmentation.

Index Terms—Building segmentation, GaoFen-3,

resolution, synthetic aperture radar (SAR).
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I. INTRODUCTION

UE to the reason that building is the main component
D in urban cities, building semantic segmentation attracts
more attention in urban remote sensing studies. Most studies
of building semantic segmentation focus on very high resolu-
tion (VHR) optical datasets and have been formed by a series
of datasets, for instance, SpaceNet Challenge (1, 2, 4),! Inria
Aerial Image Labeling Dataset, DeepGlobe Building Extraction
Challenge,” 2018 Open Al Tanzania Building Footprint Seg-
mentation Challenge?, and CrowdAI Mapping Challenge.*
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SAR building detection becomes more popular in recent years
because of its imaging capability during the day or nighttime
under all weather conditions for observing the land surface [1].
In [2], a global urban extent mapping using ENVISAT advanced
synthetic aperture radar (ASAR) wide-swath mode datasets
(resolution of 75 m) were achieved. Ban er al. [3] developed
an effectively extractor to obtain urban extent using ENVISAT
ASAR datasets (resolution of 30 m). Since the Sentinel-1 was
launched on April 3, 2014 and then made the datasets freely
available, many scientists have investigated the potential use
of Sentinel-1 images to extract the urban areas. For instance,
the combination of textural and intensity features of Sentinel-1
is applied to extract the built-up areas of Chinese cities using
the region growing technique [4]. Chini et al. [5] automatically
generated built-up areas using the intensity and interferometric
coherence generated from multitemporal Sentinel-1 data. Esch
et al. [6] investigated the potential of high-resolution X-band
(i.e., TanDEM-X) data for the automatic building mapping.
Then, the datasets were further used in a new unsupervised and
automatic system, namely urban footprint processor (UFP), to
produce the global urban footprints (resolution: 12 m) [7]-[9].

Recently, the VHR SAR satellites have been successfully
launched. Since VHR SAR images at the meter- and submeter-
level can provide very detailed geometric structures and radio-
metric features to separate the different objects, it is very benefi-
cial and useful for accurately building segmentation. GaoFen-3,
which is part of the China High-Resolution Earth Observation
System (CHEOS) family intending to provide high-resolution
observations and disaster monitoring [10], is the first C-band
polarimetric SAR imaging satellite of China National Space
Administration (CNSA), Beijing, China. GF-3 has 12 imaging
models with single (HH or VV), dual (HH+HV or VH+VYV),
and full polarization (HH+HV+VH+VV). The spatial resolution
ranges from 1 to 500 m, and a swath coverage ranges from
10 to 650 km. GF-3 datasets have been already successfully
applied to the following applications, such as target detection
(e.g., ship) [11], [12], crop classification [13], etc. It is also an
important data source in Indonesia Tsunami, Iran Earthquake,
and Laos Flood under the China GEO Disaster Data Response
Mechanism (CDDR) [14]. Recently, deep learning has made
rapid, significant achievements on semantic segmentation [15],
[16], and many models from U-Net [17] to high-resolution net
(HRNet) [18] are proposed. However, the specific problem of
building semantic segmentation from SAR imagery using deep
learning has received very little attention until recently. For
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instance, Shahzad et al. [19] adopted the integration of fully
convolution neural networks and conditional random field to
detect buildings of TerraSAR-X SAR image. Li et al. [20] and
Wuet al. [21] developed a multiscale convolution neural network
and multiscale structured network for the extraction of building
area using SAR datasets. Huang et al. [22] proposed deep SAR-
Net, which considers the spatial textures and backscattering
information from complex-valued SAR images.

To promote further research of building semantic segmenta-
tion using SAR datasets, the combination of VHR SAR datasets
and semantic segmentation models is required to investigate.
However, until now, the public VHR SAR datasets for building
semantic segmentation are very limited. In the IEEE Geoscience
and Remote Sensing Society (GRSS) data fusion challenge
of 2012 [23], the high-resolution optical, SAR, and LiDAR
datasets are constructed. However, the dataset area is limited
to the downtown of San Francisco, and the datasets are no
longer publicly available because of its limited license. Yao
et al. [24] constructed the datasets from three data sources
(with a resolution of 2.9 m): TerraSAR-X images, Google
Earth images, and Open Street Map (OSM) data, to perform
SAR and optical image semantic segmentation. The datasets
cover 15 cities of North Rhine-Westphalia (NRW), Germany.
Spacenet 6° constructed the multisensor all-weather mapping
(MSAW) dataset, including airborne full-polarized X-band SAR
and spaceborne optical datasets (with a resolution of 0.5 m)
over the port of Rotterdam, the Netherlands. All the datasets, as
mentioned earlier, are limited to the single location of city and
country.

To address the limitations mentioned above, We construct a
new dataset, GaoFen-3 Building (GFB), with a resolution of 1
m. It should be emphasized that GFB datasets cover nine cities
from seven countries, in which the building structures and urban
design layouts are very diverse. The datasets will be open to the
community. We also included the Google Earth image as opti-
cal images to thoroughly investigate the performance between
different modality and their combinations using deep-learning
baseline models.

These baseline models are fundamental to the community,
which can help us to deeply understand the capability of state-
of-the-art segmentation models for working with SAR data. The
main contribution can be summarized as follows.

1) A high-resolution SAR dataset for building semantic seg-

mentation is presented.

2) A comprehensive comparison of different segmentation

methods is analyzed.

3) The influence and the potential solution to improve the

performance is given.

II. STUDY AREA AND DATASET
A. Study Area

In total, nine cities from seven countries, including Beijing,
Shanghai, Hongkong, Yokosuka, Berlin, Rennes, Barcelona,

Shttps://spacenetchallenge.github.io/
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TABLE I
PARAMETERS OF GF-3 SPOTLIGHT DATASETS

City | Date | Mode [ Direction | Look/Incidence angle
Rennes 2017-04-07 \AY ASC 35.40/40.07
Berlin 2018-02-07 HH DEC 38.64/44.05

San Diego | 2019-01-09 HH ASC 34.70/39.24
Barcelona | 2018-11-19 HH DEC 38.85/44.25
Yokosuka | 2019-08-29 HH DEC 35.17/39.82

Rio 2019-10-19 VvV ASC 28.30/31.65

2019-02-07 HH ASC 37.81/42.95
Beijing 2019-12-16 HH DEC 40.98/46.90
Shanghai 2018-03-07 \AY DEC 34.94/39.53
2019-12-26 HH DEC 27.17/30.32
Hongkong | 2018-08-25 HH DEC 28.58/31.97
TABLE II
DATES OF GOOGLE EARTH IMAGES
City | Date [ City ] Date

. 2019-09-09

Rennes 2016-04-19 Rio 2019-02-26

Berlin 2018-08-13 Beijing 2019-5-13

San Diego | 2018-11-18 Shanghai 2018-02-08

Barcelona | 2019-03-09 2019-10-29

Yokosuka | 2019-08-08 | Hongkong | 2018-10-04

San Diego, and Rio de Janeiro (short for Rio), were selected
(seen in Fig. 1).

B. GaoFen-3 Data and Preprocessing

GaoFen-3 SAR has 12 observing modes, including spot-
light (SL), ultrafine stripmap (UFS), with different resolu-
tion/swath [25]. In this work, the SL. mode with high-resolution
(1 m) and wide-swath (10 km) was chosen. Due to limited
wide-swath, Hongkong, Rennes, Barcelona, Berlin, and San
Diego are mainly urban areas under different environmental
conditions, while Shanghai, Beijing, Yokosuka, and Rio focus
on the rural areas with many small villages.

Finally, 11 GF-3 images over 9 cities are chosen. Shanghai and
Rio have two images. The parameters of each dataset are shown
in Table I. For GF-3 data preprocessing, the Pixel Information
Expert (PIE) software,® designed explicitly for GF-3, was used.
Following the data preprocessing modules provided by the PIE,
the following steps are used for the preprocessing:

1) the raw images are converted into intensity;

2) multiple-looking with the option of 1 m resolution is

applied;

3) the redefined Lee filter is used to reduce the speckle noise;

4) the DEM is used to geocode the datasets with the map

projection of WGS84;

5) the geocode terrain correction (GTC) is applied.

Then, we applied the logarithm to the raw intensity and
multiplied it by 10, making the data range in the 8-b range of
0-255. The final resolution of SAR datasets is 1 m.
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C. Google Earth Images

In this work, Google Earth images (seen in Table II), whose
dates are close to the ones of SAR datasets, were treated as
the optical RGB datasets. In this case, we ignore the building
changes during the short period. Following the guideline in [26],
the Google Earth images’ were first downloaded through Google
Earth Pro software and then reconstructed to format large-scale
images. To make the spatial resolution (1 m) the same as the
GF-3 datasets, we set the Google Earth image’s zoom level to
16. Finally, we manually select the ground control points (GCP)
to fine coregister the SAR and optical datasets.

D. Content of the GFB Dataset

In this work, the open source data from OpenStreetMap®
are used to build the building labels. We also manually added
some building labels for Beijing and Shanghai. By project-
ing the labels to the coregistered GF-3 and Google Earth im-
ages, the RGB and SAR patch pairs with the corresponding
building labels are obtained. The datasets can be accessed in:
10.11878/db.202104.000008. The image patches’ size is set to
be 256 by 256 pixels (512 by 512 pixels), corresponding to a
physical dimension of 256 m by 256 m (512 m by 512 m).
We excluded the patches without any buildings. Finally, we
obtained 8373 and 4812 pairs of patches for the sizes of 256
x 256 and 512 x 512, respectively. Finally, we split the datasets
into training, validation, and test sets with a ratio of 6:2:2. The

Shttp://www.piesat.cn/en/PIE-SAR.html
7https://developers.google.com/maps/documentation/ maps-static/dev-guide
8https://planet.openstreetmap.org/

Study area, and optical Google earth, GaoFen-3 SAR, and buildings of San Diego, Yokosuka, Berlin, and Shanghai.

TABLE III
NUMBER OF PATCHES FOR EACH CITY (PATCH SIZE: 256 x 256)

City \ No. train \ No. val \ No. test
Barcelona 603 201 201
Beijing 139 46 47
Berlin 903 301 302
Hongkong 530 176 178
Rennes 682 227 228
Rio 641 213 215
San Diego 542 180 182
Shanghai 585 195 196
Yokosuka 396 132 132
Total 5021 1671 1681

numbers of patches for train/validation/test from each city are
shown in Tables III and IV.

III. BASELINE OF SEMANTIC SEGMENTATION

From 2015, more than a hundred semantic segmentation
methods are proposed in the computer vision community. Some
parts, including encoder—decoder, multiscale, and dilated convo-
lution, are commonly used in these models. Fig. 2 has shown the
timeline of popular semantic segmentation models since 2015.

The first deep learning-based semantic segmentation is
fully convolutional networks (FCN) [27]. Then, the oper-
ations of encoder—decoder, multiscale, dilated convolution,
skip-connection and context prior are used to construct the
new models, such as SegNet [28], deep parsing network
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Fig. 2. Timeline of typical semantic segmentation algorithms.

TABLE IV
NUMBER OF PATCHES FOR EACH CITY (PATCH SIZE: 512 x 512)

City \ No. train \ No. val \ No. test
Barcelona 173 57 59
Beijing 68 22 24
Berlin 225 75 75
Hongkong 185 61 63
Rennes 193 64 66
Rio 245 81 83
San Diego 184 61 63
Shanghai 235 78 79
Yokosuka 147 49 50
Total \ 1655 \ 548 \ 562

(DPN) [29], U-Net [17], ReSeg [30], pyramid scene parsing
network (PSPNet) [31], RefineNet [32], full-resolution residual
networks (FRRN) [33], feature pyramid network (FPN) [34],
LinkNet [35], DeepLabV3/V3+ [36], [37], dual attention
network (DANet) [38], dense atrous spatial pyramid pool-
ing (ASPP) [39], discriminative feature network (DFN) [40].
Among them, we selected the six typical models (seen in Fig. 3)
to form the baseline algorithm, including U-Net, PSPNet, FPN,
LinkNet, DeepLabV3, HRNet [41].

A. U-Net

U-Net, which was original proposed for biomedical image
segmentation, is one of the most popular semantic segmentation
networks and winning solutions in many challenges of the
remote sensing community [42]. U-Net can be treated as an
encoder network followed by a decoder network. The simple
architecture of U-Net is illustrated in Fig. 3 (a), in which the
downsampling blocks (yellow color) are used to extract the low-
level features at multiple different levels, and the upsampling
blocks (green color) are employed to concatenate the low-level
features to infer the segmentation in the same resolution.

B. Linknet

Instead of concatenating in U-Net, LinkNet [shown in Fig. 3
(b)] adds the upsampled feature representation with resolution

information, which makes LinkNet as an efficient networks [35].
It combines both lower and higher layers to generate the final
result. In DeepGlobe road extraction challenge [43], D-LinkNet,
an improved version of LinkNet with pretrained encoder and an
additional dilated convolution layers in the center part, won the
first place [44].

C. Pyramid Scene Parsing Network

PSPNet utilizes a pyramid pooling module that aggregate
contextual information in different regions to improve the ability
to obtain global information [31].

As shown in Fig. 3 (c), the input image is fed into a pretrained
model and dilated strategy to extract the feature map. The size
of the extracted feature map is 1/8 of the original size of the
input image. Then, the pyramid pooling module is used to obtain
context information at different spatial scales. The upsampling
and concatenation operation is used to form the final feature
map. Finally, a convolutional layer is used to obtain the final
output.

D. Feature Pyramid Network

FPN works by creating two pyramids and combines them
to generate feature-rich segmentation maps at each level [34].
As shown in Fig. 3 (d), the architecture consists of a bottom—
up pathway, a top—down pathway, and lateral connections. The
bottom—up pathway contains many convolutional modules with
many convolutional and pooling layers inside. It should be noted
that each group of feature maps with the same size is called
a stage, and the output of the last layer of each stage is the
feature for the pyramid level. The top—down path includes up-
sampling and depooling the last feature map while using lateral
connections to enhance them at the same stage of the bottom—up
path. The final step is to concatenate all the modules that have
1/4 of the input image resolution and generate the final result.

E. Deeplab

DeepLabV1 [45] used atrous convolution to control the res-
olution of feature responses in CNNs. This is also known as
dilated convolution and introduces another parameter, the dila-
tion rate, to convolution layers, which spaces the convoluted
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Baseline segmentation models investigated in the study. (a) U-Net. (b) LinkNet. (c) PSPNet. (d) FPN. (e) DeepLabV3+. (f) HRNet.

Fig. 3.

pixels in a wider field of view while still having the same
weights. DeepLabV?2 [46] adopted Atrous Spatial Pyramid Pool-
ing (ASPP) and Conditional Random Field (CRF), which helps
to account for different object scales and improves accuracy.
DeepLabV3 [47] add image-level features to ASPP and applying
batch normalization for easier training. DeepLabV3+ [37] [see
Fig. 3 (e)], as shown in extended DeepLabv3 by a decoder
module to refine the segmentation results.

F. HRNet

HRNet [41] maintains high-resolution representations with-
out losing spatial details throughout the whole process. As
shown in Fig. 3 (f), HRNet starts with high-resolution subnet-
works as the first stage, gradually add high-to-low resolution
subnetworks, to form more stages, and connect the multiresolu-
tion subnetworks in a parallel way. In the whole process, HRNet
perform multiscale repeated fusion by repeatedly exchanging
information on parallel multiresolution subnetworks.

IV. EXPERIMENTAL SETTINGS

Our baselines and hyperparameters follow the publicly avail-
able code of segmentation models [47], except we add HR-
Net [41] and different loss functions and vary the num-
ber of training iterations. We used the F1 score (F1 =
2xprecisionxrecall 7,15 and overall accuracy (OA) to evaluate

precision+reca_ll ’ . -
the result. The implementation is as follows.

A. Segmentation models

We investigated the attention U-Net [48], LinkNet, PSP-
Net, FPN, and DeepLabV3 with the encoders of Resnet [49],
ResNeXt [50], Densenet [51], DPN [52], Inception [53],
VGG [54], and EfficientNet [55], as well as the HRNet.

(©

arduresdp)

——b Conv \ Downsample / Upsample

®

Different pretraining weights, including Imagenet, Instagram,
semisupervised learning (SSL), semiweakly supervised learning
(SSWL) [56], are also considered. Furthermore, we also include
the ensemble of segmentation models.

B. Hyperparameters

All the segmentation networks are trained using Adam, with
B1 = 0.9 and with S5 = 0.999, a learning rate of 0.0001, and a
batch size of 16 for 100 epochs on a single NVIDIA V100 GPU
with 16 GB memory. Only horizontal flipping augmentation is
used for the training.

C. Loss Functions

The Dice, Jaccard, Focal [57], Lovasz [58], and their combi-
nations are used.

V. RESULTS AND ANALYSIS

A. Investigation on a Single Model

First, we investigated the performance using different single
models. Tables V and VI presented the accuracies for SAR,
RGB, and SAR+RGB of the patch sizes of 256 x 256 and 512 x
512, respectively. Here, the encoders of U-Net, LinkNet, PSPnet,
FPN, and DeepLabV3 is Resnet18. Generally, RGB got higher
accuracies, following by SAR+RGB and SAR. Simply stacking
RGB and SAR decreased the accuracy because of the difference
between the view angle of RGB and the incidence angle of SAR.
HRNet obtained the best performance for RGB and SAR datasets
in terms of IoU and F1 scores, followed by U-Net. For the patch
size of 256 x 256, Unet achieved the best OAs for RGB and
SAR. For the patch size of 512 x 512, Unet and PSPnet yielded
the best OAs for RGB and SAR, respectively. Moreover, HRNet
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TABLE V
RESULTS WITH DIFFERENT MODELS USING RGB, SAR, AND RGB+SAR (PATCH SIZE: 256 x 256): THE COLUMN OF GFLOPs

REPRESENTS INFERENCE COMPUTATIONAL COST

Model Datasets ‘ Params(M) ‘ Size(M) ‘ GFLOPs ‘ F1 ‘ ToU ‘ OA
RGB 14.4 56.6 5.4 0.5872 | 0.4157 | 0.6513
U-Net SAR 14.4 56.5 53 0.4431 | 0.2846 | 0.5429
RGB+SAR 14.5 56.6 5.5 0.5636 | 0.3923 | 0.6312
RGB 11.7 45.7 3.1 0.5729 | 0.4013 | 0.6463
LinkNet SAR 11.7 45.7 2.9 0.4198 | 0.2657 | 0.4800
RGB+SAR 11.7 45.7 3.1 0.5588 | 0.3878 | 0.6410
RGB 11.3 444 1.5 0.5667 | 0.3954 | 0.6203
PSPnet SAR 11.3 44.4 1.3 0.4409 | 0.2828 | 0.5103
RGB+SAR 11.3 444 1.5 0.5423 | 0.3721 | 0.6443
RGB 13.1 51.1 4.5 0.5760 | 0.4044 | 0.5842
FPN SAR 13.0 51.1 44 0.4395 | 0.2816 | 0.5030
RGB+SAR 13.1 51.1 4.5 0.5471 0.3766 | 0.5738
RGB 15.9 62.2 16.8 0.5804 | 0.4088 | 0.6436
DeepLabV3 SAR 15.9 62.2 16.7 0.4405 | 0.2824 | 0.5029
RGB+SAR 15.9 62.2 16.8 0.5471 | 0.3766 | 0.5029
RGB 9.9 37.2 4.5 0.6178 | 0.4516 | 0.6411
HRNet SAR 9.9 37.2 4.5 0.4567 | 0.2963 | 0.5314
RGB+SAR 9.9 37.2 4.5 0.5783 | 0.4010 | 0.6098
The bold entities mean the best performance.
TABLE VI

RESULTS WITH DIFFERENT MODELS USING RGB, SAR, AND RGB+SAR (PATCH SIZE: 512 x 512): THE COLUMN OF GFLOPs

REPRESENTS INFERENCE COMPUTATIONAL COST

Model Datasets ‘ Params(M) ‘ Size(M) ‘ GFLOPs ‘ Fl1 ‘ ToU ‘ OA
RGB 14.4 56.6 21.7 0.5715 | 0.4001 | 0.6155
U-Net SAR 14.4 56.5 21.3 0.4426 | 0.2842 | 0.5423
RGB+SAR 14.5 56.6 21.9 0.5416 | 0.3713 | 0.6584
RGB 11.7 45.7 12.2 0.5414 | 0.3712 | 0.6542
LinkNet SAR 11.7 45.7 11.8 0.4143 | 0.2612 | 0.5398
RGB+SAR 11.7 45.7 12.4 0.5248 | 0.3557 | 0.6124
RGB 11.3 44 .4 5.8 0.5314 | 0.3619 | 0.6267
PSPnet SAR 11.3 44 .4 5.4 0.4255 | 0.2702 | 0.5787
RGB+SAR 11.3 444 6.0 0.5137 | 0.3456 | 0.5934
RGB 13.1 51.1 17.8 0.5508 | 0.3800 | 0.5368
FPN SAR 13.0 51.1 17.4 0.4407 | 0.2826 | 0.5350
RGB+SAR 13.1 51.1 18.0 0.5350 | 0.3651 0.5702
RGB 159 62.2 68.8 0.5712 | 0.4097 | 0.6018
DeepLabV3 SAR 159 62.2 66.8 0.4307 | 0.2811 | 0.5278
RGB+SAR 159 62.2 69.2 0.5413 | 0.3675 | 0.6001
RGB 9.9 37.2 17.6 0.5878 | 0.4316 | 0.6187
HRNet SAR 9.9 37.2 17.3 0.4501 | 0.2887 | 0.5328
RGB+SAR 9.9 37.2 18.0 0.5678 | 0.3817 | 0.6088

The bold entities mean the best performance.

has fewer parameters and reducing FLOPs when compared to
U-Net.

In order to deeply analyze the results, we provide the accu-
racies (F1 score) of each city (patch size: 256 x 256) in Fig. 4.
Barcelona, Rennes, and Berlin yielded better results than other
cities. One reason could be that the number of patches from the
three cities is higher than that of other cities. The other reason
is that most of the buildings in these three cities are moderate
size and height. As point out in [59], the size and height of
buildings influence the performance. Smaller buildings could
not be detected, which exist in the datasets of Shanghai, Beijing,
Rio, and Yokosuka. Performance gradually increases and then
decreases as buildings become taller. Geometric distortions (lay-
over or foreshortening) become more extreme as building height
increases. In this case, many tall buildings in San Diego and
Hongkong cause lower accuracies. The performance of different

models varied. For instance, U-Net, DeepLabV3, and HRNet
achieved the best segmentation results of SAR for Rennes,
Barcelona, and Berlin, respectively. The similar observations
can be found in the patch size of 512 x 512.

Second, we investigated the performance with U-Net
using different encoders, including Resnetl8, Resnet50,
ResNeXt50_32x4 d, SE-Resnet50, SE_ResNeXt50_32x4 d,
Densenet201, Dpn68, Inception-v4, VGGI11 and newly
EfficientNet-b5/b7 (Tables VII and VIII). For RGB results,
SE_ResNeXt50_32x4 d and ResNeXt50_32x4 d achieved the
best results with the F1 (IoU) of 0.6238 (0.4533) and 0.6056
(0.4343) for the patch sizes of 256 x 256 and 512 x 512,
respectively. SE_Resnet50 and EfficientNet-b7 achieve the best
performance in terms of OAs for the patch sizes of 256 x 256
and 512 x 512. For the results of SAR, the newly EfficientNet-b5
generated better results than others. Compared to VGG, DPN,



5956

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

TABLE VII
RESULTS WITH DIFFERENT ENCODERS USING RGB, SAR, AND RGB+SAR (PATCH SIZE: 256 x 256): THE COLUMN OF GFLOPS
REPRESENTS INFERENCE COMPUTATIONAL COST

Model Datasets ‘ Params(M) ‘ Size(M) ‘ GFLOPs Fl ToU OA
RGB 14.4 56.6 5.4 0.5872 0.4157 | 0.6513
Resnet18 SAR 14.4 56.5 5.3 0.4431 0.2846 | 0.5429
RGB+SAR 14.5 56.6 5.5 0.5636 0.3923 | 0.6312
RGB 33.8 132.5 10.7 0.6197 | 0.4489 | 0.6308
Resnet50 SAR 33.8 1324 10.6 0.4563 0.2956 | 0.5766
RGB+SAR 33.8 132.5 10.8 0.5781 0.4066 | 0.6048
RGB 333 130.5 10.9 0.6222 | 0.4516 | 0.6289
ResNeXt50_32x4d SAR 33.3 130.4 10.8 0.4560 | 0.2954 | 0.5265
RGB+SAR 333 130.5 11.0 0.5841 0.4126 | 0.5932
RGB 36.4 142.4 10.4 0.5974 | 0.4259 | 0.7142
SE_Resnet50 SAR 36.3 142.3 10.3 0.4567 0.2959 | 0.5107
RGB+SAR 36.4 142.4 10.5 0.5746 | 0.4031 | 0.6164
RGB 35.8 140.4 10.9 0.6238 0.4533 | 0.6434
SE_ResNeXt50_32x4d SAR 35.8 140.3 10.8 0.4628 | 0.3010 | 0.5535
RGB+SAR 35.8 140.4 11.0 0.5943 | 0.4228 | 0.6461
RGB 30.4 120.1 11.4 0.6093 0.4381 | 0.6313
Densenet201 SAR 30.4 120.1 11.3 0.4563 0.2956 | 0.5143
RGB+SAR 30.4 120.1 11.5 0.5764 0.4048 | 0.5989
RGB 17.3 68.1 6.8 0.6027 | 0.4313 | 0.6908
Dpn68 SAR 17.3 68.1 6.8 0.4462 | 0.2871 | 0.6533
RGB+SAR 17.3 68.1 6.8 0.5764 0.4142 | 0.6927
RGB 49.7 194.7 15.4 0.6066 | 0.4353 | 0.6578
Inception-v4 SAR 49.7 194.7 15.4 0.4620 | 0.3005 | 0.5622
RGB+SAR 49.7 194.7 15.4 0.5676 | 0.3963 | 0.6068
RGB 18.5 72.4 14.5 0.6040 | 0.4327 | 0.6697
VGGI1 SAR 18.5 724 14.5 0.4330 0.2763 | 0.5123
RGB+SAR 18.5 72.4 14.6 0.5744 | 0.4029 | 0.6660
RGB 31.3 123.3 2.9 0.5999 | 0.4285 | 0.7097
EfficientNet-b5 SAR 31.3 123.2 2.9 0.4664 0.3041 | 0.5673
RGB+SAR 31.3 123.3 2.9 0.5866 | 0.4150 | 0.6626
RGB 67.2 264.2 3.1 0.6139 | 0.4430 | 0.6886
EfficientNet-b7 SAR 67.2 264.2 3.1 0.4168 | 0.2632 | 0.6741
RGB+SAR 67.2 264.2 3.1 0.5620 | 0.3909 | 0.5620
The bold entities mean the best performance.
much lower and less than one third, while the number of param-
eters of EfficientNet-b5 is larger. Compared to Inception-v4,
SE_ResNeXt50_32x4 d and EfficientNet-b7, EfficientNet-b5
achieves 0.2-5 percentage points SAR in terms of F1 and IoU
scores with smaller model size and complexity.
o From the SAR results’ accuracies (patch size: 256 x 256) of
" each city in Fig. 5, EfficientNet-b5 obtained the best results for
six cities, including Barcelona, Beijing, Hongkong, Rio, San
Diego, and Yokosuka. SE_ResNeXt50_32x4 d, Inception-v4,
and Resnet50 produced the best results for Berlin, Rennes,
and Shanghai, respectively. For the patch size of 512 x 512,
EfficientNet-b5 obtained the best results for five cities. Fig 6
has shown the building segmentation results (patch size: 256 x
256) for RGB and SAR image patches using U-Net with
SE_ResNeXt50_32x4 d and EfficientNet-b5. SAR results got
i ) o ) the strong backscatter locations, which show as bright spots
Fig. 4. Segmentation results (Fl1 score) of individual city us- in the d D diff . . diti b
ing different single models (paich size: 256 x 256). (a) RGB. Aareas in the datasets. Due to ditferent imaging conditions be-
(b) SAR. tween RGB and SAR, the boundaries of SAR are hard to be

Densenet201, Resnet18, EfficientNet-b5 improves F1 and IoU
scores by 1.01-3 percentage points for SAR, and the GFLOPs is

determined. Thus, segmentation networks cannot model the
strong backscatter locations together with their shadows and
boundaries, which leads to more distortion of SAR results.
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TABLE VIII
RESULTS WITH DIFFERENT ENCODERS USING RGB, SAR, AND RGB+SAR (PATCH SIZE: 512 x 512): THE COLUMN OF GFLOPs
REPRESENTS INFERENCE COMPUTATIONAL COST

Model Datasets ‘ Params(M) ‘ Size(M) ‘ GFLOPs F1 TIoU OA
RGB 14.4 56.6 21.7 0.5715 0.4001 0.6155
Resnet18 SAR 14.4 56.5 21.3 0.4426 0.2842 | 0.5423
RGB+SAR 14.5 56.6 21.9 0.5416 0.3713 | 0.6584
RGB 33.8 132.5 42.8 0.5985 0.4270 | 0.6549
Resnet50 SAR 33.8 132.4 42.4 0.4535 0.2932 | 0.5985
RGB+SAR 33.8 132.5 43.0 0.5613 0.3901 | 0.5613
RGB 333 130.5 43.6 0.6056 0.4343 | 0.6361
ResNeXt50_32x4d SAR 333 130.4 432 0.4576 0.2967 | 0.5723
RGB+SAR 333 130.5 43.8 0.5670 0.3957 | 0.5670
RGB 36.4 142.4 41.6 0.6011 0.4298 | 0.6813
SE-Resnet50 SAR 36.3 142.3 41.2 0.4569 0.2961 0.5955
RGB+SAR 36.4 142.4 41.8 0.5792 0.4077 | 0.6483
RGB 31.3 123.3 114 0.5563 0.3854 | 0.6812
SE_ResNeXt50_32x4d SAR 31.3 123.2 114 0.4153 0.2621 | 0.4689
RGB+SAR 31.3 123.3 114 0.5143 0.3462 | 0.6904
RGB 30.4 120.1 45.6 0.5946 0.4231 | 0.6654
Densenet201 SAR 30.4 120.1 45.2 0.4572 0.2963 | 0.5682
RGB+SAR 30.4 120.1 45.8 0.5586 0.3875 | 0.6939
RGB 17.3 68.1 27.0 0.5726 0.4011 0.6917
Dpn68 SAR 17.3 68.1 27.0 0.4370 0.2796 | 0.5924
RGB+SAR 17.3 68.1 27.0 0.5692 0.3978 | 0.6792
RGB 49.7 194.7 61.6 0.5616 0.3904 | 0.7044
Inception-v4 SAR 49.7 194.7 61.5 0.4580 0.2970 | 0.5093
RGB+SAR 49.7 194.7 61.6 0.5593 0.3883 | 0.6209
RGB 18.5 72.4 58.1 0.5755 0.4040 | 0.6632
VGGI11 SAR 18.5 72.4 57.8 0.4416 0.2834 | 0.5755
RGB+SAR 18.5 724 58.2 0.5352 0.3654 | 0.6757
RGB 35.8 140.4 43.6 0.6016 0.4302 | 0.6208
EfficientNet-b5 SAR 35.8 140.3 43.2 0.4596 0.2984 | 0.5567
RGB+SAR 35.8 140.4 43.8 0.5516 0.3809 | 0.6297
RGB 67.2 264.2 12.5 0.5312 0.3617 | 0.7124
EfficientNet-b7 SAR 67.2 264.2 12.5 0.4351 0.2780 | 0.5215
RGB+SAR 67.2 264.2 12.5 0.5600 0.3884 | 0.6592

The bold entities mean the best performance.
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Fig. 5. Segmentation results (F1 score) of individual city using different

encoders (patch size: 256 x 256). (a) RGB. (b) SAR.

mEfficientnet-b7

Third, we investigated the performance with different loss
functions using U-Net with Resnet18. We compared the perfor-
mance using Dice, Jaccard, Focal, Lovasz, and their combina-
tions in this work. The results are listed in Tables IX and X. The
combination of Jaccard and Focal gained the best results in both
cases, followed by combining all loss functions.

Fourth, we investigated the performance with different
pretraining weights, including Imagenet, Instagram, SSL
on Imagenet, SWSL on Imagenet, from the encoder of
ResNeXt101_32x8 d. We also consider the transfer learning
approach [59]. In this case, the model is first trained on RGB
datasets, and then the generated weights are used as the initial
weights for training on SAR. Since SAR datasets only have
one channel, the process is simplified by averaging three RGB
channels to make it one channel.

In Table XI (patch size: 256 x 256), the model F1 scores of
RGB and SAR dropped to 0.6017 and 0.4181 in the absence of
pretraining. Then, we replaced Imagenet with Instagram, SWSL,
and RGB, the scores of SAR can be slightly increased. The score
can be increased to 0.4695 by using the pretraining weights of
SSL. For the patch size of 512 x 512 (seen in Table XII), the
IoU and F1 scores decreased without any pretraining. When the
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Fig. 6. Segmentation results of RGB and SAR datasets (patch size: 256 x 256) from individual city. For RGB and SAR datasets, U-Net with
SE_ResNeXt50_32x4 d and EfficientNet-BS5 are respectively used.

TABLE IX
RESULTS WITH DIFFERENT LOSS FUNCTIONS (PATCH SIZE: 256 x 256)

. RGB SAR
Dice | Jaccard | Focal | Lovasz F ‘ ToU ‘ OA F ‘ o0 ‘ OA
vV 0.6008 | 0.4192 | 0.7810 | 0.3808 | 0.2796 | 0.7267
v 0.5997 | 0.4283 | 0.7611 | 0.4402 | 0.2821 | 0.7410

Vv 0.5998 | 0.4294 | 0.5659 | 0.4245 | 0.2351 | 0.3040

vV 0.4765 | 0.1508 | 0.3630 | 0.3456 | 0.1418 | 0.8764

vV vV 0.6197 | 0.4489 | 0.6308 | 0.4563 | 0.2956 | 0.5766

vV v vV 0.6002 | 0.4317 | 0.6224 | 0.4462 | 0.2873 | 0.5713
N4 vV vV vV 0.6102 | 0.4411 | 0.6302 | 0.4481 | 0.2914 | 0.5742

The bold entities mean the best performance.

TABLE X
RESULTS WITH DIFFERENT LOSS FUNCTIONS (PATCH SIZE: 512 x 512)

. RGB SAR
Dice | Jaccard | Focal | Lovasz F ‘ o0 ‘ OA Fi ‘ ToU ‘ OA
vV 0.5518 | 0.3816 | 0.6434 | 0.3914 | 0.2612 | 0.6015
vV 0.5614 | 0.3814 | 0.6537 | 0.4026 | 0.2624 | 0.6126

v 0.5618 | 0.3902 | 0.6512 | 0.4217 | 0.2683 | 0.6678

V|| 05124 | 0.2346 | 0.4874 | 0.3812 | 0.1982 | 0.7026

v v 0.5715 | 0.4001 | 0.6155 | 0.4426 | 0.2842 | 0.5423

v v v 0.5711 | 0.3982 | 0.6812 | 0.4378 | 0.2801 | 0.5306
v v v Vv | 05703 | 03912 | 0.6928 | 0.4414 | 0.2813 | 0.5614

The bold entities mean the best performance.
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TABLE XI
RESULTS WITH DIFFERENT PRETRAINING WEIGHTS (PATCH SIZE: 256 X 256)

re-trainin RGE SAR

TS TR T U [ OA FI [ ToU [ OA
None 0.6017 | 0.4234 | 0.5017 | 0.4181 | 0.2645 | 0.4658
Imagenet 0.6417 | 0.4725 | 0.5325 | 0.4589 | 0.2936 | 0.4850
‘nstagram 0.6577 | 0.4900 | 0.6812 | 0.4659 | 0.3037 | 0.5644
SSL 0.6539 | 0.4857 | 0.6348 | 0.4695 | 0.3068 | 0.4599
SWSL 0.6586 | 0.4909 | 0.7095 | 0.4628 | 0.3011 | 0.5714
RGB - - - 0.4621 | 0.2916 | 0.5693

The bold entities mean the best performance.
TABLE XII

RESULTS WITH DIFFERENT PRETRAINING WEIGHTS (PATCH SIZE: 512 X 512)
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Pre-trainin RGB SAR
[ Fl [ U [ OA FI [ ToU | OA
None 0.5984 | 0.4212 | 0.5867 | 0.4316 | 0.2816 | 0.5414
Imagenet | 0.6104 | 0.4393 | 0.6894 | 0.4644 | 0.3024 | 0.5728
Instagram | 0.6060 | 0.4347 | 0.6790 | 0.4677 | 0.3052 | 0.6220
SSL 0.6107 | 0.4396 | 0.7093 | 0.4584 | 0.2974 | 0.5410
SWSL 0.6062 | 0.4350 | 0.6899 | 0.4700 | 0.3072 | 0.6097
RGB - - - 0.4641 | 0.2952 | 0.5730
The bold entities mean the best performance.
TABLE XIII

RESULTS WITH DIFFERENT ENSEMBLE SCHEMES (PATCH SIZE: 256 x 256)

No | Model Pre-training ‘ Fl1 ‘ IoU ‘ OA

1 U-Net, LinkNet, PSPnet, FPN, Imagenet 0.4682 | 0.3092 | 0.5802
DeepLabV3, HRNet

2 Resnet50, ResNeXt50 32x4d, Imagenet 0.4727 | 0.3122 | 0.5824
SE_ResNeXt50 32x4d, Inception-v4,
EfficientNet-B5

3 | EfficientNet-B5 Imagenet | 0.4738 | 0.3176 | 0.5826

Instagram
4 | ResNeXt101_32x8d SSL 0.4718 | 0.3142 | 0.5801
- SWSL
RGB

The bold entities mean the best performance.

pretraining weights of Instagram, SSL, SWSL, and RGB are
included, the performance was increased. SWSL and Instagram
obtained the best results of F1 (IoU) and OA, respectively.

B. Investigation of Multiple Models

From the above subsection (Figs. 4 and 5), we can find that
different models shows different advantages in different cities.
In this case, combining different models may improve perfor-
mance. In ensemble learning, the accuracy of a single model and
the diversity among different models should be considered [60].
The following ensemble models are adopted by considering
different methods to promote diversity.

1) Model 1: ensemble of U-Net, LinkNet, PSPnet, FPN,

DeepLabV3, and HRNet.

2) Model 2: ensemble of U-Net with different encoders of
Resnet50, ResNeXt50_32x4 d, SE_ResNeXt50 32x4d,
Inception-v4, and EfficientNet-BS5.

3) Model 3: ensemble of U-Net with the encoder of
EfficientNet-B5 with four different combination of loss
functions.

4) Model 4: ensemble of U-Net with encoder of
ResNeXt101_32x8 d with different pretraining weights.

Tables XIII and XIV has shown the results obtained from
different ensemble schemes. All used ensembles of neural
networks achieved better performance than a single neural
network. EfficientNet has achieved state-of-the-art performance
on ImageNet while being markedly smaller and faster than
other networks. Specifically, EfficientNet-B5 obtained the best
results in SAR datasets. Thus, the combination of diverse
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TABLE XIV
RESULTS WITH DIFFERENT ENSEMBLE SCHEMES (PATCH SIZE: 512 x 512)

No | Model Pre-training ‘ F1 ‘ IoU ‘ OA

1 U-Net, LinkNet, PSPnet, FPN, Imagenet 0.4573 | 0.2801 | 0.5404
DeepLabV3, HRNet

2 | Resnet50, ResNeXt50 32x4d, Imagenet 0.4612 | 0.2984 | 0.5523
SE_ResNeXt50_32x4d, Inception-v4,
EfficientNet-B5

3 | EfficientNet-B5 Imagenet | 0.4678 | 0.3088 | 0.5618

Instagram
4 | ResNeXt101_32x8d SSL 0.4712 | 0.3104 | 0.5698
- SWSL
RGB
The bold entities mean the best performance.
SAR TABLE XV

Reference Single Ensemble

a3/l

Fig.7. Segmentation results of SAR datasets for single and ensemble models.

EfficientNet-B5 models yielded the best accuracy with F1
and IoU of 0.4738 and 0.3176 for the patch size of 256 x
256 (seen in Fig. 7). The pretraining weights of Instagram,
SSL, SWSL, and RGB can boost the performance of a sin-
gle model. Then, the performance of combining Instagram,
SSL, SWSL, and RGB pretraining weights is better than other
schemes for the patch size of 512 x 512. It should be empha-
sized that different ensemble schemes obtain the best results
with different patch sizes. To improve the performance of the
ensemble, the diversity among the single results should be
considered.

C. Other Influences

In VHR remote sensing semantic segmentation, the main
factor is the boundaries. In general, the building segmentation
boundaries are not perfect because the spatial information may
be often lost in the training process. In this case, the following
strategies are often adopted.

1) Multichannel mask: In this case, building labels are split
into three channels: interiors, edges, and contacts between
buildings.

2) Postprocessing step is used to refine the segmentation
results. The typical one is the conditional random field
(CRF).

In this work, we consider including multichannel masks,

postprocessing, and both of them (seen results in Tables XV

RESULTS (F1 SCORE) WITH MULTICHANNEL MASK AND POSTPROCESSING
(PATCH SIZE: 256 x 256)

Efficentnet-B5 ‘ +Multi-channel ‘ +CRF ‘ both
0.4738 \ 0.4751 \ 0.4758 \ 0.4763

TABLE XVI
RESULTS (F1 SCORE) WITH MULTICHANNEL MASK AND POSTPROCESSING
(PATCH SIZE: 512 x 512)

ResNeXt101_32x8d ‘ +Multi-channel ‘ +CRF ‘ both
0.4712 ‘ 0.4728 ‘ 0.4733 ‘ 0.4756

and XVI). Both multichannel mask and CRF can slightly im-
prove the performance.

VI. DISCUSSIONS

We summarized the main observations from our experiments
as follows:
1) segmentation results using SAR are worse than the ones
using RGB;
2) simple stacking RGB and SAR cannot improve accuracy
when compared to RGB;
3) U-Net is efficient to obtain accurate segmentation results;
4) efficient achieved the SOTA results of SAR segmentation
results;
5) ensemble, multichannel mask, and postprocessing can
enhance the result.
Based on these observations, we provide some suggestions
that may help people to choose the model for SAR segmentation
results:

A. Is U-Net Enough?

Yes. When we use the same encoder, U-Net outperformed
LinkNet, PSPnet, FPN, and DeepLabV3. HRNet performed
better than U-Net. However, when we adopt a more advanced
encoder (e.g., SE-Resnet50), U-Net is better than HRNet. It
is sufficient to directly train with the U-Net with an advanced
encoder to get accurate results.
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B. Which Encoder of U-Net Do You Recommend?

EfficientNet. In our work, EfficientNet-B5 shows very accu-
rate results with fewer parameters and reducing GFLOPs. Four
of the five winners of SpaceNet 6 used slight variants of the
newly introduced EfficientNet (B5, B7, BS).

C. Does Advanced Pretraining Required?

No. If only one single model is adopted, using advanced pre-
training weights (i.e., SSL and SWSL) or training on RGB first
and then fine-tuning on SAR is useful. If the ensemble scheme
is selected, using Imagenet pretraining weights is sufficient.

D. Is Ensemble Helpful?

Yes. Since different models can make a difference in the
results, combining multiple models can increase accuracy. How-
ever, it is trivial to select which models and how many models
for the ensembles.

E. Do We Need a Multichannel Mask and Postprocessing?

Maybe, but recommended. In our work, multichannel mask
and postprocessing slightly improve the performance of SAR
datasets with 1 m resolution. The winners of SpaceNet demon-
strated that such tricks are beneficial for the datasets of 0.5 m
resolution. We recommend using such tricks for VHR (< 1 m)
SAR datasets.

VII. CONCLUSION

This article provides a representative benchmark of high-
resolution SAR datasets for building segmentation and reviews
the current state-of-the-art segmentation methods. To investi-
gate the segmentation performance of SAR, a comprehensive
assessment with different models, encoders, pretraining weights,
ensemble schemes are performed. Based on the evaluation, we
give some suggestions to improve the segmentation results of
SAR datasets. Particular attention should be given to U-Net with
the encoder of EfficientNet-B5 with potential improvements of
applying ensemble, multichannel mask, and postprocessing.

Since the next generation spaceborne SAR (such as Capella
Space) will be launched and can provide submeter resolution
datasets with global coverage, it will bring both opportunities
and challenges. Specifically to SAR building segmentation, the
following directions should be considered in future studies:

1) Large-scale submeter benchmark datasets: As we pointed
out in this work, SAR benchmark datasets for building
segmentation are missing. Our datasets cover nine cities
but are limited to one band. Spacenet 6 datasets have four
channels but are limited to one city. In the futures, the
datasets covered several cities with full-polarization mode
are particularly needy in the community.

2) Weakly supervised learning: The ground truth or reference
of buildings is mainly from OSM. As we all know, the
primary source is collected from the volunteers that use
GPS trackers in situ or manually digitize on VHR aerial
or satellite images, which is not specific to SAR datasets.
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There are lots of missing, incorrect, and misalign building
labels for SAR datasets in this case. It is thus meaningful
to use weakly supervised learning to correct the inaccurate
labels to improve performance.

3) Unsupervised learning: Unsupervised learning can di-
rectly learn the data itself, which can bypass the influence
of incorrect labels. In this case, we can fully exploit the
characteristics of SAR by using feature learning, cluster-
ing, representation learning. Two typical potential tech-
niques are Noise2Noise [61] or contrastive learning [62],
which can despeckle the datasets and classify the objects
without any clean data and ground truth.
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