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Abstract—Scene classification of high-resolution remote sensing
(RS) images has attracted increasing attentions due to its vital role
in a wide range of applications. Convolutional neural networks
(CNNs) have recently been applied on many computer vision tasks
and have significantly boosted the performance including imagery
scene classification, object detection, and so on. However, the clas-
sification performance heavily relies on the features that can accu-
rately represent the scene of images, thus, how to fully explore the
feature learning ability of CNNs is of crucial importance for scene
classification. Another problem in CNNs is that it requires a large
number of labeled samples, which is impractical in RS image pro-
cessing. To address these problems, a novel sparse representation-
based framework for small-sample-size RS scene classification with
deep feature fusion is proposed. Specially, multilevel features are
first extracted from different layers of CNNs to fully exploit the
feature learning ability of CNNs. Note that the existing well-trained
CNNs, e.g., AlexNet, VGGNet, and ResNet50, are used for feature
extraction, in which no labeled samples is required. Then, sparse
representation-based classification is designed to fuse the multilevel
features, which is especially effective when only a small number
of training samples are available. Experimental results over two
benchmark datasets, e.g., UC-Merced and WHU-RS19, demon-
strated that the proposed method can effectively fuse different
levels of features learned in CNNs, and clearly outperform several
state-of-the-art methods especially with limited training samples.

Index Terms—Deep feature learning, remote sensing (RS), scene
classification, small training size, sparse representation.

I. INTRODUCTION

S CENE classification of remote sensing (RS) images has
received increasing attentions. In recent years, with the

rapid development of satellite RS technology and a series of
earth observation programs, RS images have greatly promoted
the development of techniques to scene classification, object
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detection, and so on. The aim of scene classification is to
automatically assign semantic labels to given images based
on a priori knowledge. Scene classification has been used in
many practical applications, such as land-use/land-cover in-
vestigation, environmental monitoring, traffic supervision, and
urban planning [1]–[4]. Although great efforts have been made,
scene classification still is challenging in the field of RS image
processing areas, because it is requisite to interpret RS images
with more intelligent approaches [5]–[8].

In the past decades, many researchers assumed that RS im-
ages from the same category owned similar statistically holistic
attributes, and lots of attentions had been paid to constructing
various effective features. Color and texture histograms are
representative low-level features that were early used for such
a purpose [9], [10]. Afterward, scale invariant feature transform
(SIFT) and histogram of oriented gradients (HOG), which can
extract local features of scene images [11], [12], have improved
the performance of scene classification [13]–[15]. However,
these low-level features may not adequately represent semantic
information of complex RS images. To overcome this limitation,
many mid-level features are utilized for scene classification,
in which the bag-of-words (BOW) model [16]–[18] is one of
the most effective methods. For example, a scene classifier
with local-global BOW features was proposed in [19], which
can combine local and global features at the histogram level.
In addition, other models based on mid-level features such as
the latent Dirichlet allocation (LDA) and spatial class LDA
model [20]–[23] were proposed for scene classification. How-
ever, the aforementioned features generally require a priori
knowledge and domain expert experience, and lack robustness
and flexibility.

Recently, deep learning (DL) has demonstrated its advantages
in the field of computer vision. In particular, convolutional
neural network (CNN) based methods have greatly improved the
performance of image classification and object detection, such
as classical AlexNet [24], VGGNet [25], Inception Net [26], and
ResNet [27]. These CNN-based frameworks can automatically
learn to extract high-level discriminative features, which have
been widely used. Meanwhile, CNN-based methods are also
used in RS, and achieve promising results. In 2016, the deep
CNN was first used for scene classification in RS and greatly
enhanced the performance [28]. Zhou et al. [29] investigated the
extraction of deep feature representations based on pretrained
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CNN architectures for scene classification tasks. Some work
attempted feature fusion for scene classification. For example, a
fusion strategy for integrating multilayer features of a pretrained
CNN for scene classification and achieved the competitive per-
formance compared with fully trained CNN models, fine-tuning
CNN models, and other related models [30]. The multilayer
stacked covariance pooling (MSCP) was proposed to combine
multilayer feature maps obtained by pretrained CNN mod-
els [31]. In addition, metric learning was also introduced to learn
much more discriminative features to boost the performance
of scene classification [32]. Recently, extensive CNN-based
methods have been proposed to address the limitations in RS.
For example, a scale-free CNN was introduced to address the
problem that fine-tuning process often needs fixed-size input
images [33]. The marginal center loss with an adaptive margin
model was presented to overcome the limitation of images with
large intraclass variations [34]. Recently, a deep few-shot learn-
ing method for the scene classification has been developed [35].
Generally, DL-based classification algorithms, such as CNN-
based ones, require a large amount of labeled data for the system
to learn, which amplifies the computational complexity and also
the risk of underfitting. SRs own powerful ability to represent
higher dimensional data using few measured values, which is
especially effective for classification task with small number of
training samples. Thus, in order to conduct scene classification
under small-training-sample situation, we adopt SRC as the final
classifier.

The aforementioned CNN-based methods implement scene
classification through designing more effective features. There-
fore, extracting those features that adequately represent the
scene in images plays a crucial role in RS scene classifica-
tion. However, existing methods focus on extracting high-level
top-layer features, but ignoring the intermediate-layer features
for convolutional layers. Actually, different types of features,
including top layer features and intermediate convolutional fea-
tures, own different strengths and limitations in a specific task.
The top layer features can well represent the overall content of
RS images, while intermediate features for convolutional layers
may describe sufficient partial details and object information.
Besides the performance of SRC is limited by the features and
algorithms. Thus, we propose the multilayer feature extraction
and fusion strategy. In this way, the similarity of a test sample
to the training samples will be measured in the space formed
by multilevel features extracted from CNNs, and such compro-
mise between top-layer features and intermediate convolutional
features will be benifical for classification.

In brief, we analyze the advantages and disadvantages of SRC
and CNNs under the condition of small samples, and combine
these two methods to solve the problem of scene classification
of small sample RS images. To make fully use of the advan-
tages of multilevel features learned from CNNs, a novel sparse
representation framework is constructed to fuse and balance
the contribution of these two types of features in this article.
Different from the previous methods based on CNNs, which
need to be trained with large-scale scene images, our proposed
method extracts different levels of features from well-trained
CNNs, avoiding the limitation of training CNN with large-scale

RS imagery samples. In addition, this approach collaborates
multilevel features by sparse representation and achieves much
more competitive performance.

The major contributions of this work are as follows.
1) We propose the strategy to fuse multilevel features includ-

ing those from intermediate convolutional layers and the
top layer for scene classification, which is greatly different
from the existing work using single feature from the top
layer.

2) We present a novel sparse representation classification
(SRC) framework, which builds the fusion classifier cor-
responding to multilevel features, and fuses their contri-
butions for scene classification of RS images.

3) The proposed method addresses the few-shot classifica-
tion problem of RS images, since multilevel features are
extracted from the well-trained CNNs. As a result, com-
petitive results are obtained through the SRC framework
based on multilayer framework.

The remainder of this article is organized as follows. In Sec-
tion II, the recent CNN-based scene classification methods and
the progress of feature extraction are introduced. In Section III,
the details of our proposed sparse representation framework and
feature fusion strategy are described. In Section IV, experiments
are conducted to validate the proposed method. Finally, Sec-
tion V concludes this article.

II. RELATED WORK

A. Features for Scene Classification

Features used for representing scene images for classification
can be divided into the following two categories: handcrafted
features and DL features.

1) Handcrafted Features: Most early methods in scene clas-
sification of RS images are based on handcrafted features. For
example, Zohrevand et al. [11] applied the local SIFT features
to extract key points and the corresponding descriptors of scene
images. Sun et al. [36] presented a popular method called
boosted HOG features to detect pedestrians and vehicles in
static images. Gan et al. [37] proposed a measure of continuous
interval rotating detection sliding window of HOG feature in
RS images for ship detection. As the development of scene
classification technology, researchers have proposed methods
using the combination of multiple different features. For ex-
ample, Chu and Zhao [38] proposed a feature fusion scheme
for scene classification by integrating the global GIST and local
SIFT with weights, and improved the classification performance.
Local region characteristics and overall structure of scene im-
ages are used for scene classification by combining different
local and global descriptors [39]. Zhao et al. [18] proposed
a concentric circle-structured multiscale BOW method using
multiple features for land-use scene classification. Nevertheless,
the representation ability of handcrafted features grows weaker
with the increasing complexity of scene classification tasks.

2) DL Features: CNNs have been widely applied as the
feature extractor in computer vision tasks due to their sur-
passing performance. Cheng et al. [28] investigated the use of
deep CNNs for scene classification. Fang et al. [40] adopted
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Fig. 1. Overall flowchart of our proposed SRC framework to fuse multilevel features extracted from both the intermediate convolutional layers and the top layers
in a CNN for RS imagery scene classification.

the pretrained CaffeNet model with fine-tuning, the proposed
method was robust and efficient. Liu et al. [41] presented a
random-scale stretched CNN to solve scale variations of the
same object in different scenes. Li et al. [42] employed a deep
feature fusion model, which extracted features from pretrained
and fine-tuned ResNet50 and VGG16. Tian et al. [43] proposed
a CapsNet-based network structure called Res-CapsNet for RS
scene classification, and achieved improved performance. Gen-
erally, these methods require a large number of training samples
whether by using handcraft features or deep features. When the
number of training sample is limited, their performance may
degrade a lot.

B. Sparse Representation Classification

Sparse representation is a signal representation in a small
vector space comprising of few nonzero entries. In the recent
image classification applications, sparse representation has be-
come a vital method because of its ability to represent higher
dimensional data. Ali et al. [44] proposed a mathematical ap-
proach to map the sparse representation vector to Euclidian
distances and achieved a better performance. Hsu et al. [45]
proposed to integrate spectral and spatial information into a joint
sparse representation simultaneously in order to increase per-
formance of hyperspectral image classification. Rong et al. [46]
presented a spectral-spatial classification framework based on
joint superpixel-constrained and weighted sparse representation

for HSI classification. Sumarsono et al. [47] improved the
performance of various classifiers using the traditional linear
discriminant analysis followed by maximum likelihood classi-
fier with low-rank subspace representation. Sheng et al. [48]
presented a cluster structured sparse coding method by unifying
sparse coding and structural clustering. In other vision fields,
Jiang et al. [49] proposed a face recognition algorithm based on
sparse representation and feature fusion to improve the accuracy
of face recognition. Lan et al. [50] proposed a new joint sparse
representation model to properly select appropriate features for
robust feature-level fusion to address different types of variations
such as illumination, occlusion, and pose.

Although these algorithms based on sparse representation or
feature fusion have achieved great classification performance,
they use the low-level features such as Gabor and HOG instead of
deep features learned in CNN. These handcrafted features limit
the classification ability of sparse representation framework. In
order to combine the advantages of CNNs and SRC, we proposed
a novel sparse representation-based framework with deep feature
fusion strategy.

III. PROPOSED METHOD

A. Overview of the Proposed Classification Scheme

In order for RS scene classification under small training
samples, as shown in Fig. 1, we proposed a novel sparse
representation-based feature fusion framework to explore the
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Fig. 2. Visualizations of convolutional feature maps. The feature maps are
extracted from different convolutional layers of VGG19-Net.

feature learning advantage of well-trained CNNs and small-
training-sample classification superiority of SR classifier. The
proposed framework mainly consists of the following two
modules.

1) Feature Extraction and Dictionary Construction: Aiming
at addressing the few-shot classification, the well-trained CNNs,
e.g., AlexNet [24], VGGNet [25], ResNet [27], etc., is used for
feature representation, by which the large amount of labeled
samples to train CNNs are avoided. Moreover, in order to well
explore the feature representation ability of existing well-trained
CNNs, multilevel features are used for feature representation of
RS scenes.

2) Feature Fusion and SRC: A sparse representation model
is used to fuse these multilevel features for RS scene classifi-
cation, which balance the contribution of features from differ-
ent layers of CNNs. Moreover, the proposed SR-based fusion
also does not require large amount of training samples for
classification.

B. Feature Extraction and Dictionary Construction

Generally, features from last or second fully connected layers
of a well-trained CNN are used as features to represent the
scene. However, the output of many intermediate layers also
imply many useful features. Fig. 2 visualizes some feature maps
derived from different convolutional layers of VGG19-Net.
It is observed that these features generated by intermediate
convolutional layers have high-level semantic representation.
In order to fully explore the feature representation ability of
these well-trained CNNs, features from not only fully connected
layers, but also intermediate convolutional layers are used to
represent RS scene.

Generally, the feature output of intermediate convolutional
layers is highly redundant, which significantly increases the
computation complexity and even weakens the performance of
subsequent scene classification. Therefore, in order to reduce

redundant information and computational complexity, a simple
but effective strategy called global average pooling (GAP) is
adapted to generate a new processed feature. Assume that the
feature extracted from the jth feature map of the ith used in-
termediate convolutional layer is denoted as fConvi

1≤j≤chi ∈ Rwi∗hi ,
in which wi, hi, and chi is the width, height, and the channel
number of the ith used intermediate convolutional layer. When
the GAP strategy is used for dimensionality reduction, the
feature from the ith used intermediate convolutional layer fConvi

can be obtained as

fConvi =
[
GAP

(
fConvi
1

)
, . . . ,GAP

(
fConvi

chi

)] ∈ Rchi . (1)

As a result, the feature extracted from all the selected convolu-
tional layers can be denoted as

fConv =
[
fConv1, . . . , fConvn

] ∈ Rd1 (2)

in which n is number of the selected convolutional layers, and
d1 =

∑n
1 chi is the dimension of the multiconvolutional feature

fConv. Similarly, the feature extracted from the top layer is
denoted as fTop ∈ Rd2 .

The second step of this module is separately constructing dic-
tionaries for SRC with multilevel features. Let the convolutional
feature dictionary consisting of c classes be denoted as

DConv =
[
DConv

1 ,DConv
2 , . . . ,DConv

c

] ∈ Rd1×N (3)

with N being the total number of training samples for c classes.
DConv

i is the multiconvolutional features of ni training samples
(
∑c

i=1 ni = N ) from the ith class, denoted as

DConv
i =

[
fConv
i1

, fConv
i2

, . . . , fConv
ini

]
∈ Rd1×ni . (4)

In addition to the feature dictionary from convolutional layers,
another feature dictionary from fully connected layers is also
considered, which is represented as

DTop =
[
DTop

1 ,DTop
2 , . . . ,DTop

c

]
∈ Rd2×N (5)

where DTop
i , i = 1, 2, . . . , c represents features of fully con-

nected layers for the ith training sample. Generally, the outputs
of fully connected layers from a well-trained CNNs are used for
such DTop

i , i = 1, 2, . . . , c.

C. Feature Fusion and SRC

The SRC framework is first introduced for face recognition
and proved to be an effective tool for classification. In SRC,
it is assumed that a testing sample can be well approximated
by a linear combination of a few atoms from an overcomplete
dictionary in which the number of atoms is far more than the
dimensions. Under the ideal conditions, the coefficients of the
atoms that have no relationship with the class of the testing
sample tend to be zeros, which leads the coefficient vector to be
sparse. In other words, the testing sample can be represented by
training samples of the same class but with different weights.
Thus, its class label can be predicted by finding a set of training
samples that produce the best approximation. Mathematically,
to find these training samples, we need to solve the following
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optimization problem

min
α

‖α‖0 s.t. y = Dα (6)

where y represents a testing sample, D is the constructed dic-
tionary, and α is the coefficient of sparse representation, besides
‖α‖0 counts the number of nonzero elements in α.

After obtaining the sparse coefficient α̂, the class-specific
residuals of y can be computed as

ri(y) = ‖y −Diα̂i‖2, i = 1, 2, . . . , c. (7)

Finally, a predicted classification label is determined as

class(y) = argmin{ri}, i = 1, 2, . . . , c. (8)

In the feature representation step, two kinds of feature dic-
tionary are constructed to represent RS scenes: convolutional
feature dictionary DConv and fully connected feature dictionary
DTop. When these two kinds of features are used, each of them
can be modeled by the sparse representation model defined in
(6). Consequently, in order to fuse these multilevel features of
CNNs for RS scene classification, an efficient mathematical
model based on SRC is proposed as

min θ1
∥∥αTop

∥∥
0
+ θ2

∥∥αConv
∥∥
0

s.t. yTop = DTopαTop

yConv = DConvαConv (9)

in which αTop and αConv represent the coefficient of sparse
representation using features from fully connected layers and
convolutional layers, respectively, θ1 and θ2 are the parameters
to balance the reconstruction from different kinds of features by
SRC, and θ1 + θ2 = 1.

For a given testing sample y, we first extract the features yTop

andyConv through the CNN-based feature extractor as mentioned
in Section III-B. Then, we adopt the orthogonal matching pursuit
(OMP) to estimate the two sparse representation coefficient
α̂Top and α̂Conv. Next, the corresponding residual rTop

i (yTop) and
rConv
i (yConv) are obtained by (7). Finally, the residuals are fused

with weighting hyperparameters θ1 and θ2. The fusion model is
formulated as

rFi (y) = θ1r
Top
i (yTop) + θ2r

Conv
i (yConv)

= θ1

∥∥∥yTop −DTop
i α̂Top

i

∥∥∥
2
+ θ2

∥∥∥yConv −DConv
i α̂Conv

∥∥∥
2

(10)

where θ1 + θ2 = 1, and rFi (y) is the final feature residual after
fusion. According to rFi (y) of (10), a label of y can be found
by using (8).

The overall procedure is summarized in Algorithm 1. Obvi-
ously, the proposed sparse representation framework and feature
fusion strategy can correctly classify testing samples that are
misclassified into fault categories if using single-level feature
alone.

D. Computational Complexity

In this section, we analyze the computational complexity of
the proposed methods according to the steps of Algorithm 1.
Since the complexity of OMP with the dictionary size beingm×

Algorithm 1: The Overall Procedure of the Proposed
Method.

Input: Ytrain,Ytest, parameters θ1 and θ2
Output: class(y).

1: Fine-tune the pretrained CNN or train it from scratch.
2: Construct the dictionaries DConv and DTop according

to (3) and (5) on the training samples Ytrain.
3: for y in Ytest do
4: Find the α̂Top and α̂Conv by solving (6) using OMP.
5: Compute rTop

i and rConv
i according to (7).

6: Fuse the residuals rTop
i and rConv

i using (10).
7: Attach a label to the testing sample y using (8).
8: end for

n is about 2Kmn+ 3 K2 m[51], the total complexity of getting
α̂Top and α̂Conv is 2K(d1 + d2)N + 3 K2(d1 + d2). Then, that
of computing and fusing residuals is about (d1 + d2)N , which
can be ignored compared to the abovementioned calculation.
Thus, the total complexity of the proposed algorithm is about
2K(d1 + d2)N + 3 K2(d1 + d2), which is greatly influenced
byK, but little byd1,d2, andN . Since this article mainly focuses
on small samples, the size of the dictionary and sparsity is not
large. As a result, the proposed method is efficient.

IV. EXPERIMENTS

In this section, we adapt the proposed SRC-based framework
for scene classification of RS images. To demonstrate the effec-
tiveness and superiority of the proposed method, we conduct
different experiments on two challenging datasets including
UC-Merced21 [52], and WHU-RS19 [19], [53], [54].

A. Experimental Setup

Feature extraction: We adapt three classical CNNs, including
AlexNet, VGG19-Net, and ResNet50 to extract the proposed
multilevel features. Specifically, AlexNet is trained from scratch,
VGG19-Net and ResNet50 is fine-tuned with a small size train-
ing samples (up to 10% of all training samples). Note that in
AlexNet and VGG19-Net, the top-layer feature is from the last
fully connected layer. As for the ResNet50, the last convolutional
layer in ResNet50 is selected as the top-layer feature.

Hyperparameters setting: When fusing the representation
residuals, two hyperparameters θ1 and θ2 balancing the im-
pact of different features on scene classification need to
be preset. We tune the value of θ1 from the range of
{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} and θ2 subjects
to θ2 = 1− θ1.

Compared implementations: To completely demonstrate the
effectiveness of our proposed method, we implement the fol-
lowing variants for our method.

1) The SRC methods with the features extracted from only
intermediate convolutional layers of three CNNs, are de-
noted as “AlexNet+LF+SRC,” “VGG19+LF+SRC,” and
“ResNet50+LF+SRC.”
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Fig. 3. Sample images of UC-Merced dataset. (1) Agriculture, (2) Airplane,
(3) Baseballdiamond, (4) Beach, (5) Buildings, (6) Chaparral, (7) Denseresi-
dential, (8) Forest, (9) Freeway, (10) Golfcourse, (11) Harbor, (12) Intersection,
(13) Mediumresidential, (14) Mobilehomepark, (15) Overpass, (16) Parkinglot,
(17) River, (18) Runway, (19) Sparseresidential, (20) Storagetanks, and (21)
Tenniscourt.

2) The SRC methods with the features extracted from only
top layers of the VGG19-Net and AlexNet, are denoted
as “AlexNet+GF+SRC,” “VGG19+GF+SRC.” While for
ResNet50 that with the feature extracted from the last
convolutional layer is denoted as “ResNet50+GF+SRC”.

3) The SRC methods of our complete implementation,
which fuses the proposed multilevel features, are de-
noted as “AlexNet+GLF+SRC,” “VGG19+GLF+SRC,”
and “ResNet50+GLF+SRC.”

In addition, the following two CNN-based implementations
are also considered.

4) The AlexNet trained from scratch, the fine-tuned VGG19-
Net and the fine-tuned ResNet50.

5) The end-to-end CNNs, which also fuse multilevel features
used in our method, are denoted as “AlextNet+GLF” and
“VGG19+GLF.”

B. Experiments on UC-Merced Dataset

The first dataset is the UC-merced land use dataset consisting
of 21 classes, including agricultural, airplane, baseball diamond,
beach, buildings, chaparral, dense residential, forest, freeway,
golf course, harbor, intersection, medium density residential,
mobile home park, overpass, parking lot, river, runway, sparse
residential, storage tanks, and tennis courts. There are 100
images for each class, in which each image measures 256× 256
pixels. The images were manually extracted from large images
from the USGS National Map Urban Area Imagery collection
for various urban areas around the country. The pixel resolution
of this public domain imagery is 1 ft. Sample images of each
land-use class are illustrated in Fig. 3.

TABLE I
NUMBER OF SAMPLES CORRESPONDING TO DIFFERENT TRAINING

RATIOS ON UCM DATASET

The UC-Merced dataset adopts 2% to 10% of the samples as
the training set, and the rest are used for testing. The training ratio
increases from 2% to 10%, with the increasing of 2%. Therefore,
the number of samples corresponding to these training ratios for
each class is 2, 4, 6, 8, or 10 shots. And the details are shown in
Table I. The classification results are listed in Table II, in which
the best result for each backbone network is highlighted in bold.
The following conclusions can be obtained from Table II.

1) With the increase of training sample ratio from 2% to 10%,
the performance of almost all methods is improved. For example,
the classification accuracy of AlexNet is 25.656% when the
training ratio is 2%, and is increased to 48.360% under the
training ratio of 10%. The accuracy of “fine-tuned VGG19” is
increased from 38.630% to 66.720%, when the training ratio is
increased from 2% to 10%. The fine-tuned ResNet50 also has
the similar increased accuracy.

2) The proposed multilevel features are effective for clas-
sification even in the end-to-end networks, especially when the
training sample ratio is very small. When the training ratio is 2%,
“AlexNet+GLF” and “VGG19+GLF” improve the classification
accuracy by 1.649% and 4.664%, compared with “AlexNet” and
“fine-tuned VGG19,” respectively.

3) The SRC has better a classification performance than the
corresponding end-to-end CNN under the condition of same fea-
tures, especially in limited training samples. When only the top-
layer feature is used for SRC, “AlexNet+GF+SRC” has boosted
the classification accuracy by about 1% under all training ratios,
compared with the original “AlexNet.” More effectively, the
method based on VGG19-Net backbone “VGG19+GF+SRC”
has enhanced the accuracy by more than 10%. In addition, the
accuracy increasement of “ResNet50+GF+SRC” is about 20%
under the training ratio of 2%, while it becomes about 2% under
the training ratio of 10%. When only the intermediate-layer
feature is used for SRC, the same conclusion as that obtained
when only the top-layer feature is used, can be drawn.

4) The features extracted from the intermediate convolutional
layers also play a vital role for classification as the top-layer
features do, even are more important. By comparing “AlexNet
(or VGG19 or ResNet50)+LF+SRC” and “AlexNet (or VGG19
or ResNet50)+GF+SRC,” the classification accuracy is at the
similar level. This is also the reason that the features fusion
strategy is proposed to enhance the classification performance.

5) The proposed SRC framework, which fuses the mul-
tilevel features has clear superiority in scene classification
of RS images. The accuracy of the proposed method is ob-
viously better than that of the corresponding CNN, includ-
ing the original network structure and the improved structure
with multilevel features. For example, compared to AlexNet,
“AlexNet+GLF+SRC” boosts the overall classification accuracy
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TABLE II
OVERALL CLASSIFICATION ACCURACY COMPARISON ON UCM DATASET

TABLE III
NUMBER OF SAMPLES CORRESPONDING TO DIFFERENT TRAINING

RATIOS ON WHU-RS19 DATASET

by 3.2% to 6% under different training ratios. Compared to fine-
tuned VGG19-Net, “VGG19+GLF+SRC” enhances the overall
accuracy by 19% under 2% training ratio, the improvement is
reduced when the training ratio is 10%, but also exceeds 10%.
Besides, “ResNet50+GLF+SRC” also improves classification
performance to varying degrees. The accuracy is also better
than that of the SRC methods using only top-layer features or
convolutional-layer features.

C. Experiments on WHU-RS19 Dataset

The second RS dataset is a 19-class Google image dataset
of WHU-RS19 designed by Wuhan University. The dataset is
acquired from Google Earth and mainly covers urban areas, and
there are 50 images for each of the following classes: airport,
beach, bridge, commercial area, desert, farmland, football field,
forest, industrial area, meadow, mountain, park, parking, pond,
port, railway station, residential area, river, and viaduct. Each
image measures 600 × 600 pixels, with a 0.5 m–8 m spatial
resolution. Fig. 4 shows representative images of each class.

The WHU-RS19 dataset still randomly chooses 2% to 10%
samples of each class for training and the rest for testing. The
relationship between training ratio and sample size is shown
in Table III; the classification results are listed in Table IV, in
which the best result for each backbone network is highlighted
in bold. On a whole, the same conclusions drawn from the
experiments on UC-Merced dataset can be obtained. Therefore,
on this dataset, we give some special cases and analysis as
follows.

Fig. 4. Sample images of WHU-RS19 dataset. (1) Airport, (2) Beach, (3)
Bridge, (4) Commercial, (5) Desert, (6) Farmland, (7) Footballfield, (8) Forest,
(9) Industrial, (10) Meadow, (11) Mountain, (12) Park, (13) Parking, (14) Pond,
(15) Port, (16) Railwaystation, (17) Residential, (18) River, and (19) Viaduct.

1) The fine-tuned ResNet50 performs the best except under
the training ratio of 2%, and the fine-tuned VGG19 performs
better than AlexNet. The accuracy of fine-tuned “ResNet50”
is only 14.286% under 2% training ratio, which is far lower
than AlexNet and VGG19-Net. However, it achieves higher
accuracies than the two under the training ratios of 4%, 6%,
8%, and 10%. The reason may be that very few samples cause
underfitting to a deeper CNN.

2) The SRC-based method generally offers a better perfor-
mance than the corresponding end-to-end CNN under the same
features. However, “AlexNet+GF+SRC” weakens the classi-
fication performance under the 2% and 10% training ratios.
One possible reason is the large size of convolution kernel
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TABLE IV
OVERALL CLASSIFICATION ACCURACY COMPARISON ON WHU-RS19 DATASET

and the shallow network structure limit the ability to ex-
tract features of AlexNet. In addition, “AlexNet (VGG19 or
ResNet50)+LF+SRC” performs obviously better than AlexNet
(VGG19 or ResNet50) under all training ratios.

3) The proposed method can effectively improve the scene
classification accuracy, especially under the case of few training
samples, even only 1 training sample for each class, such as the
training ratio is 2% of 50 samples. It is worth mentioning that
although the accuracy of “fine-tuned ResNet50” is only 14.286%
under the training ratio of 2%, the accuracy of the proposed
“ResNet50+GLF+SRC” is 69.387%, with an improvement more
than 55%.

In conclusion, compared to classic CNN classifiers, our pro-
posed SRC framework with feature fusion strategy has ef-
fectively boosted the scene classification performance for RS
images.

D. Comparison With State-of-the-Art Methods

To further demonstrate the superiority of our method, we
conduct a comprehensive comparison with state-of-the-arts
that have been evaluated on the UC-Merced and WHU-RS19
datasets. The comparison methods include attention recurrent
convolutional network (ARCNet) [55], the method based on
the improved cross-entropy loss (ICEL) [56], and that based
on MSCP [31].

The comparison results of accuracy on two datasets are show
in Tables V and VI, respectively, in which the best results for
different training ratio are highlighted in bold. The accuracy
of the proposed method on both datasets is obviously higher
than that of the other comparison methods under all the ratios
of training samples. It is observed from Table V that when
the training ratio is 10%, the proposed method improves the
accuracy by at least 2.9% on UCM dataset. As the training
ratio decreases from 10% to 2%, the advantage of our method
becomes more prominent, which indicates that it effectively

TABLE V
COMPARISON BETWEEN OURS AND SOME STATE-OF-THE-ART

METHODS ON UCM DATASET

TABLE VI
COMPARISON BETWEEN OURS AND SOME STATE-OF-THE-ART

METHODS ON WHU-RS19 DATASET

improves the scene classification performance especially for
few-shot classification.

Table VI presents similar results as Table V. It is worth
mentioning that WHU-RS19 dataset has less RS images than
UCM dataset. Therefore, our method achieves greater gain on
WHU-RS19 in Table VI than on UCM in Table V under the
training ratio of 2%–6%. All these results demonstrate the effec-
tiveness and superiority of our few-shot RS scene classification.

E. Explorations on Hyperparameters

Since the contribution for SRC of each type of feature may
affect the final classification accuracy, it should be explored for
better fusion results and empirical settings for similar fusion
work. The hyperparameter settings have been introduced in
Section IV-A. The classification accuracies based on AlexNet
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Fig. 5. Classification accuracy with different θ1 values based on AlexNet, VGG19-Net, and ResNet50 on UC-Merced and WHU-RS19 datasets. (a) AlexNet
on UC-Merced21. (b) VGG19 on UC-Merced21. (c) ResNet50 on UC-Merced21. (d) AlexNet on WHU-RS19. (e) VGG19 on WHU-RS19. (f) ResNet50 on
WHU-RS19.

with different values of θ1 on UC-Merced and WHU-RS19 are
shown in Fig. 5(a) and (d), respectively. In addition, those based
on VGG19-Net and ResNet50 are shown in Fig. 5(b), (c), (e),
and (f).

When θ1 is 0, the top features do not contribute anything in
feature fusion, while intermediate features contribute all. On the
contrary, the top features contribute all when θ1 = 1.

A suitable range of θ1 can always be found, which makes the
classification accuracy of multilevel feature fusion higher than
that of single feature. This proves the advantage of multilayer
feature fusion for classification. For AlexNet, when θ1 is small,
the performance is better, indicating that the features of the
intermediate layer play a more important role in fused feature for
classification in AlexNet. For deeper CNNs including VGG19
and ResNet50, the large hyperparameter θ1 leads to the best
classification accuracy in most cases.

F. Explorations on Intermediate Features Fusion

In terms of classical CNNs with the top layers, such as
AlexNet and VGG19-Net, we propose the feature fusion strat-
egy to complement the top-layer feature and the intermediate
convolutional-layer feature each other. However, an issue that
cannot be ignored is how to choose the intermediate features
from different convolutional stages, or which stages should be
selected. To make fully use of the intermediate features, we
conduct the experiments on WHU-RS19 dataset to solve these
problems.

Inspired by the architectures of AlexNet and VGG19-Net,
intermediate features from the last three convolutional stages,
denoted asFconv1,Fconv2, andFconv3 numbered from the distance
to the output layer, are selected. Then, the new feature is formed
by concatenating the last one, two, and three intermediate fea-
tures, that is, Fconv1, Fconv1 + Fconv2, Fconv1 + Fconv2 + Fconv3.

Fig. 6. Classification result of different intermediate features based on
AlexNet.

Fig. 7. Classification result of different intermediate features based on
VGG19-Net.

Note that no fully connected feature in top layer is considered
in this experiment. Figs. 6 and 7 show the classification result
of concatenated features based on AlexNet and VGG19-Net
backbones, respectively.
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TABLE VII
COMPARISON BETWEEN OURS AND DATA AUGMENTATION METHOD ON WHU-RS19 DATASET

It is observed from Fig. 6 that the new feature concatenated by
Fconv1 andFconv2 of AlexNet achieves the best classification per-
formance among the three new features. However, for VGG19-
Net, Fig. 7 demonstrates that Fconv1 can provide almost the best
result except under the training ratio of 2%. These experimental
results indicate that the CNN with weaker feature extraction
ability, which is caused by shallow architecture, large-size con-
volutional kernels or very few samples for training, needs more
intermediate convolutional features to improve the classification
performance, but the redundance brought by more intermediate
features is also an issue to be considered. While for the network
with strong feature extraction ability, more intermediate features
may degrade the classification performance.

G. Explorations on Fine-Tuned and Data Augmentation

In order to demonstrate that the proposed method has a signif-
icant improvement under the condition of small-sample-size for
RS scene classification, the following variants are implemented
over WHU-RS19 dataset.

1) “VGG19”: The original VGG19 is directly used for scene
classification by fine-tuning the weights of the last fully
connected layer.

2) “f-VGG19”: Compared to the original VGG19, all layers
involved in VGG19 are fine-tuned to achieve better per-
formance.

3) “VGG19+GLF+SRC”: Our proposed SRC-based method
fuses the multilevel features of the original VGG19.

4) “f-VGG19+GLF+SRC”: Our proposed SRC-based
method fuses the multilevel features of the “f-VGG19.”

5) “f-VGG19+DataAug”: The VGG19 is retrained using data
augmentation strategy. For the data augmentation, the
rotation, horizontal and vertical shift, and horizontal flip
are all considered.

The results of all these algorithms over WHU-RS19 dataset
are shown in Table VII, and the best results for different training
ratio are highlighted in bold. The following can be observed.

1) The f-VGG19 can achieve better results than VGG19 in
almost all training ratios except for the training set of 10%. This
is because fine-tuning all the layers is better than just fine-tuning
the last classification layer.

2) When combined with multilevel features and SRC,
the results of f-VGG19+GLF+SRC are a little worse than
VGG10+GLF+SRC, indicating that fine-tuning with a small
number of samples may degrade the feature representation abil-
ity of VGG19 for RS images.

3) Compared to fine-tuned VGG19 with data augmentation,
our proposed method achieves much better improvements in
most instances. Only at 4% training ratio, the results of the two
are roughly the same. These experiments demonstrate the ef-
fectiveness of our proposed sparse representation-based frame-
work, which fuses multilevel features for scene classification of
small samples RS images.

V. CONCLUSION

In this article, we propose a novel few-shot classification
framework using sparse representation to fuse the multilevel
features extracted from CNNs to boost the performance of RS
imagery scene classification. The proposed method aims to
solve the following problems. First, the existing CNN-based
methods extract multilevel features from different layers of
CNNs, but feed only single level to the classifier and neglect the
other features with important information. Second, the training
of CNNs requires many training samples, which is generally
unavailable in the application of RS. Thus, in order to address
these problems, the proposed framework includes the two main
modules. The one is multilayer feature extraction, which can
extract different levels of features from both the top layer and
the intermediate layers to obtain more rich representation for
scene classification. The other one is feature fusion based SRC,
in which a simple but highly effective strategy is devised to fuse
multilevel features for classification. Experimental results on
two public benchmark datasets demonstrate that the proposed
few-shot classification framework using sparse representation
embedded with multilevel deep feature fusion certainly boosts
the classification performance compared to single-feature-based
methods. Moreover, the proposed method achieves the state-of-
the-art results under the case of limited training samples, even
only 1 or 2 training samples per class.
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