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Abstract—In this article, we address class incremental learning
(IL) in remote sensing image analysis. Since remote sensing im-
ages are acquired continuously over time by Earth’s observation
sensors, the land-cover/land-use classes on the ground are likely
to be found in a gradational manner. This process restricts the
deployment of stand-alone classification approaches, which are
trained for all the classes together in one iteration. Therefore,
for every new set of categories discovered, the entire network
consisting of old and new classes requires retraining. This proce-
dure is often impractical, considering vast volumes of data, limited
resources, and the complexity of learning models. In this respect, we
propose a convolutional-neural-network-based framework (called
CILEA-NET, curriculum-based incremental learning framework
for remote sensing image classification) to efficiently resolve the
difficulties associated with incremental learning paradigm. The
framework includes new classes in the already trained model
to avoid catastrophic forgetting for the old while ensuring im-
proved generalization for the newly added classes. To manage the
IL’s stability-plasticity dilemma, we introduce a novel curriculum
learning-based approach where the order of the new classes is
devised based on their similarity to the already trained classes. We
then perform the training in that given order. We notice that the
curriculum learning setup distinctly enhances the training time for
the new classes. Experimental results on several optical datasets:
PatternNet and NWPU-RESISC45, and a hyperspectral dataset:
Indian Pines, validate the robustness of our technique.

Index Terms—Classification, curriculum, incremental learning
(IL), remote sensing.

I. INTRODUCTION

S IGNIFICANT research in remote sensing image analysis
has rendered the field with considerable momentum result-

ing in the rapid development of innovative solutions to many
advanced problems. This drive is majorly attributable to more
enhanced satellites being deployed and remote sensing imaging
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technologies being advanced to acquire abundant data [1]. In the
recent past, the deep convolutional neural network (CNN) has
proven to achieve remarkable success in this regard, facilitating
the notion of data-driven feature representation learning.

The Earth observation sensors obtain images continuously
over time. The land cover/ land use classes are discovered
only sequentially. Whereas in the general setting, the entire
dataset, including all the class information, is present during
training. Therefore, many remote sensing data are subjected to
temporal, spatial, and spectral resolution limitations. Besides,
taking advantage of these rich data reservoirs for supervised
learning algorithms, the samples must be meticulously anno-
tated. Annotation becomes demanding for vast multitemporal
datasets. The steady accumulation of such an enormous amount
of dynamic data necessitates a framework capable of continually
learning as and when the sequentially annotated data are made
available.

However, selecting model parameters for a deep learning
framework to dynamically varying incoming data streams is par-
ticularly difficult. On the one hand, even though quick updates
will ensure adaptation to new data streams, it will also rapidly
forget old information. On the other hand, the network’s reac-
tivity drastically decreases if the updates are made gradually for
retaining the learned information [2]. This phenomenon is well
known in the literature as the stability-plasticity dilemma [3],
which is a significant constraint for artificial learning systems.

Therefore, continual learning of dynamic distributions of data
will thus lead to catastrophic forgetting [4], i.e., the dramatic
decrease in the model’s performance when training with data
corresponding to new classes added incrementally. At the outset,
it may appear that training the network from scratch, every
time new data are encountered, which can potentially solve this
problem. However, as in remote sensing satellites where earth
observation sensors acquire new images from all around the
globe every day, storing and retraining over an enormous volume
of data becomes an unsustainable task. Thus, new algorithms
have to be developed to mitigate forgetting while facilitating
continual learning by relying on previously acquired knowledge.

Early attempts in alleviating the effect of catastrophic forget-
ting consisted of storing old data and replaying them repeat-
edly in an interleaved fashion along with the new samples [5].
However, this demanded a large amount of specific data storage
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requirements. Adding more neurons as suggested in [6] can
also primarily alleviate the issue. But, the growing model size
would demand more resource allocation and gradually will be-
come infeasible. Enforcing the similarity of previously learned
tasks with the current task [7] using the knowledge distillation
technique is one of the first methods suggested to alleviate the
interference issue in deep networks. Still, this approach is highly
dependent on the nature of the task, and the training time linearly
increases with the number of tasks. In [8], a proposal is presented
to assign importance value to individual neurons for a task and
penalize changes in neurons. While [9] recommends modifying
the network’s architectural properties dynamically in response to
incoming new data. Deep generative models-based approaches
like the one proposed in [10] utilizes replaying previously en-
coded information by training the model by interleaved samples
with new information with pseudodata generation.

Despite the advancements made in incremental learning, the
methods mentioned previously only qualify with minor clari-
fications. They can be very poor when scaled up to domains
with higher complexities. These could translate to high compu-
tational and memory resource requirements for remote sensing
image analysis to process, manage, and store the continuous
inflow of rich data. This perpetual flow of data from satellites
would also mean that annotating these extensive image data
collections would be tedious but unavoidable. It is practically
impossible to fathom the possibility of having all the class
information beforehand. Furthermore, unlike expected from an
efficient learning system to learn by connecting new information
to related knowledge gained earlier, none of these approaches
employ similarity between the incoming data and previously
acquired knowledge to devise a better training strategy.

Curriculum learning is a training strategy introduced in [11],
which aims at learning efficiently by presenting the data in
a more meaningful order in terms of constituent concepts or
complexity. Moreover, it is apparent from [12] and [13] that
animals can learn much faster when a task is decomposed into
subtasks from easy to complex based on a particular curriculum.
This curriculum-based learning and replay-based revision tech-
nique are typically used in a learning ecosystem by humans,
allowing us to learn tasks continually in an efficient manner.
The curriculum learning approach results in faster training in
the incremental setting as the model does not spend time on
challenging samples for which it is not equipped at the moment.
Instead, the model is trained with a similarity-based curriculum
that decides how the data are fed into the learning system. It
is observed that curriculum learning makes the approach more
generalized by guiding the training toward a better optimum.

Inspired by this, we aspire to combine the efficient learn-
ing strategy provided by the curriculum technique with the
replay-based incremental learning to counter forgetting, thus
resulting in an efficient incremental learning framework. We
hypothesize that integrating curriculum learning techniques into
the continual learning framework will result in faster training and
better overall performance. Fig. 1 provides a concise overview of
the existing traditional classification approach and the proposed
framework. In this article, we propose a new curriculum-based

Fig. 1. Illustration comparing the traditional learning approach and the pro-
posed scheme of incremental learning. (a) Traditional deep learning scenario
where the complete dataset is expected to be present while training. (b) Proposed
approach to learn incrementally by integrating curriculum learning strategy with
continual learning.

incremental learning approach to classify remote sensing im-
ages. The proposed work consists of the following contributions.

1) A novel incremental learning-based approach for remote
sensing image classification using a curriculum learning
technique (CILEA-NET).

2) We present a pseudo-teacher–student-based approach for
incremental curriculum learning. It is shown that faster
convergence with more generalized learning is perceived
using a curriculum, which yields better results.

3) We perform thorough experiments with both optical and
hyperspectral datasets to demonstrate how curriculum
learning improves the performance of an incremental
learning network for satellite image classification.

II. RELATED WORK

A. Incremental Learning

Early attempts in mitigating catastrophic forgetting involved
a continuous replay of previous knowledge interleaved with
the newly acquired set of data as proposed in [5]. In contrast,
in [14] and [15], it was suggested to use SVM- and RBF-based
networks, respectively, for training a model in the incremental
setting. In [16], a random-forest-based approach was introduced,
which grows hierarchically when a new set of data is encoun-
tered. Whereas in [17] and [18], they try to control the extent
of catastrophic forgetting by learning masks corresponding to
important neurons in each task. While hard attention to the
task (HAT) [19] learns masks for activations rather than for
parameters.

The approach used in [20] and [21] employ an elastic weight
consolidation (EWC) term, which denotes the importance of
neurons corresponding to the old tasks and imposes a quadratic
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penalty on the difference between previous and updated network.
In [8], the importance of weight computation is performed online
by tracking the change in loss and updating the parameters
accordingly. While [7] and [22] aligns the predictions based
on the current tasks at hand.

In [23], it is recommended to use a small fraction of data
consisting of the most representative samples of the previous
classes and the new training data. In comparison, in [10], the
pseudosamples corresponding to the old classes are generated
by generative adversarial networks (GANs). Knowledge distil-
lation [24] based training is used in [7] to transfer knowledge
from the previous network to the updated one.

While [25] and [26] use most representative samples from
the old tasks interleaved with new samples combined with
distillation-based learning to propagate information from the
previous model, in [27], the authors propose to use an inter-
mediate expert to train the model to adapt to the new task
using distillation and sample caching. The approach in [28]
tries to retrieve only the samples that are most conflicted. At
the same time, [29] proposes to improve the performance by
greedily storing samples in memory and retraining on these
stored samples while testing. The authors in [30] propose an
expansion-based approach for task-free continual learning built
upon the Bayesian nonparametric.

Although there are few incremental learning methods in re-
mote sensing, the few existing techniques are mentioned here. A
recent work [31] requires an auxiliary network for selecting the
task in the absence of which the approach fails drastically. Unlike
this, our approach does not utilize any added network for task
selection. In [32], the authors have tried to introduce a large-scale
remote sensing scene classification benchmark to help develop
incremental learning algorithms in the field of remote sensing
image scene classification. However, the NWPU-RESISC45
dataset used in this study is much larger than the proposed bench-
mark dataset regarding the total number of images, classes, and
spatial resolution. In [26], the authors use incremental learning to
perform semantic segmentation; however, the overall number of
classes considered for this purpose is small. In [33], the authors
explore an end-to-end incremental semantic segmentation for
global mapping of buildings from VHR satellite images. One
can note that both these works explore continual learning on an
entirely diverse task that differs from the one proposed in this
work.

B. Curriculum Learning

The concept of training neural networks with a curriculum
was introduced in [34]. The idea is to learn tasks from easy
to complex gradually. A well-chosen curriculum can act as a
continuation method [35], potentially pushing toward a more
general and optimal solution. In [11], it was confirmed that
training with a curriculum strategy could result in faster training,
and lead toward better regions in the parameter space. Ap-
proaches like active learning are similar to the curriculum learn-
ing paradigm but essentially differ from it due to the dynamic
sampling of training points based on the current hypothesis of
the model [36]. While active learning works at the sample level,

curriculum learning can happen at the sample and class levels.
Moreover, the idea of learning concepts from easy to hard is
unique to curriculum learning. Remote sensing witnessed the use
of curriculum learning through the work [37], which proposed
an interesting approach to improve the weakly supervised object
detection performance in high spatial resolution images.

Despite several in-depth studies on incremental learning ap-
proaches in the literature, none of these works explores the
effectiveness of curriculum learning as a technique for faster
convergence and better generalization of the model in the in-
cremental learning perspective. In this regard, our approach
is generic as the proposed algorithm can be utilized across
any satellite image data to achieve improved performance in
continual learning.

III. PROBLEM STATEMENT

Consider an incoming stream s of data, in which the available
classes areDs

train =
⋃k

i=1{(X j
(s−1)k+i,Yj

(s−1)k+i)}Nj=1, where k
is the number of incremental classes per stream (step size) and
N is the number of samples per class of the incoming stream,
ordered pair (X j

(s−1)k+i,Yj
(s−1)k+i) denotes the jth sample and

ground truth labels corresponding to the ith class in the current
data stream s. Let Ds

mem be the set denoting the accumulated
representative samples up to and including the (s− 1)th stream
of data. At the given stream s, our objective is to learn a
representation for the new stream of data Ds

train with minimum
interference to the knowledge acquired till the previous stream.

IV. METHODOLOGY

A. Method Overview and Architecture

The CILEA-NET framework uses curriculum learning to
boost the performance and decrease convergence time at every
incremental step. We utilize the data prepared based on the
curriculum generated for the incoming stream s to train the
network. Through the process, the classification layers should
adapt the parameters to the changes in the features learned due
to the unseen classes of data from the newly acquired stream.

While knowledge distillation ensures that the model retains
previously learned information without succumbing to catas-
trophic forgetting. The curriculum-based training facilitates the
network to learn by sequentially ordering the new classes inDs

train
based on their similarity to the information learned from Ds−1

train .
We utilize a small fraction of Ds−1

train as memory accumulated
into Ds−1

mem to form Ds
mem for replay at the stream s, over which

the distillation is performed. The subsequent sections explain
this learning process incrementally over a new stream of data
with lesser time and better accuracy utilizing the proposed novel
pseudo-teacher–student framework.

The CILEA-NET utilizes a CNN-based encoder, denoted by
Θ as its architecture’s backbone. We introduce an additional
d-dimensional fully connected layer as the penultimate classifi-
cation layer. We extract the features corresponding to the image
samples from this d-dimensional layer for curriculum genera-
tion. A new set of classification layer nodes are also integrated
into the last layer to accommodate the incremental addition of
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Fig. 2. Complete pipeline of the proposed CILEA-NET framework. In the stream s, the incoming novel classes are ordered into a curriculum. The student network
learns the features from a new stream of data based on the curriculum generated. We use the teacher network as a proxy for previously learned information. The
teacher Θs−1 transfers the knowledge gained until stream s− 1 to the student Θs. We employ the knowledge distillation technique to transfer this information from
the teacher network to the student. With the incremental addition of novel training data in every new stream, a new set of classification layer nodes are integrated
into the last layer, as shown in the figure. Note that Ds

train denote the new stream of data, while Ds
mem denote the fraction of data retained from previous streams.

novel training data with unseen classes in every new stream.
Thus, at the ith stream with each stream of step size k, we have
(i− 1)× k node classification layer corresponding to previous
classes, and one k node classification layer corresponding to the
incoming unseen classes. We determine the dimension of this
new set of classification layer nodes based on the number of un-
seen classes present in the incoming stream. As indicated before,
this work utilizes a pseudo-teacher–student-based incremental
learning algorithm. Both the teacher and student networks follow
the same architecture except for the increment in the number of
total classes handled by the student network.

As shown in Fig. 2, the pipeline initially starts with a tradi-
tional deep convolutional network framework to learn features
corresponding toDs

train the data of sth stream at the given instant.
A curriculum is generated for the new data Ds

train by compar-
ing it with the already learned representation corresponding to
Ds−1

train from the teacher network at the stream s. This approach
allows us to use any convenient architecture with only minor
modifications. CILEA-NET being a curriculum-based method,
the curriculum generation part required is separately handled by
extracting the features from the teacher network in between the
streams of data, followed by the steps specified in Section IV-C.

B. CILEA-NET Training Algorithm

For the discussions henceforth, we will use the variable s to
denote the current stream of data, Ds

train will denote the new
stream of data, while Ds

mem will denote the fraction of data
retained from the previous streams. It consists of a fraction of
image samples retained from each of the classes encountered in
the previous streams, i.e., Ds

mem =
⋃k(s−1)

l=1 {X j
lmem

}m.N
j=1 , where

l indexes the previously learned classes, and m is the fraction of
data retained. We assume that at a given stream s and for incre-
mental step size k,

⋂s.k
i=0{Yi} = φ. For ease of representation,

the sets of sample and ground truth belonging to Ds
train and Ds

mem

may also be denoted by dropping the indices as {X s
train,Ys

train}
and {X s

mem,Ys
mem}, respectively. Cs will signify the curriculum

generated for the new stream of data Ds
train, and k will indicate

the number of classes incrementally added per stream.
In the initial training phase, the model needs to be trained

on the first incoming stream of data, i.e., s = 1. For this, we
consider D1

train =
⋃k

i=1{(X j
i ,Yj

i )}Nj=1, i.e., the pair of data
samples and ground truth for the first k classes. We train the
model for this data using the traditional multiclass cross-entropy
loss function as in the following equation to perform a k class
classification.

LC = − 1

N

N∑

i=1

k∑

j=1

pij log qij (1)

where N denotes the total number of samples, and k denotes the
total number of classes in the stream s = 1.pij is the ground truth
and qij denotes the softmax output for the sample corresponding
to the ith sample of the jth class.

After the convergence of the model on the first stream of
data, a small fraction of the data D1

train is sampled by performing
random selection per class; pruning the remaining samples. We
store the retained samples as D2

mem for replay during the training
in subsequent data streams.

For training over streams s > 1, let us consider D = Ds
train ∪

Ds
mem as denoting the set of data for the given stream consisting

of both the novel incoming stream and also the retained samples
from the previous streams,Y = Ys

train ∪ Ys
mem be their respective

target labels. We assume that Ys
train ∩ Ys

mem = φ, that is, the
incoming stream of data will contain no samples from any of
the previously seen classes. We generate a curriculum for the
incoming data stream based on the previous training phase’s
knowledge in the proposed work. We use the data prepared based
on this curriculum produced for the incoming stream s along
with the retained memory to train the network. The following
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section discusses in detail the steps involved in the curriculum
generation component.

C. Curriculum Generation

We introduce a training approach based on the curriculum de-
signed for the stream swhere s > 1, depending on the similarity
of incoming classes to that of already learned classes. For a given
stream s of data, we rely on the features extracted by the CNN,
and then, utilize the feature from the penultimate d-dimensional
fully connected layer corresponding to the samples from both
Xs and Xs−1. The per-class mean vector μi for each of these are
calculated as

μs−1
p =

1

N

N∑

j=1

fs−1(x
j
p) (2)

μs
q =

1

N

N∑

j=1

fs(x
j
q) (3)

wherepdenotes the class index for the classes from previous data
stream, while q denotes that for the current stream of data, that
is, p ∈ {1 . . . |{Ys−1

train }|} and q ∈ {1 . . . |{Ys
train}|}. xj

i denotes
the jth sample of the ith class and N denotes the number of
samples in the class. fs(x

j
i ) will denote the extracted feature of

the corresponding sample of the stream s.
Now, we utilize these per class mean values corresponding to

both current stream of data Ds
train and previous stream of data

Ds−1
train to generate a |Ys−1

train | × |Ys
train| dimension relation matrix

R. Each element of the matrix R that is rpq will represent the
cosine distance between the class mean vectors corresponding
to the pth class of the previous stream and qth class of the current
data stream.

rpq =
μT
p μq

‖μp‖ ‖μq‖ . (4)

The curriculum Cs corresponding to the current data stream,
Ds

train is generated from the relation matrix R, which gives the
similarity measure between the classes of the previous stream
s− 1 and current stream s as

Cs = arg maxpR× eTq (5)

where p ∈ {1, . . . , |Ys−1
train |} and q ∈ {1, . . . , |Ys

train|}.
We select each column q (where eTq denotes the qth column

of the identity matrix) corresponding to the previous classes.
The maximum row index p gives the closest category in the new
stream. Therefore, we get an array of indices corresponding to
the curriculum order for the new data stream. The curriculum
Cs, thus, obtained is then used to train the novel stream of data
together with the retained samples through the pseudo-teacher–
student approach. The following section discusses in detail the
training algorithm for streams s > 1.

D. Curriculum-Based Incremental Learning

After generating the curriculum Cs for the new data stream
s, we train the student network on the new set of data in the
order specified by the curriculum. Simultaneously, we retain a

small fraction of samples from the previous streams as Ds
mem

for repetitive replay. We also use the knowledge distillation
technique as proposed by [24] to transfer the knowledge gained
until the (s− 1)th stream from the teacher network to the
student. Algorithm 1 describes the complete training process
for streams s > 1.

Unlike the traditional teacher–student approach, which uses
a fixed teacher network to transfer information, we propose a
unique pseudo-teacher–student approach. For every stream, s >
1, the student network from the previous stream serves as the
new teacher, distilling the prior knowledge to the current student
network while the network learns novel tasks.

We achieve knowledge transfer from the teacher to student
network employing the method proposed in [24] using

pi =
exp zi/T∑
j exp zj/T

(6)

where pi is the soft probability obtained by performing distil-
lation over the logit zi by comparing it with the other logits.
T is called the temperature parameter. When T = 1, it acts
like a normal softmax where the class with the highest score
significantly influences the loss. When T > 1, the classes with
comparatively lower scores also influence the loss and result in
a more fine-grained representation. The value of T is kept equal
to 2 as empirically obtained in [24] for optimal performance.

We utilize the incoming data arranged based on the curriculum
and the retained data samples from memory to train the net-
work. We train the network incrementally with the cost function
as a combination of classification and knowledge distillation
loss. We use the classical multiclass cross-entropy loss as the
classification loss and the Kullback–Liebler divergence loss as
the knowledge distillation loss function acting as the regularizer
over distilled information from the teacher network to the student
to ensure minimum forgetting. The cross-distilled loss function
LT is defined as

LT = LC + LDist. (7)
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The distillation loss is applied to the old classes’ classification
layers, while the multiclass cross entropy is employed upon all
classification layers.
LC is the multiclass cross-entropy loss applied to the samples

from both the new stream of data and also the previous data. This
is the same as the loss function defined in (1).

While LDist is the knowledge distillation loss applied to the
samples from the previous data streams and is defined as

LDist = − 1

N

N∑

i=1

C∑

j=1

pdist
ij log qdist

ij . (8)

Here, again, N is the number of samples, and C denotes the total
number of old classes. pdist

ij is the ground truth and qdist
ij denotes

the softmax output obtained both raised to the power 1
T for the

ith sample of the jth class. The learning phase is then followed
by the fine tuning and memory update steps.

We obtain the image samples used for training at a specific
stream from an unbalanced mix of both the newly acquired
stream and the previously retained data. As the new stream’s
data dominate in number, the model tends to be biased toward
the features corresponding to these classes. In this approach, we
mitigate this undesirable effect of class imbalance by fine tuning
the model on a balanced subset of samples from each class with
a small learning rate. After fine tuning the model over a balanced
subset of the samples, we retain only a fraction of the current
stream’s data by performing random selection and pruning the
current stream’s samples.Ds

mem denotes this memory and is used
to remember the previously learned information via knowledge
distillation.

We evaluate the model’s performance over the data samples
from the classes encountered until the current stream, after every
training epoch. For instance, during the training phase over the
k novel classes of the stream s along with the previous (s− 1)k
classes from memory, the model performance is tested over the
complete set of classes 1, 2, . . . , sk. This test data can be denoted
asDs

test =
⋃s.k

i=0{X j
i }Tj=1, wherek indicates the incremental step

size and T is the total number of samples per class used for
inference. Also note that

⋂s.k
i=0{X j

i }Tj=1 = φ.

V. EXPERIMENTS

We present our results using three datasets: NWPU-
RESISC45, Indian Pines, and Patternnet. Kindly note that the
NWPU-RESISC45 dataset is used for ablation studies discussed
in this work. We first compare the accuracy of the proposed ap-
proach with existing methods with incremental learning on these
datasets. Then, we compare the performance of the curriculum-
based learning approach to that of the noncurriculum-based
learning approach by examining the model accuracy, the extent
of forgetting, and the cumulative time of convergence for the
entire training process. This comparison provides us with an
insight into how curriculum learning helps us attain better results
and faster convergence time. Finally, we show the effect of the
memory size on the incremental learning framework by varying
it from 5% to 30% in the steps of 5.

The following section will detail the datasets used and the pre-
processing steps taken into consideration. Section V-B presents
the implementation details and will address the hyperparameters
used along with the evaluation metrics employed in this article.
Section V-D talks about the existing works in incremental learn-
ing and the protocols adopted in training these frameworks for
contrast. Finally, in Section V-E, we perform the ablation study
to analyze the influence of specific components on the model
performance.

A. Datasets

We show our results on two challenging large-scale optical
remote sensing image datasets, namely NWPU-RESISC45, Pat-
ternNet, and one hyperspectral image dataset, Indian Pines, to
establish the robustness of our proposed approach. We chose
the optical image datasets as they are two very complex datasets
with highly varying spatial resolutions and consist of a signifi-
cant amount of background clutter. Simultaneously, the Indian
Pines hyperspectral image dataset’s evaluation ensures that the
proposed model can also handle variations in the spectral content
and perform well on land cover classification.

For each of the following datasets, the training/testing data
were prepared by randomly forming a group ofk classes from the
total number of classes in the dataset. Each group corresponds
to a specific stream of data. One of these groups will form the
base set for training at stream s = 1while the remaining streams
will be fed incrementally for s > 1. This section also covers the
preprocessing steps followed and the training-inference split for
these datasets.

1) NWPU-RESISC45 [38]: This dataset is a publicly avail-
able benchmark for Remote Sensing Image Scene Classification
(RESISC), created by Northwestern Polytechnical University
(NWPU). This dataset consists of 31 500 images, covering 45
classes with 700 images in each category. We use an 80:20 ratio
training–testing split with 560 images per class in training data
and the remaining images for testing.

2) PatternNet [39]: PatternNet is a high-resolution remote
sensing image dataset collected via Google Earth imagery or the
Google Map API for remote sensing image retrieval. It consists
of 38 classes with 800 images per class of dimension 256× 256.
The dataset was split into 560 images per class for training,
retaining the remaining 240 images per class for the testing.
Two classes, namely, airplane and baseball field, were omitted
from the dataset to maintain a consistent number of classes per
stream throughout the process.

3) Indian Pines [40]: Gathered by the AVIRIS sensor over
the Indian Pines test site in North-Western Indiana, this dataset
consists of 145× 145 pixels and 224 spectral reflectance bands
in the wavelength range of0.4− 2.5× 10−6 m. The Indian Pines
scene contains 16 classes with varying numbers of data points
in each class altogether. This dataset was made available by
reducing the number of bands to 200.

To fit our requirement for learning to classify images incre-
mentally using a curriculum and match the designed network,
we further choose to keep only the three most representative
channels out of 200 by performing principal-component analysis
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over the reflectance bands. Followed by this, we extract 11× 11
patches from the image and label every such patch with the
ground truth label corresponding to its central pixel. Also, to
balance the number of such images, we restrict the number
of training patches to 500 samples per class and the number
of testing patches to 100 samples per class. This derived data
consists of 9600 image patches covering 16 classes with 600
image patches belonging to each class.

B. Implementation Details

We use the pretrained VGG-16 network as the backbone
of the pipeline. We follow [41] for initializing the dynamic
fully connected layers. We also use batch-norm [42] after every
convolutional layer to ensure a minimal covariance shift in the
model. The kernel size we use for the network is three, along
with a stride of 1. Max-pooling layers utilize a 2 × 2 window
with a stride of 2. The activation function used is ReLU, which is
present following every convolution layer except for the last one.
For optimization, we use Adam optimizer with a learning rate of
1× 10−6 and weight decay of 1× 10−4. We resize each input
image to 224× 224 pixels and maintain the number of epochs
for training as 40 per stream. The dimension d for the extracted
feature is 128, and accordingly, we add a 128-dimensional fully
connected layer to the architecture. The number of samples
retained is fixed to 30% of the samples per class present in the
training data. We use the Adam optimizer for the fine-tuning
phase for optimization with a learning rate of 1× 10−7 and is
fine tuned for 30 epochs after training the model over each stream
of data starting from s = 2. We used a 12-GB Nvidia GeForce
GTX 1080 Ti graphics card to run the experiments.

C. Performance Evaluation Metrics

1) Average Accuracy: The average accuracy is calculated as
the mean of accuracy values at each incremental step. At stream
s, it is defined as, As =

1
s−1

∑s
j=2 aj . The higher the value of

As better the performance. Note that we do not consider the
accuracy of the first stream of data while computing the average
accuracy as it does not represent incremental learning.

2) Forgetting measure [43]: It is defined as the difference
between a task’s maximum accuracy in the past and the current
accuracy. This helps us estimate the forgetting happened in
the model. We can quantify it for a task j after training for
the task/stream s as, fs

j = maxl∈{1,...,s−1} al,j − as,j ∀j < s.
The average forgetting at the stream s is written as, Fs =
1

s−1

∑s−1
j=1 f

s
j .

3) Time: We also analyze and compare the performance of
our approach by considering the time factor involved in training
the model. This is calculated as the sum of time taken for each
incremental step to complete the training process.

D. Comparison With the Existing Literature

We compare the performance of our approach with multiple
existing frameworks. First, we consider the learning without
forgetting (LwF) approach, as implemented in [7]. Here, they
make the CNN network classify previous classes similar to the

new classes using knowledge distillation as regularization. Then,
we consider the elastic weight consolidation-based approach
proposed in [20]. This approach employs a quadratic penalty
over the difference between learned parameters for the old and
new classes. They utilized the Fisher information metric to
obtain the diagonal weighting over the parameters for learned
classes. We then compare ours with [25], which utilizes a replay
and fine-tuning-based approach to reduce class imbalance and
knowledge distillation for regularization. Similarly, we com-
pare with [31], which is a replay-based approach in remote
sensing. We also compare with [23], which uses the nearest
mean classifier and a small fraction of data from the previous
tasks. Comparison is also performed with [27], which proposes
an intermediate expert to adapt the target model to the new
task and [28], which retrieves the samples that are frequently
conflicted. We also include our comparison with [29], which
greedily stores samples in memory and trains a model from
scratch and uses these samples during testing. Finally, we com-
pare with [30], which increases the number of neural network
experts under the Bayesian nonparametric framework.

We carried out experiments for comparing the results obtained
from the proposed approach with different algorithms, which are
as follows:

1) LwF refers to the implementation as performed in [7];
2) EWC refers to the work utilizing elastic weight consoli-

dation carried out in [20];
3) E2E refers to the end-to-end incremental learning work

proposed in [25];
4) iCaRL refers to the work proposed in [23];
5) RS refers to the replay-based work proposed in [31].
Please note that DR, MIR, GDUMB, and CN-DPM are also

used for comparison, which refer to the works proposed in [27]–
[30], respectively. We bestow on the extensive work presented
in [44] and the code provided here1 to replicate these results.
We obtain the results for EWC by using the code found here.2

E2E and LwF are obtained using the code from this link3 by
suitably changing the model parameters detailed as follows.
We now discuss the implementation aspects of the algorithms
mentioned previously and the results obtained from them to
compare with our approach, as shown in Table I on the NWPU-
RESISC45, PatternNet, and Indian Pines image datasets. We
follow the same architectural and training protocols used in our
method. The backbone model architecture is fixed as VGG-16
with batch normalization and dropout for all the algorithms.
We also use identical hyperparameters to train the incremental
learning model using our algorithm with the exemplar sample
memory size fixed as 2000. We trained the model for 40 epochs
using the Adam optimizer with a learning rate of 1× 10−6 and
weight decay of 1× 10−4. This training phase was followed by
a balanced fine-tuning stage for 30 epochs, only if the algorithm
in consideration requires a fine-tuning stage. Table I displays the
results for a fixed step size of five classes, four classes, and six

1[Online]. Available: https://github.com/RaptorMai/online-continual-
learning

2[Online]. Available: https://github.com/xialeiliu/RotateNetworks
3[Online]. Available: https://github.com/kibok90/iccv2019-inc

https://github.com/RaptorMai/online-continual-learning
https://github.com/xialeiliu/RotateNetworks
https://github.com/kibok90/iccv2019-inc
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Fig. 3. Results for accuracy and forgetting at each stream for the NWPU-RESISC45 dataset. The results are shown for both with and without curriculum approach.
(a) Accuracy per stream for the NWPU-RESISC45 dataset with a step size of 5. (b) Average forgetting per stream for NWPU-RESISC45 data with a step size of 5.

TABLE I
COMPARISON OF ACCURACY (IN %) ON NWPU-RESISC45, PATTERNNET, AND

INDIAN PINES DATASET AS SHOWN, USING EXISTING APPROACHES

classes per stream of data for NWPU-RESISC45, Indian Pines,
and PatternNet datasets, respectively.

From the results presented in Table I, it is apparent that our
approach outperforms the existing algorithms by a margin of
19% and about 31% for the NWPU-RESISC45 and PatternNet
datasets, respectively, and by 37% for the Indian Pines dataset.

E. Ablation Study

In the proposed work, we explore the impact of adopting
curriculum learning to improve the satellite image classification
using an incremental learning framework. We expect the curricu-
lum learning approach to improve the time taken to converge to
an optimum by facilitating the learning process and reaching
a better optimum. In the subsequent sections, we examine the
curriculum-based and curriculum-less approach, where the latter
is simply the CILEA-NET approach without the curriculum
component. Also, to provide more clarity, we have tried to

Fig. 4. Sample of the curriculum generated for the NWPU-RESISC45 dataset
with step size 3. The tsne plot along with corresponding image samples is
provided for reference.

illustrate the curriculum generation for the NWPU-RESISC45
dataset for a step size of 3 as can be seen from Fig. 4.

1) Comparison of Convergence Time: We plot the time taken
per stream to converge for both the curriculum-based and
curriculum-less approaches to exhibit the improved convergence
time. The time taken is estimated for the 40 epochs of train-
ing and incorporates the curriculum generation and fine-tuning
stages throughout for uniformity. From Fig. 5, its evident that
the CILEA-NET approach has the fastest convergence time in
comparison with other methods. Cumulatively for the whole
process, the CILEA-NET takes around only 44.30 h in contrast to
the highest time taken by DR [27] of 182.09 h and 105.96 h when
the curriculum is removed from the CILEA-NET framework.
Table III presents the comparative results for both approaches
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TABLE II
ABLATION RESULTS OF CILEA-NET IN THE PRESENCE AND ABSENCE OF CURRICULUM AND FINE-TUNING AS OBTAINED FOR THE NWPU-RESISC45 DATASET

*not a result obtained on incremental learning setting.

Fig. 5. Convergence time versus stream plot for comparing multiple methods.
The result is shown for a step size of 5 on the NWPU dataset.

TABLE III
ACCURACY AND TOTAL TIME CONSUMED FOR DIFFERENT STEP SIZES FOR THE

NWPU-RESISC45 DATASET WITH AND WITHOUT A CURRICULUM

with various incremental step sizes for the NWPU-RESISC45
satellite image dataset. Also, from Fig. 5, it is evident that
the CILEA-NET approach has the fastest convergence time in
comparison with other methods. This depicts how introducing
the curriculum learning technique helps in reducing the time
taken to train the model.

2) Accuracy of the Model: To investigate how introducing
a curriculum-based approach have an impact on achieving a
better optimal solution. We examine the average accuracy ob-
tained for both the curriculum-based and curriculum-less learn-
ing approaches for various incremental step sizes, as shown in
Table III.

TABLE IV
ACCURACY AND TOTAL TIME CONSUMED FOR DIFFERENT STEP SIZES FOR THE

INDIAN PINES DATASET WITH AND WITHOUT A CURRICULUM

For the NWPU-RESISC45 dataset, we divided the 45 classes
in three different ways, yielding incremental step sizes of 3,
5, and 9 classes per stream. In all these cases, we can observe
from Table III that the curriculum-based approach depicts better
performance with a margin of approximately 10% as opposed
to that of the curriculum-less method.

Likewise, we train on the Indian Pines dataset using three
different incremental step sizes of 2, 4, and 8 classes per stream.
For all these individual cases, we can observe from Table IV
that the approach integrated with curriculum learning exhibits
better performance in classification of the hyperspectral image
patches when confronted with that which does not and depicts
that the former facilitates faster convergence of the algorithm.

Even though we see from Table II that the accuracy for the
joint training is better as expected. Please note that this is only
a result of training the network with all the classes together in a
traditional fashion. This procedure is seldom relevant in practical
scenarios.

3) Extent of Forgetting: We have adopted the forgetting mea-
sure to analyze the proposed approach’s performance on the
NWPU-RESISC45 dataset, as shown in Fig. 3(b). It is apparent
from both the average forgetting and the average accuracy per
stream for the given step size that the proposed curriculum-
based approach can mitigate forgetting more efficiently. Table II
depicts the per-stream average accuracy and average forgetting
values for the said dataset; we can observe that for our approach,
the forgetting is more limited by an average margin of 8.93%.

4) Effect of the Memory Size: Here, we analyze the change
in performance of the model with the variation in per-class
memory. From Table V, it is evident that with the reduction
in the number of samples retained per class, the performance
deteriorates. This trend is consistent with the expected behavior
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TABLE V
ACCURACY OF DIFFERENT PER CLASS MEMORY SIZES FOR NWPU-RESISC45
AND INDIAN PINES DATASET FOR A STEP SIZE OF NINE CLASSES PER STREAM

AND FOUR CLASSES PER STREAM, RESPECTIVELY

Fig. 6. Performance of the proposed approach across five different iterations
with a random set of classes in each stream of every iteration.

as the number of samples used for memorizing the previous
classes is reduced.

Nevertheless, the performance decline for the proposed ap-
proach with change in the per-class memory remains within
4% for the NWPU dataset. It is within 8% for the Indian Pines
dataset during the first 5–10% reduction in the per-class memory.
Whereas, when the amount of decrease in samples retained
varies from 30 to 10% accounting to a 20% drop in memory
utilization, the accuracy declines by a margin of 11% and 4% for
the NWPU-RESISC45 and Indian Pines datasets, respectively
(we do not consider the intermediate outlier result for 20%
memory for this calculation).

5) Order of Class Acquisition: To verify the objectivity of
the model performance toward the order of acquisition of the
classes, we conduct experiments by training the model using
multiple arbitrary orderings of the classes, i.e., for every such
investigation, the set of classes present in a given stream i will
be unique. Fig. 6 presents the results obtained for five separate
experiments on the NWPU-RESISC45 dataset. Therefore, we
establish that the performance of the proposed curriculum-based
approach is consistent across any order of class acquisition.

6) Fine Tuning: From the result in Table II, the fine-tuning
phase integrated into the training framework plays a crucial role
in deciding the performance of the model. The absence of fine-
tuning will lead to degraded performance due to class imbalance,

Fig. 7. Tsne plot comparison between the decision boundaries learned for
(a) CILEA-NET approach and (b) approach with the curriculum removed. The
result was generated for an incremental step size of 3 for the NWPU-RESISC45
dataset. Different colors represent different classes.

accounting for a drop in the performance by about 11% resulting
in an inferior overall accuracy of 38.30% as seen in Table I.

7) Comparison of Decision Boundaries: To understand how
the curriculum learning concept helps attain a better optimum
and learn a finer decision boundary, we visualize both the
curriculum-based and curriculum-less approaches using the tsne
plot, as seen in Fig. 7. We can observe that the curriculum-
based incremental learning approach guarantees better interclass
separation than the largely overlapping decision boundaries, as
seen in the curriculum-less approach. From this observation,
we may conclude that the curriculum learning approach’s usage
enforces the model to learn faster and better by sequentially
encountering samples from simple to complicated and discover
a better decision boundary.

VI. CONCLUSION

This article presents CILEA-NET, a novel curriculum
learning-driven framework for class incremental learning for
remote sensing image classification. Incremental learning is
considered essential in remote sensing, given the continuous
acquisition of images with novel land-cover classes. In this
regard, we tackle two critical issues of the incremental learning
setup.

1) How to deal with the stability/plasticity trade-off?
2) How to ensure quick learning for new classes?
To this end, within our proposed framework, we suitably

utilize concepts from knowledge distillation and curriculum
learning. Thorough experiments confirm the superiority of the
proposed model over several recent state-of-the-art approaches
for different types of remote sensing data. Thus, in a generic
sense, one can utilize the curriculum learning paradigm along
with any existing approaches in a deep learning framework to
boost the performance of the network. We are presently inter-
ested in extending this model for few-shot incremental learning,
where we assume that only a few training samples are available
for the classes. Given the issues of annotating remote sensing
data, such a few-shot paradigm will help the community.
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