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Abstract—Recently, deep learning (DL)-based hyperspectral im-
age classification (HSIC) has attracted substantial attention. Many
works based on the convolutional neural network (CNN) model
have been certificated to be significantly successful for boosting
the performance of HSIC. However, most of these methods extract
features by using a fixed convolutional kernel and ignore multiscale
features of the ground objects of hyperspectral images (HSIs).
Although some recent methods have proposed multiscale feature
extraction schemes, more computing and storage resources were
consumed. Moreover, when using CNN to implement HSI classifi-
cation, many methods only use the high-level semantic information
extracted from the end of the network, ignoring the edge infor-
mation extracted from shallow layers of the network. To settle the
preceding two issues, a novel HSIC method based on hierarchical
shrinkage multiscale network and the hierarchical feature fusion
is proposed, with which the newly proposed classification frame-
work can fuse features generated by both of multiscale receptive
field and multiple levels. Specifically, multidepth and multiscale
residual block (MDMSRB) is constructed by superposition dilated
convolution to realize multiscale feature extraction. Furthermore,
according to the change of feature size in different stages of the
neural networks, we design a hierarchical shrinkage multiscale
feature extraction network by pruning MDMSRB to reduce the
redundancy of network structure. In addition, to make full use
of the features extracted in each stage of the network, the pro-
posed network hierarchically integrates low-level edge features
and high-level semantic features effectively. Experimental results
demonstrate that the proposed method achieves more competitive
performance with a limited computational cost than other state-of-
the-art methods.

Index Terms—Convolutional neural network (CNN),
hierarchical feature fusion (HFF), hierarchical shrinkage
multiscale network (HSMSN), hyperspectral image classification
(HSIC), multidepth and multiscale residual block (MDMSRB).

I. INTRODUCTION

W ITH the rapid development of imaging spectrometers
and platforms, imaging spectroscopy (also called hy-

perspectral imaging) has gradually occupied a significant and
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central position in lots of fields of visual data analysis. This is
due to the hyperspectral image (HSI) has hundreds of continuous
narrow-band spectral information (high spectral resolution),
which reflects the absorption and reflection of solar reflection
light in different wavelength bands (i.e., visible light, infrared,
or near-infrared) by the imaged ground object [1], [2]. These rich
features, like fingerprint information of imaged objects, can real-
ize accurate detection (pixel level) of objects. Therefore, HSI has
been widely used in many fields and achieved promising results,
such as agricultural application [3], water quality monitoring [4],
mineral distribution and composition analysis [5], [6], natural
disaster prediction [7], and military field [8]. Among them,
HSI classification (HSIC) is an extremely important research
direction in HSI analysis [9]–[12].

In the early research of HSIC, due to different ground objects
that can reflect corresponding spectral differences in the HSI, a
large number of researchers put forward plenty of classification
methods based on the spectral characteristics of a single-pixel
and achieved good classification results [12]–[14]. However, the
high-dimensional data characteristics of HSI not only bring rich
features but also lead to the Hughes phenomenon [15], which
significantly limited the performance of HSIC [16]. There-
fore, the extreme learning machine (ELM) [17] and support
vector machine (SVM) [18] were put forward, which solved
this problem to a certain extent. However, the spectral features
contained in single-pixel are easily blurred by environmental
factors (i.e., salt-pepper noise) and the consequent problem of
intraclass variability (and interclass similarity), which seriously
hinders the classification performance of the above methods
[19]. In addition, a single-pixel independently will inevitably
lose the spatial correlation information in the image, so the
spatial features of HSIs have been paid more and more attention
by researchers. Considering that adjacent pixels in HSIs gen-
erally have similar spectral characteristics and prone to be the
same category, a series of classifiers with neighborhood blocks
centered by labeled pixels as input have been proposed [20],
[21]. Experiments show that the complementary information of
spatial features makes the classifiers can achieve better classifi-
cation performance. Although these traditional machine learning
methods have achieved good classification performance, the
shallow handcrafted features utilized by machine learning are
seriously lacking in representation capacity.

In recent years, the excellent performance of deep-learning
(DL) has made it widely studied in many fields. For instance,
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natural language processing (NLP), computer vision (CV), and
emotion analysis. In the early exploration of applying DL-based
methods to HSIC, the deep belief network (DBN) [22], the
stacked autoencoder (SAE) [23], and their derivative models
[24], [25] were introduced for HSIC. However, these methods
only use the spectral information of the HSI, which is based on
the premise that each pixel of the HSI is pure. In comparison,
the convolutional neural network (CNN) is the most widely
studied and applied structure. Its translational invariance when
extracting image features (linear and nonlinear features) has
the parameters sharing characteristics that make it powerful in
image feature excavation. In the literature, there is a massive
amount of works that applied CNN to HSI feature extraction to
enhance the performance of HSIC [26]–[28]. On the one hand,
due to the powerful extraction capabilities of the CNN for the
features of complex hyperspectral data, the HSI classifier based
on the CNN achieves excellent classification performance. On
the other hand, the CNN-based classification models have an
immensely flexible structure, which makes them well adapted
to the data input of different structures and the flexible extraction
of different dimensional features (spatial and spectral domains)
[29]–[31].

Therefore, considering the spatial texture information of
HSIs, the 2-D-CNN model is widely introduced to HSIC [32],
[33]. For example, Li et al. [32] proposed a deep 2-D-CNN
model, whose a large number of parameters are trained by pixel
pairs, and finally, the final classification results were obtained by
voting strategy. Paoletti et al. [33] designed a deep pyramidal
residual network, which not only gets more feature maps by
increased the dimension of the feature maps gradually but also
reduces the computational burden of the model. Then, Pan
et al. [28] used 1-D and 2-D CNN to extract spectral and
spatial features, respectively, and fused the extracted features for
classification. In addition, Chen et al. [26] and Ben Hamida et al.
[34] introduced 3-D-CNN-based model for HSIC, which uses
the 3-D convolution kernel to extract spectral-spatial joint fea-
tures robustly. However, although the 3-D-CNN model achieved
good classification performance, 3-D convolution operations
will greatly increase the computational complexity and consume
a lot of computing resources. For this reason, 3-D and 2-D hi-
erarchical extraction strategies of spectral-spatial features were
proposed [35]–[37]. These 3-D/2-D hybrid models can extract
spectral and spatial features in turn, which can alleviate the
computational burden caused by only using full 3-D convolution
to some extent. With the deepening of the network model, simply
deepening the network cannot further improve the classification
performance, but will lead to the gradient vanishing problem
[38]. Moreover, due to the scarcity of HSI annotated samples, a
large number of learnable parameters of the depth model cannot
be fully trained, which results in an overfitting phenomenon [39].
To solve these problems, residual structure [40] is widely used
in deep CNN to alleviate the gradient vanishing problem. For
instance, in [41], a spectral-spatial residual network (SSRN) was
proposed with two consecutive residual blocks in the spectral
and spatial extraction module respectively, which can perform
well under the condition of small samples especially. In the
meantime, Song et al. [42] constructed a deep feature fusion

network (DFFN) with three different stages of residual modules
to achieve complementary feature extraction, and finally fused
the three levels of features before the classification. Inspired
by the residual structure, a dense network [43] based on more
sufficient bridging is proposed, which can not only effectively
alleviate the problems such as the disappearance of the gradient,
but also make use of the front layer information of the network
repeatedly. Then, in [44], a dual-channel dense network was
proposed to extract spectral and spatial features consecutively
with several dense modules.

Although the models described above have achieved promis-
ing classification performance, single input size and receptive
field may ignore the diversity of spatial feature sizes, which
limits the further improvement of classification accuracy, es-
pecially under the condition of small samples. As a result,
to fully extract more discriminative spatial features, a series
of multiscale feature extraction methods have been proposed
[45]–[49]. In [45], multiscale pyramid images were used as
the input of the model called MCNN, which can explore the
spatial features of different scales. However, MCNN results in
serious redundancy of spatial features, which leads to unnec-
essary computational and memory costs. Lee and Kwon [46]
proposed a spatial contextual deep convolution neural network
(CD-CNN), in which three different sizes of the convolution
kernel extracted multiscale spatial features at the start of the
model and fused subsequently. Similarly, Gong et al. [47] de-
signed an HSIC method based on a three-channel multiscale
convolution neural network (MS-CNNs), which can consider
multiscale features of HSI in the spectral and spatial dimensions
by 1-D, 2-D, and 3-D multiscale convolution kernels. However,
[46] and [47] only extract and fuse spatial multiscale features in
the shallow layer of the network, which is not enough to fully
obtain more abstract and comprehensive features. Furthermore,
in order to make full use of the spatial structure information
of ground objects, Zhang et al. [48] constructed a diverse re-
gion input convolution neural network (DR-CNN), which can
provide considerable performance due to more neighborhood
information be considered. Recently, Li et al. [49] proposed a
two-stream deep feature fusion model based on global and local
spatial features, which according to the different amount of in-
formation contained in the global and local, used two extraction
networks with different depth, and finally realized the extraction
of global and local features effectively. Particularly, the attention
mechanism based on the squeeze and excitation network (SEN)
was used to enhance the confidence of spatial useful features.
Although [48] and [49] can get good classification results, the
multibranches structure inevitably makes the model larger and
has a vast number of learnable parameters, which significantly
increases the computing and storage burden.

Admittedly, although these CNN-based methods have proved
their powerful capacity for feature extraction, there are still some
drawbacks that need to be overcome. First, with the deepening
of the network, the features extracted by the neural network
gradually change from specific edge features to abstract se-
mantic features. However, the sensitivity to the scale of these
features is diverse at different depths of the network. As a
result, only extracting multiscale features at the input of the
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model or designing multiscale feature extraction in the whole
model will cause the loss or redundancy of features. Second,
although the abstract semantic information extracted by deep
neural networks plays an important role in the classification task,
a series of convolution and pooling operations will seriously
injure the boundary information [50]. Third, although the model
with a large number of training parameters can improve the
classification accuracy to some extent, which will significantly
consume time and storage resources [51].

In order to solve the above problems, a novel hierarchical
shrinkage multiscale network with a hierarchical feature fusion
(HSMSN-HFF) is proposed in this article. Different from the
aforementioned multiscale feature extraction method, consider-
ing that the features change from concrete to abstract with the
depth of the network increases, the scale of the HSMSN fusion
feature gradually decreases. In addition, in order to make full use
of different levels of features, especially the fusion of shallow
edge information and deep semantic information, a hierarchical
feature fusion (HFF) strategy is applied to the HSMSN. The
main contributions of this article are summarized as follows.

1) In order to generate fewer training parameters to improve
the classification speed when expanding the receptive field
and extracting multiscale features. In the feature extraction
stage, we use continuous dilated convolution kernels to
light the weight of the network.

2) In order to extract multiscale features, a multidepth
and multiscale residual block (MDMSRB) is introduced.
Specifically, it is realized by stacking different numbers
of dilated convolution kernels with different dilation rates,
which can obtain different scale receptive fields and sup-
press the gridding problem [52] caused by dilated con-
volution. Especially, different scale MDMSRB is used
for multiscale feature extraction under different network
depths, which makes the network extract features more
efficient. To effectively alleviate the over-fitting problem,
the residual structure is applied to each MDMSRB.

3) In order to improve the classifier’s utilization of the fea-
tures extracted from the HSMSN, an HFF strategy is
introduced to extract the features of different stages of the
network. Specifically, we fuse the shallow edge features
and deep abstract semantic features extracted by HSMSN
to get clear edge information and accurate abstract infor-
mation. Finally, two different levels of features are fused
to generate more discriminative features.

The rest of this article is summarized as follows. Section II
introduces the related work of dilated convolution and multiscale
feature fusion. Section III describes details of the proposed
method. Section IV gives and analyzes the experimental results.
Finally, Section V concludes this article.

II. RELATED WORK

A. Receptive Fields and Dilated Convolution

It is universally known that the size of the receptive field
is significant for feature extraction of CNN, mainly because
that the size of the receptive field determines the amount of
neighbor information. Especially, in HSIC, many methods have

Fig. 1. Illustration of dilated convolution and gridding phenomenon. (a)
Traditional 3 × 3 convolution, dilation rate = 1. (b) Dilation rate = 2. (c)
Dilation rate = 3. (d)–(e) Gridding problem caused by dilated convolution.

proved that a large receptive field can improve the ability of
global spatial feature extraction. However, the general method
to increase the receptive field is usually realized by using a larger
convolution filter, which will greatly increase the computational
complexity of the model. Assuming that the number of input and
output channels is the same, it is C (Cin = Cout = C). The con-
volution kernel size is k × k and the output characteristic graph
size isW ×H . According to (1) and (2), the training parameter P
and the number of floating-point operations (FLOPs) consumed
by 5× 5 convolution are 2.8 times that of 3× 3convolution.
To alleviate the problem of parameter explosion with the im-
provement of the receptive field, the dilated convolution was
first proposed by Chen et al. [53]. As shown in Fig. 1(b)–(c),
a 3× 3 convolution operation has a larger receptive field when
the dilation rate is 2/3, but the generated training parameters do
not change than the original 3× 3 convolution. In addition, the
dilated convolution will not lead to the decline of the output
resolution. Therefore, a series of HSI classification methods
based on dilated convolution are proposed [54], [55]. However,
it can be seen from Fig. 1(d) and (e) that the dilated convolution
extracts feature by sparsely sampling the feature maps, which
will lead to the damage of information continuity and the loss of
local feature information (gridding problem). Therefore, when
implementing pixel-level classification of HSIs with poor spatial
resolution, the reduction of information continuity caused by
the dilated convolution seriously limits the performance of the
classification

P = k × k × Cin × Cout (1)

F = W ×H × P. (2)

B. Multiscale Analysis

In the field of CV, multiscale feature extraction can often
get different scale information of the target, which is highly
considered in many tasks (i.e., target detection [56], image
segmentation [57], etc.). Generally speaking, as shown in Fig. 2,
multiscale feature extraction is achieved by using convolution
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Fig. 2. Illustration of traditional multiscale feature extraction.

filters of different scales [58]. Although it can get promising
classification results, it will consume a lot of computing re-
sources. In addition, as the feature map gradually becomes
abstract from shallow to deep in the CNN, the diversity of feature
scale decreases, so the multiscale feature extraction should be
different in different stages of the CNN.

III. PROPOSED METHOD

In this section, the proposed multidepth and multiscaleresid-
ual network with HFF (HSMSN-HFF) will be introduced in
detail. In the following subsections, the framework of the pro-
posed model in Fig. 3 will be introduced first. Then, we explain
the reason why MDMSRB be introduced and how does it work.
Finally, we introduce the architecture of the HFF module.

A. Framework for Proposed Model

Fig. 3 shows the framework of the proposed HSIC model,
which takes the Pavia of University (PU) dataset as an exam-
ple. First, principal component analysis (PCA) is applied to
the original HSI to reduce its spectral dimension to avoid the
Hughes phenomenon. In addition, PCA can effectively retain
the main features of the HSI spectral dimension, which can
not only reduce the redundant spectral bands but also decrease
the burden of model training. Then, in order to fully utilize
the spatial features of the HSI, the PCA-processed image is
segmented into 3-D image cubes centered on labeled pixels. Sub-
sequently, some of these cubes are used to train the parameters
of the proposed HSMSN-HFF. Then, in the HSMSN-HFF, the
feature maps with a high representative are obtained by novel
feature extraction and fusion mechanism. In the first step of
HSMSN-HFF, multiscale features of the HSI are extracted by
a hierarchical shrinkage multiscale feature extraction network
at different stages of the network. With the deepening of the
network, the feature scale and diversity are decreasing, so four
gradual shrinkage scale MDMSRBs are used in different stages
of HSMSN for multiscale feature extraction. In the second step,
an HFF mechanism is used to take full advantage of the features
extracted in different stages of the neural network, especially
the complementary fusion of high-level semantic features and
low-level margin features. In the HFF, after the low-level features
and high-level features are fused step by step, respectively, the
two different levels of features are fused to get a feature map
with more comprehensive information. Then, a global average

pooling is used to transform the feature map into the feature
vector. Finally, the classification prediction result is obtained
by the feature vector via the softmax function. In addition, as
shown in Fig. 3, MDMSRB, HSMSN, and HFF are three key
components of our proposed model, which will be described in
detail as follow.

B. Structure of MDMSRB

Studies have demonstrated that the size of the receptive field is
of great help to improve the performance of HSIC. Significantly,
the fusion of multiscale spatial information and the mining of
spatial relationships of different distance pixels in the receptive
field can effectively enhance the utilization of spatial informa-
tion. In this article, we propose MDMSRB as the backbone of
the network to achieve HSI multiscale feature extraction. The
structure of MDMSRB is shown in Fig. 4.

As can be seen from Fig. 4, it is different from the afore-
mentioned traditional multiscale feature extraction fusion net-
work, which is composed of four dilated convolution chains
with diverse depths (D_1, D_2, D_3, D_4) in parallel, so as
to realize multiscale feature extraction. Specifically, the dilated
convolutions with gradually rising dilation rates are stacked in
every chain so that the receptive field is expanded. Therefore,
multiscale feature fusion is implemented by fusing the features
excavate from four different depth dilated convolution chains.
In addition, compared with using a large convolution kernel to
expand the receptive field, under the premise of the same recep-
tive field, the dilated convolution with increasing dilation rate
consumes fewer training parameters. The formula for calculating
the receptive field F of superposition dilated convolution is as
follows:

S = K + (K − 1) (r − 1) (3)

F =

n∑

1

(Sn − 1) + 1 (4)

where K and r denote convolution kernel size and dilation rate,
respectively, S is the receptive field size of dilated convolution,
and Sn is the receptive field size of the nth convolution kernel in
one dilated convolution chain. With D_ 3 branch in Fig. 4 as an
example, which can obtain a 13× 13 receptive field. According
to Formula (1-2), however, using the traditional 13× 13 con-
volution kernel needs 5.26 times more training parameters and
FLOPs. Therefore, MDMSRB can achieve a larger receptive
field and multiscale feature fusion with fewer parameters and
FLOPs. It is worth mentioning that according to the receptive
field state obtained by different depth branches given in Fig. 5,
compared with Fig. 1, this dilated convolution superposition
method with different dilation rates can effectively solve the
gridding problem caused by dilated convolution. Furthermore,
considering the problem of gradient vanishing caused by net-
work deepening, we use skip connection to fuse the feature maps
before and after multiscale feature extraction, and an ordinary
1 × 1 convolution is used to keep the scale of the feature maps
consistent.
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Fig. 3. Schematic of the proposed HSMSN-HFF. © denotes feature concatenation, and � denotes feature addition. “RB” means “residual block.” “LFFM” and
“HFFM” represent the low-level feature fusion module and high-level feature fusion module. “HSMSN” denotes multidepth multiscale residual network.Schematic
of the proposed HSMSN-HFF. © denotes feature concatenation, and � denotes feature addition. “RB” means “residual block.” “LFFM” and “HFFM” represent
the low-level feature fusion module and high-level feature fusion module. “HSMSN” denotes multidepth multiscale residual network.

Fig. 4. Architecture of proposed MDMSRB.

Fig. 5. Illustration of the receptive field of superposition dilated convolution
with gradually rising dilation rates. (a) Receptive filed of D_1 branch. (b)
Receptive filed of D_2 branch. (c) Receptive filed of D_3 branch.

C. Structure of HSMSN

In the process of image feature extraction by the CNN, the
state of feature extracted at different depths of the network is
gradually changing from concrete to abstract, and the scale of
the feature is gradually decreasing. In this process, therefore,
the adaptation of the receptive field to feature scale at different

depths of the network is should be considered. In this article,
the HSMSN is proposed to adapt to the changing feature scale
in the process of feature extraction.

According to the multiscale feature extraction structure pro-
posed in Section III-B, which is realized by four branches with
different depths. Therefore, we can adjust the scale of feature
extraction by using the combination of branches with different
depths in different stages of the network. Specifically, in the
shallow stage of feature extraction, MDMSRB1 with four scale
feature extraction branches (D_1-D_4) is used for feature ex-
traction. Then, the combinations of feature extraction branches
owned by MDMSRB2-MDMSRB4 are: D_ 1-D_3, D_ 1-D_2,
and D_ 1. As shown in Fig. 3, the number and scale of feature
extraction gradually decrease from MDMSRB1 to MDMSRB4.
In this way, on the one hand, the adaptability of the model to
changing features is improved; on the other hand, the model
pruning strategy effectively improves the efficiency of model
feature extraction and reduces redundant parameters.

D. Structure of HFF

As discussed in Section III-C, in the process of feature ex-
traction by CNN, the change of feature state will inevitably lead
to the loss of low-level boundary texture features extracted in
the shallow layers of the network. These low-level features have
higher resolution than high-level semantic features, which is of
great significance to the extraction of spatial structure features
of HSIs. Therefore, in order to improve the classification per-
formance through the fusion of different level features, an HFF
module is applied to HSMSN to fuse the features of different
stages, especially the fusion of high and low-level features. The
structure of HFF is shown in Fig. 3, which is composed of a
low-level feature fusion module (LFFM) and a high-level feature
fusion module (HFFM).
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Fig. 6. Illustration of the residual block (RB).

As can be seen from Fig. 3, HFF is divided into two steps:
first, the low-level and high-level features are fused respectively,
and then the two features are fused. Specifically, the output
feature δ0 from the first convolution layer of HSMSN is directly
connected with the output feature characteristic δ1 from MDM-
SRB1 through concatenating. Subsequently, a residual block
(RB) is used to fuse the low-level features to get low-level fusion
feature: γ01. The structure diagram of the RB is shown in Fig. 6
γ01 can be represented as

γ01 = g (Concat (δ0 + δ1) + f (Concat (δ0 + δ1) + ω))
(5)

where Concat() represents the channel connection, f() repre-
sents the residual function, g() represents the ReLU function,
and ω represents the weight and bias coefficient of the residual
correlation block. As a result, low-level features are effectively
preserved. For high-level features, similar to low-level features
fusion, we fused the output features δ3 and δ4 of MDMSRB3
and MDMSRB4 to obtain γ34, which can be expressed as

γ34 = g (Concat (δ3 + δ4) + f (Concat (δ3 + δ4) + ω)) .
(6)

Then, the output feature δ5 of MDMSRB2 is fused with γ34
to obtain the final high-level semantic feature γ234 , which can
be expressed as

γ234 = g (Concat (δ2 + γ34) + f (Concat (δ2 + γ34) + ω)) .
(7)

Finally, the low-level features and high-level features are
directly added to obtain high-level and low-level complemen-
tary features with a high representative. Therefore, the high-
resolution feature of low-level features and the strong semantic
feature of high-level features are hierarchically fused for HSIC.
The effectiveness of the HFF mechanism proposed in this article
will be demonstrated by ablation experiments in Section Ⅳ.

IV. EXPERIMENTS AND DISCUSSION

In this section, first, the characteristics of datasets used will
be described. Then, we discuss the details of the experimen-
tal design. Finally, the classification performances of the pro-
posed method and some state-of-the-art methods are given and
analyzed.

A. Datasets Descriptions

In order to demonstrate the effectiveness of the proposed
HSMSN-HFF in HSIC, three real benchmark HSI datasets are
used in experiments: Indian Pines (IP), University of Pavia (PU),
and Salinas (SA).

Fig. 7. Indian Pines dataset. (a) False color composite image. (b) Ground truth
map. (c) Color code board.

Fig. 8. Pavia University dataset. (a) False color composite image. (b) Ground
truth map. (c) Color code board.

The IP image was acquired in 1992 by the AVIRIS sensor
over the Indian Pines agriculture experimental area in Indiana.
It covers 145× 145 pixels with spatial resolution of 20 m and
220 bands across the wavelength scope of 0.4–2.5 μm. There
are 16 categories of land objects in the image for classification.

Due to the water vapor contamination, 20 noise-affected bands
were discarded and remained 200 bands for the experiment.

The PU image was acquired by ROSIS sensor over the Uni-
versity of Pavia in northwestern Italy. It has 610× 340 pixels
with spatial resolution of 1.3 m and 115 bands cover the spectral
wavelength range from 0.43 to 0.86 μm. After removing the 12
noisy bands, the other 103 high signal-to-noise ratio bands were
retained for experiments. Furthermore, it contains 42776 labeled
pixels and can be divided into nine ground-truth classes.

The third dataset is SA, which was captured by the AVIRIS
spectral sensor at SA Valley in California. It contains 224 bands
and 512 × 217 pixels with spatial resolution of 3.7 m. Similar
to the IP dataset, 20 water absorption attenuation bands were
removed and remained 204 spectral bands with wavelength
coverage range from 0.36 to 2.5 μm. In addition, 16 land cover
types with 54129 annotated pixels are available in the SA dataset.

Figs. 7–9 show the false-color composite and corresponding
ground-truth maps of these thee HIS datasets. The above three
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Fig. 9. Salinas dataset. (a) False color composite image. (b) Ground truth map.
(c) Color code board.

TABLE I
LAND-COVER CLASSES AND NUMBERS OF SAMPLES IN THE IP DATASET

TABLE II
LAND-COVER CLASSES AND NUMBERS OF SAMPLES IN THE PU DATASET

datasets are divided into training sets and test sets. Moreover,
considering the different sample equilibria of different datasets,
we use different proportions to divide the three datasets. Specif-
ically, randomly selected 10% labeled samples of each class in
the IP dataset for model training and the remaining 90% samples
for testing. due to the sample number of each class in PU and SA
datasets is relatively balanced, we only select 1% of the labeled
samples as the training set and the rest 99% samples as the test
set. Tables I–III inform the detail of the sample division of all
datasets.

TABLE III
LAND-COVER CLASSES AND NUMBERS OF SAMPLES IN THE SA DATASET

B. Experimental Setup

The overall accuracy (OA), average accuracy (AA), and kappa
coefficient (κ) are used as the standard evaluation metrics of
classification performance. Especially, for each experiment, the
model will be executed ten times with randomly selected sam-
ples to get the mean as the final result. In order to fit the model
more efficiently, the weights of the model are initialized, and the
Adam optimizer is adopted to update the learnable parameters
of the model. For the three datasets, the initial learning rate is
0.01, and to improve the learning efficiency, the learning rate
decreases by 1% every 20 training epochs. The batch size for
every dataset is set to 64. The total training epochs are set as 200
for the IP, PU, and SA datasets, respectively. All experiments are
carried with TensorFlow 2.0.0rc1 on a desktop PC with NVIDIA
GeForce GTX1660 GPU and 32 GB RAM.

C. Analysis of Parameters

As mentioned before, in advance of the HSI is segmented
into the training set and test set, PCA is used to preprocess it
to get P spectral principal components. In addition, in order to
take advantage of the spatial features of HSI, the samples of
the input network are neighborhood blocks with the size of S ×
S × P centered on the label pixel, where S × S is the spatial
size. Consequently, the number of principal components and
spatial size of sample blocks are significant hyperparameters
that affect the classification results. In this section, the impact
of these two hyperparameters on classification performance will
be elaborated.

1) Effect of P on Classification Performance: For the pro-
posed HSMSN-HFF method, the PCA operation was first
adapted on the original HSI to decrease the dimension of the
spectral and obtain principal components. In this discussion, the
size of input samples is set to 15× 15× P , which the spatial
size is fixed. Fig. 10 indicates the OAs obtained by HSMSN-HFF
on three datasets according to different numbers (P) principal
components. It can be observed that with the increase of the
number of principal components, OAs will increase in all three
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Fig. 10. Effect of P on overall accuracies on the three HSI datasets.

Fig. 11. Effect of Spatial Size on overall accuracies on the three HSI datasets.

datasets, which is due to insufficient spectral information when
the principal components are small. However, when the number
of principal components is too much, the OAs have a certain
downward trend, which is because some unnecessary spectral
components affect the classification performance. In addition,
too many principal components will inevitably generate more
computational and storage pressure. Therefore, the P is set to be
15, 15, and 20 for the IP, PU, and SA datasets, respectively.

2) Effect of Spatial Size on Classification Performance: For
the CNN adopted on HSIC, the input spatial size determines
how much information the neural network can obtain from
hyperspectral label samples neighborhood, which has a great
impact on the classification results. Therefore, in the HSMSN-
HFF method, we discuss the classification performance under
different spatial sizes. For the sake of fairness, the principal
components P of the input samples of the three datasets all
choose the optimal value of the above experiment.

Fig. 11 reports the effect of different patch sizes on the OAs
of HSMSN-HFF. For the three datasets, the input spatial size
is set to 9× 9 , 11× 11, 13× 13 , 15× 15, and 17× 17. As
can be observed, when the space size is small, the classification
performance is relatively poor because it cannot provide enough
receptive fields. Within a certain range, as the increase of spatial
size, OAs of the three datasets can be greatly improved, espe-
cially for PU and SA datasets. However, a larger spatial size
will introduce too much noise interference, which will impede
the classification performance to a certain extent. Furthermore,
considering that a larger input spatial size would also beget

TABLE IV
OAS (%) OF HSMSN-HFF WITH DIFFERENT TRAINING RATIOS

higher computational cost, the spatial size is set to be 15× 15 for
all three datasets.

D. Impact of Training Ratio

In this section, we explore the performance of the proposed
HSMSN-HFF with different training ratios. The P and spatial
size of the input samples of three datasets are set to the optimal
values discussed above. On the IP database, 5%, 7%, 10%, 13%,
and 15% of the annotated pixels in each type of land-cover
are randomly selected as training sets. For the PU and SA
datasets, the training sets portion is set to 0.5%, 0.7%, 1%,
1.3%, and 1.5% of each land-cover category. Table IV reports
the average OAs of different ratios of training samples which
are conducted ten times separately. It can be observed that the
proposed method can generate robust performance even under
the small sample scenario. More specifically, the SA dataset
shows better classification performance because of its higher
spatial resolution and richer spectral information. All in all,
the classification performance of the proposed method in three
datasets increases with the increase of training samples.

E. Comparison Results of Different Methods

In order to evaluate the classification performance of the
proposed HSMSN-HFF, the performance of six state-of-the-art
DL-based methods is given in this section to compare with the
HSMSN-HFF. The six methods are: 3-D-CNN [26], DFFN [43],
MSDN [59], HybirdSN [35], MDR-CNN [55], and 2-D3-D-
MBFF [60]. Three-dimensional-CNN is a shallow CNN model,
which is constructed with two 3-D Conv–pooling blocks and
classified by logistic regression. HybirdSN performs 3-D con-
volution and 2-D convolution in the shallow and deep locations
of the model, respectively. DFFN is a very deep CNN model
which adopts the residual network to alleviate the overfitting.
MSDN exploits features with a dual-direction network (vertical
and horizontal) which develops with dense connection archi-
tecture. MDR-CNN uses the dilated convolutional kernel to
extract multiscale features. And 2-D3-D-MBFF is inspired by
HybirdSN, which uses the 2-D3-D mixed convolution structure
to form multiscale branches for feature extraction. Among them,
MDR-CNN, 2-D3-D-MBFF, and our proposed method are mul-
tiscale frameworks.

To ensure fairness, some parameters affecting feature extrac-
tion (such as the number of principal components) in these
methods for comparison are consistent with the setting of cor-
responding references. Besides, other hyperparameters may be
affected by different experimental platforms (such as the batch
size and learning rate) are adjusted to obtain the optimal result
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TABLE V
CLASSIFICATION ACCURACIES OF DIFFERENT METHODS FOR THE IP DATASET (10% SAMPLES FOR TRAINING)

Bold entities in Table V indicates the maximum accuracy of the row.

TABLE VI
CLASSIFICATION ACCURACIES OF DIFFERENT METHODS FOR THE PU DATASET (1% SAMPLES FOR TRAINING)

Bold entities in Table VI indicates the maximum accuracy of the row.

TABLE VII
CLASSIFICATION ACCURACIES OF DIFFERENT METHODS FOR THE SA DATASET (1% SAMPLES FOR TRAINING)

Bold entities in Table VII indicates the maximum accuracy of the row.
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Fig. 12. Classification maps for IP. (a) Ground truth. (b)–(h) Predicted classification maps for 3-D-CNN (OA = 92.67%), DFFN (OA = 95.85%), MSDN(OA
= 95.08%), HybirdSN (OA = 97.99%), MDR-CNN (98.15%), 2-D3-D-MBFF (OA = 98.41%), and proposed HSMSN-HFF (98.95%).

of each method. For the training sample size of the model,
the limited training sample can more effectively reflect the
performance of each model. Therefore, 10% (IP), 1% (PU),
1% (SA) samples are randomly selected for the training of
all models. The classification results for each class and overall
evaluation indicators obtained by different methods are reported
in Tables V–VII, respectively. Statistically, the classification re-
sults on three benchmark datasets substantiate that the proposed
HSMSN-HFF outperforms other methods. From these tables, it
is can be easily discovered that the performances of 3-D-CNN
are much lower than other methods, which is due to the shallow
architecture cannot fully extract features, especially high-level
features. Different from 3-D-CNN, DFFN, and MSDN have very
deep structures, which can obtain stronger discriminative seman-
tic features for better classification than 3-D-CNN. In addition,
the direct connection is widely used for feature reuse in these two
methods. As for HybirdSN, 3-D and 2-D convolution hierarchi-
cally exploit spectral and spatial features, which is simple and
effective. Considering that multiscale features are informative
for classification, the MDR-CNN and 2-D3-D-MBFF use dilated
convolution kernels and multiscale convolution kernels to ex-
tract more plenteous features. Subsequently, the multiscale ex-
traction methods achieve OAs 98.15% and 98.41%, with the
gains of 6.59% and 6.9%, 2.3% and 2.61, 3.07% and 3.38%,
0.16% and 0.47% over the 3-D-CNN, DFFN, MSDN, and Hy-
birdSN method in IP dataset, respectively. Furthermore, by com-
paring the classification performances of the proposed HSMSN-
HFF with two other multiscale methods MDR-CNN and 2-D3-
D-MBFF, it can be noticed that our proposed method also shows
superior performance: the mean OAs of the HSMSN-HFF is
0.8%, 1.22%, and 1.04% higher than that of the MDR-CNN, and
0.54%, 2.52%, and 0.51% higher than that of the 2-D3-D-MBFF.
Especially, both the proposed method and MDR-CNN method
use dilated convolution as a multiscale feature extraction tool,

Fig. 13. Classification maps for PU. (a) Ground truth. (b)–(h) Predicted
classification maps for 3-D-CNN (OA = 97.93%), DFFN (OA = 97.93%),
MSDN(OA = 94.15%), HybirdSN (OA = 96.33%), MDR-CNN 97.94%),
2D3D-MBFF (OA = 96.64%), and proposed HSMSN-HFF (99.16%).

but compared with MDR-CNN, the HSMSN-HFF effectively
solves the gridding problem caused by dilated convolution.
Therefore, the proposed method can achieve better classification
results.

In addition to the quantitative classification results report, we
visualize the classification maps corresponding to the results
reported in Tables V–VII. The classification maps of different
methods discussed above are presented in Fig. 12–14. Obvi-
ously, as can be observed that the 3-D-CNN results in the
most misclassified pixels in all classification maps. Furthermore,
the deep model and the multiscale model can improve the
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Fig. 14. Classification maps for SA. (a) Ground truth. (b)–(h) Predicted classification maps for 3-D-CNN (OA = 92.46%), DFFN (OA = 97.12%), MSDN(OA
= 97.60%), HybirdSN (OA = 98.28%), MDR-CNN(OA = 98.37%), 2-D3-D-MBFF (OA = 98.92%), and proposed HSMSN-HFF (99.41%).

TABLE VIII
TRAINABLE PARAMETERS AND FLOPS OF DIFFERENT MODELS FOR THE SA DATASET

TABLE IX
TRAINING AND TESTING TIMES (IN SECONDS) OF DIFFERENT MODELS

FOR THE SA DATASET

classification performance effectively and generate smoother
classification maps. In addition, an obvious observation that
the classification map of the proposed method is the closest to
the reference ground truth, which produces less internal noise
and a cleaner boundary.

Moreover, to further evaluate the computational efficiency
of the proposed method, Table VIII reports the total trainable
parameters (TTPs) and FLOPs for the SA dataset for different
models. As can be seen, due to the extensive use of dilated
convolution to achieve multiscale feature extraction, the MDR-
CNN and the proposed HSMSN-HFF produce fewer training
parameters and FLOPs than other methods. Then, in order to
directly reflect the computational efficiency of the proposed
algorithm, Table IX shows the elapsed time of training and
testing of each method. As listed in the table, compared with
3-D-CNN, DFFN, MSDN, and 2-D3-D-MBFF, the MDR-CNN
and the proposed HSMSN-HFF need shorter training and testing

time. It confirms that the effectiveness of dilated convolution
in improving the classification efficiency of HSIs. Compared
with MDR-CNN, the proposed method needs to consume longer
training and testing time, but the proposed method results in
better performance of classification. It can be concluded that
the proposed algorithm method is not only competitive on the
part of accuracy but also computational cost relative to the
state-of-the-art methods.

F. Ablation Study

In order to verify that the proposed HFF method is productive
in improving the classification performance of HSIs, ablation
experiments are applied to three datasets. The model used as a
comparison is coherent with the model structure of the proposed
HSNSN-HFF method except for removing the HFF module to
be validated from the original network. The input size of all
experimental samples was set to the optimal value of the above
analysis, and the experiment was repeated ten times to take the
average classification results.

Fig. 15 shows the classification performances achieved by the
proposed HSNSN-HFF and HSNSN. It can be observed that the
classification results using the HFF module model in all datasets
are more excellent than those without. The main reason for this
result is that the use of an HFF module can make full use of the
complementary information of high and low-level information
generated by the neural network in different stages of the model.
It can be concluded that high-level semantic features and low-
level texture features can produce more comprehensive features
to achieve more precise classification through the hierarchical
fusion strategy proposed in this article.
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Fig. 15. Effect of HFF module on overall accuracies on the three HSI datasets.

V. CONCLUSION

In this article, a novel hierarchical shrinkage multiscale net-
work for HSI classification with HFF has been proposed. Specifi-
cally, we design a multiscale feature extraction block MDMSRB
by superimposing dilated convolution, in which the dilation
rate of dilated convolution of each branch increases gradually
and the depth is different. In this way, the multiscale features
can be extracted effectively with a lower computational cost.
Moreover, we construct the HSMSN-based on the MDMSRB
with a hierarchical shrinkage architecture, which can not only
achieve multiscale feature extraction in different stages of the
network but also mitigate the model structure. In addition, we
introduce an HFF strategy into the HSMSN to fuse the low-level
edge information and high-level semantic information to boost
the description and representation of the feature map. Experi-
mental results on three benchmark HSI datasets demonstrate that
the proposed HSMSN-HFF outperforms several state-the-of-art
methods for both classification accuracies and computational
efficiency.
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