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NSTMR: Super Resolution of Sentinel-2 Images
Using Nonlocal Nonconvex Surrogate

of Tensor Multirank
Xuan-Qi Wang and Teng-Yu Ji

Abstract—In this article, we address the super-resolution prob-
lems, which estimate the high-resolution multispectral images from
the multispectral Sentinel-2 (S2) images with different resolutions.
Since S2 images can be naturally represented by tensors, we refor-
mulate the degradation process as the tensor-based form. Based on
the degradation mechanism, we build a tensor-based optimization
model for S2 images super-resolution problem, which fully exploits
intrinsic nonlocal spatial similarity and global spectral redundancy.
Specifically, the model consists of the data fidelity term and the
low-multirank regularizer tailored to thoroughly mining the in-
herent spatial-nonlocal and spectral redundancy. Then, we develop
an efficient alternating direction method of multipliers algorithm
with theoretically guaranteed convergence to tackle the resulting
tensor optimization problem. Numerical experiments including
simulated and real data demonstrate that our method outperforms
the competing methods visually and qualitatively.

Index Terms—Alternating direction method of multipliers
(ADMMs), global spectral redundancy, nonlocal spatial similarity,
sentinel-2 (S2) image.

I. INTRODUCTION

IN REMOTE sensing, an increasing number of satellites are
launched to acquire multispectral (MS) images, which are

used to perform terrestrial observations in support of services
such as environmental monitoring, land cover changes detection,
and natural disaster management [1]–[3]. However, due to the
restrictions of imaging gadgets, there is a tradeoff among spatial
and spectral resolutions of MS images, i.e., the spatial resolution
[or ground sampling distance (GSD)] of images acquired by
sensors varies according to different spectral bands. To obtain a
higher signal-to-noise ratio (SNR), the spatial resolution has to
be lower if the spectral one is required to be higher, so optical
images might be blurry. In contrast, losing spectral resolution
is the price to pay for a high spatial resolution. For tradeoff,
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many satellite sensors, such as MODIS, ASTER, and Sentinel-2
(S2), have been invented to get low-spatial-resolution MS bands
together with some high-spatial-resolution bands (panchromatic
image). Therefore, it is desirable to generate spatially enhanced
MS data by exploiting the structure in the panchromatic image.
As a fundamental task in remote sensing, super resolution (SR)
for multispectral and multiresolution images aims to infer the
data of all the bands given different resolutions. Without loss
of generality, in this article, we focus on the SR on S2 dataset.
S2 is a multispectral operational imaging mission operated by
the European Space Agency (ESA) [4], [5]. It acquires MS
images composed of 13 bands (443–2190 nm) in the visible-near
infrared (VNIR), and shortwave-infrared (SWIR) spectrum at
three different spatial resolutions; see Table I for more details.
There are four bands at 10 m (VNIR), six at 20 m (SWIR), and
three at 60 m. Band B10 is discarded since this band is to detect
Cirrus clouds and does not provide any structures of the ground
surfaces, thus, we do not process this band.

This article aims to infer all bands of the S2 images at
20 m and 60 m spatial resolutions, such that all bands have
the same and maximal resolution (10 m). Fig. 1 demonstrates
the SR process on synthetic S2 images and the results of our
algorithm.

Existing SR on S2 images can be roughly categorized into
three classes: pansharpening methods [6]–[11], deep learn-
ing methods [12]–[14], and model-based methods [15]–[19].
Pansharpening methods [6]–[11] fuse a high-spatial-resolution
channel (i.e., a panchromatic image) with other low-spatial-
resolution MS bands. This strategy has also been utilized to S2,
though the sensors of S2 do not fully satisfy the demand since
its sensors do not have a panchromatic band that covers most
spectral ranges and they only have four channels at 10 m bands
(VNIR). The pansharpening methods can be used to address
the S2 problem by creating a single high-resolution (HR) band
using 10 m bands and then sharpening the 20 m and 60 m bands.
Du et al. [9] compared pansharpening algorithms, including
principal component analysis [20], high pass filter, intensity hue
saturation [21], and À-trous wavelet transforms for upscaling the
20 m SWIR bands to 10 m spatial resolution. Vaiopoulos and
Karantzalos [10] comprehensively evaluated the performance
of 21 pansharpening algorithms on enhancing 20 m SWIR
and VNIR bands to 10 m spatial resolution. Wang et al. [11]
presented the area-to-point regression kriging (ATPRK) method
to sharpen the 20 m bands to 10 m spatial resolution. For these
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TABLE I
13 SENTINEL-2 BANDS

TABLE II
TENSOR NOTATIONS

Fig. 1. Input and output of super resolution on APEX images. Top: Input
and output data by NSTMR in 3-D vision (the bands are reordered for better
visualization). Middle: Input bands at 10 m, 20 m, and 60 m GSD. Bottom:
Super-resolved bands to 10 m GSD by the proposed method (NSTMR).

methods, the main weakness is that much information in HR
bands cannot be fully employed in the fusion.

The recent deep learning methods try to learn a mapping
between lower resolution input and higher resolution output
from texture and modality of example data. Some neural net-
works [12]–[14] take low-resolution (LR) images as input to

recover all HR images. Such learning-based methods highly
depend on the diversity and credibility of training datasets.

Model-based methods [15]–[19] formulate the super-
resolution problem as an ill-posed inverse problem and then
estimate the HR images under the variational regularization
framework by solving an optimization problem that super re-
solves all bands simultaneously. These methods rely on an
observation model, which generally contains two terms: the
fidelity term and the regularization term. The former derives
from the process of blurring, downsampling, and adding noise
and the latter describes image prior to mitigate the ill-posedness
of the inverse problems. Brodu [15] first upscaled 20 m and 60 m
bands to 10 m spatial resolution by preserving band-dependent
information (reflectance) and propagating band-independent in-
formation to preserve the subpixel details. By exploiting the
spectral redundancy of S2 images, Lanaras et al. [16] proposed
a low subspace-based model with total variation regularization
for jointly inferring all bands at 10 m spatial resolution. Paris
et al. [17] presented a similar approach, which incorporates the
block match three-dimensional (3-D) (BM3D) denoiser. Ulfars-
son et al. [18] relied on the projections onto a low-dimensional
subspace that is automatically estimated during the optimization
procedure and got the whole images of all bands. Lin and
Bioucas-Dias [19] adopted the same framework but introduced
another prior knowledge, i.e., the self-similarity graph learned
from the original images. However, the key issue of these meth-
ods is to exploit the prior of high-dimensional data in the matrix
or vector forms as opposed to tensor form. That means these
methods cannot grasp intrinsic structures of high-dimensional
images, such as global low-rankness, the features of local and
nonlocal self-similarity. Inspired by this, we propose a novel
method, which takes a nonlocal low tensor multirank prior into
account.

Recently, most model-based methods employ the nonlocal
self-similarity priors for image processing problems [22]–[25].
However, these methods cannot preserve the intrinsic properties
of these images in the matrix form. Meanwhile, tensor analysis
has played an increasingly important role in the SR process from
LR images to HR images [26]–[31]. LR images can be easily
represented by a 3-D tensor and it is natural to super-resolve LR
images from the tensor perspective. Some tensor factorization
for 3-D images, including the tensor singular value decomposi-
tion (t-SVD), are used in super resolution reconstruction prob-
lems [32]–[34]. For S2 data, they can be naturally represented
by tensors, so we reformulate the degradation process as the
tensor-based form. The prior information in the matrix form
cannot describe the spatial correlation of S2 image. However,
since different bands have redundant features in the spatial and
spectral dimension and these features can be characterized by
low-rankness [30, 35, 36]. The use of tensor can better retain the
redundancy and correlation of spatial and spectral dimensions. In
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Fig. 2. Top: The flow diagram of the construction of the tensor by stacking
similar 3-D patches. Bottom: the singular values of original tensor and the tensor
stacked by similar 3-D patches after the Fourier transform along the third mode.

other words, the low-rankness property can be better depicted by
tensor-based model. Prvost et al. [35] took advantage of coupled
Tucker approximation.

Moreover, tensors stacked by nonlocal similar 3-D patches
can characterize the low-rankness more clearly, in particular,
t-SVD-based multirank can retain the intrinsic structure of S2
images. For an original MS image, its singular value distribution
is shown in the Fig. 2(a) and the distribution after finding the
nonlocal similar 3-D patches and aggregating them is shown in
Fig. 2(b). We can see that the magnitude of the singular values
in Fig. 2(b) attenuate more quickly, showing the low-rankness
is characterized more obviously. In addition, tensor nuclear
norm (TNN) gives convex relaxation of multirank but it is not
an accurate approximation since it treats each singular value
equally, causing the suboptimal solutions. To address this issue,
we use an improved low-rank sparsity measure to approximate
the tensor multirank more accurately, such as the nonconvex
logdet surrogate. This method has smaller shrinkage for larger
singular values and larger shrinkage for smaller singular values
and is easy to calculate.

According to these two facts, in this article, we propose a
method using nonlocal nonconvex surrogate of tensor multirank
(NSTMR) for S2 image super resolution. The contributions of
our work are mainly three folds as follows.

1) We suggest a S2 SR model whose data fidelity term depicts
the tensor-based degradation process and the regulariza-
tion term fully exploits the nonlocal spatial similarity
and global spectral redundancy of S2 images by using
a logdet-based nonconvex surrogate of tensor multirank
regularizer.

2) We develop an alternating direction method of multipliers
(ADMM) to solve the proposed model efficiently and es-
tablish the theoretical guarantee of its global convergence
to a sandle point of the argument Largrangian function.

3) Experiments on the simulated and real data are conducted
to demonstrate the superior performance of the proposed
algorithm in contrast with state-of-the-art alternatives.

The outline of this article is as follows. Section II gives some
preliminary knowledge and notations on tensor analysis. Then,
Section III presents the formulation of our model together with
the solving algorithm. Section IV covers experimental results
and Section V discusses the convergence and parameter analysis
of the NSTMR. Finally, Section VI concludes this article.

II. NOTATIONS AND PRELIMINARIES

A. Notations

Scalars are denoted by lowercase letters, e.g., a, vectors by
boldface lowercase letters, e.g., a, matrices by boldface upper-
case letters, e.g.,A, tensors by Euler script letters, e.g.,A. Given
tensor A ∈ RI×J×K , its entries are denoted by ai,j,k for 1 ≤
i ≤ I, 1 ≤ j ≤ J, 1 ≤ k ≤ K. For A,B ∈ RI×J×K , the inner
product 〈A,B〉 is 〈A,B〉 =∑i,j,k ai,j,kbi,j,k , the Hadamard
product (elementwise multiplication) A�B is (A�B)i,j,k =
ai,j,kbi,j,k, similarly, (A./B)i,j,k = ai,j,k/bi,j,k is the element-
wise division ofA andB. The Frobenius norm ofA is defined as
‖A‖F :=

√〈A,A〉.Thevec(A) is used to vectorize the matrix
A. For A ∈ RI×J×K , the ith frontal slice is denoted as A(i),
andA is the result of discrete Fourier transformation of along the
third-dimension by using the MATLAB command fft, i.e., A
= fft(A,[],3). In the same way, A can be obtained from A via
ifft(A,[],3) that denotes the inverse Fourier transformation.
The conjugate transpose of A is defined as AT ∈ RJ×I×K

in [37], and the identity tensor I ∈ RI×I×K is the tensor whose
first frontal slice is identity matrix and other frontal slices are
zero. The f -diagonal tensor satisfies every frontal slice is a
diagonal matrix. An orthogonal tensor A ∈ RI×I×K satisfies
A ∗AT = AT ∗A = I . 1I×J×K and 0I×J×K denotes the
I × J ×K tensors whose entries are 1 and 0, respectively, and
the subscript is omitted without causing confusion.

Definition 2.1 (t-product [37]): For A ∈ RI×J×K , B ∈
RJ×L×K , the t-product A ∗B is the I × L×K tensor

A ∗B = Fold(bcirc(A)Unfold(B))

where

bcirc(A) =

⎡
⎢⎢⎢⎣
A(1) A(K) A(K−1) . . . A(2)

A(2) A(1) A(K) . . . A(3)

...
...

...
. . .

...
A(K) A(K−1) A(K−2) . . . A(1)

⎤
⎥⎥⎥⎦

and Unfold(A) =

⎡
⎢⎢⎢⎣

A(1)

A(2)

...
A(m3)

⎤
⎥⎥⎥⎦, Fold(Unfold(A)) = A.

Definition 2.2 (t-SVD [37]): For A ∈ RI×J×K , the t-SVD
decomposition of the tensor A is

A = U ∗ S ∗ VT

where U ∈ RI×I×K , V ∈ RJ×J×K are orthogonal, and S ∈
RI×J×K is an f -diagonal tensor.
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Definition 2.3 (Tensor multirank [38]): For A ∈ RI×J×K ,
the tensor multirank is a vector v ∈ RK , whose jth element is

the rank of jth frontal slice of A, i.e., vj = rank(A(j)
).

Definition 2.4 (Tensor nuclear norm [38]): ForA ∈ RI×J×K ,
the sum of the singular values of all frontal slices ofA is defined
as the tensor nuclear norm ||A||TNN, i.e.,

‖A‖TNN =

m3∑
i=1

∑
j

σj

(
A(i)

)

whereσj(A(i)
) is the jth singular value ofA(i)

. Compared with
the tensor nuclear norm, which treats each singular value equally
and gets the sum of singular values, the log-sum of singular
values has more enhanced performance [39]. To approximate
tensor multirank accurately, we consider logdet function-based
nonconvex surrogate of tensor multirank as

‖A‖NSTMR =

m3∑
i=1

∑
j

log
(
σj(A(i)

) + ε
)

where ε is a very small positive number.
Definition 2.5 (Twist and squeeze operation [38]): For A ∈

RM×1×N , it can be obtained using the twist operation acting
on the matrix B of size M ×N . In the meanwhile, a M ×N
matrixB can be obtained using the squeeze operation onA, i.e.,

A = twist(B),B = squeeze(A).

For an MS image C ∈ RM×N×B , it can be obtained by twist,
convolution, and squeeze on X ∈ RM×N×B successively for
each band image, i.e.,

[C(1), . . . ,C(b)] = [squeeze(B1 ∗ twist(X (1))), . . . ,

squeeze(Bb ∗ twist(X (b))] (1)

where Bi ∈ RM×M×N , i ∈ {1, . . . , b} is the block circulant
with circulant blocks blurring operator under the periodic bound-
ary conditions.

Definition 2.6: We define the MS blurring procedure as
follows:

C = B �X (2)

where B ∈ RM×MB×N is the third order tensor whose col-
umn block tensors are composed of Bi, i.e., B = [B1, . . . ,Bb],
X ∈ RM×N×B is the original MS image, and C ∈ RM×N×B

is the blurred MS image which is the same with (1), i.e.,
C(i) = squeeze(Bi ∗ twist(X (i)) for ith band.

The following gives an account of the selection and applica-
tion of nonlocal similarity patches. We use the following strategy
to constructGi: First, we divide the spatial domain of the upsam-
pled MSI of size M ×N ×B into a set of full-band patches of
size

√
W ×√

W ×B (space× space×bands) with overlapping
sliding window strategy. Next, these patches are divided into nt

groups. For the ith group, it contains ns patches that are the
similar patches of ith reference patch of size

√
W ×√

W ×B.
The similar patches of the ith reference patch can be found in
its neighboring area. Finally, we reshape each patch into matrix
and stack the ns matrices as tensor Gi of size W ×B × ns

(see Fig. 2). The process of extracting Gi ∈ RW×B×ns from
X ∈ RM×N×B can be expressed as a mapping Ri, i.e., Gi =
Ri(X ). The operatorRT

i : RW×B×ns → RM×N×B denotes the
adjoint operator of Ri, i.e., 〈Ri(X ),Gi〉 = 〈X , RT

i (Gi)〉 for
any X ∈ RM×N×B . The adjoint operator RT

i (Gi) puts back
the elements of Gi into the tensor 0 of size M ×N ×B,
where the positions of the elements of Gi in 0 is consistent
with the positions in X . The composition of RT

i and Ri yields
RT

i (Ri(X )) = W i �X , whereW i of sizeM ×N ×B com-
putes the number of times that each pixel of X occurs in Gi,
i.e.,Wi = RT

i (1W×B×ns
), where 1W×B×ns

denotes the tensor
with all ones of W ×B × ns.

III. MODEL AND ALGORITHM

A. Problem Formulation

The degradation process can be written as the tensor form

Y = D � (B � X )+N (3)

where X ∈ RM×N×B is the MS ground truth image, Y ∈
RM×N×B is the MS image with the same spatial resolution after
upsampling the jagged S2 observation images, D ∈ RM×N×B

is the binary mask tensor,B ∈ RM×MB×N is the blurring tensor,
and N is the additive Gaussian noise. The downsampling is
uniform and has a factor di = 1, 2, and 6 for 10 m, 20 m,
and 60 m resolution, respectively. Altough D represents the
downsampling process, it has the same dimension with X so
that Y is the same size with X since Y is the unsampled S2
images.

B. Proposed Model and Algorithm

To estimate the sharpened images X , we solve the optimiza-
tion problem

min
X

1
2‖Y −D � (B � X )‖2F + λ

nt∑
i=1

‖Ri(X )‖NSTMR (4)

where λ is the nonnegative regularization parameter, Ri(X )
is the tensor formed by stacking similar patches for the ith
reference patch, and nt is the total number of groups of similar
patches. First, the data-fitting term accounts for the individual
blur and downsampling per band. Second, the nonconvex sur-
rogate of tensor multirank term is used to exploit the spatial,
spectral, and nonlocal redundancy of multispectral images. The
proposed model (4) is denoted as “NSTMR” and the tensor form
is used because it can ensure that the similar 3-D patches found
preserve intrinsic characteristics.

To solve the abovementioned problem,we use ADMM al-
gorithm [40]–[42]. By introducing auxiliary variables P and
{Gi}nt

i=1, we reformulate the optimization (4) as the equivalent
constrained version

min
X ,{Gi}nt

i=1,P
1

2
‖D � (B �X )−Y‖2F + λ

nt∑
i=1

‖Gi‖NSTMR

s.t. X = P ,Gi = Ri(P), i = 1, 2, . . . , nt. (5)
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By introducing the multipliers U and {V i}nt
i=1, associ-

ated to the linear constraints X = P and Gi = Ri(P), i =
1, 2, . . . , nt, respectively, the augmented Lagrangian function
for (5) is given as follows:

L =
1

2
||D � (B � X ) − Y ||2F + λ

nt∑
i=1

||Gi||NSTMR

+
β1

2
||X −P + U ||2F +

β2

2

nt∑
i=1

||Gi −Ri(P) + V i||2F
(6)

where β1 and β2 are penalty parameters.
The optimization problem is well structured because all the

variables are divided into two groups (X , {Gi}nt
i=1) and P .

The minimization problem can be separated into two smaller
subproblems, so that two groups of variables (X , {Gi}nt

i=1)
and P can be minimized in alternating order before updating
multipliers.

In Step 1, we update X and {Gi}nt
i=1 in the following sub-

problem:

min
X ,{Gi}nt

i=1

1

2
||D � (B � X ) − Y ||2F + λ

nt∑
i=1

||Gi||NSTMR

+
β1

2
||X −P + U ||2F +

β2

2

nt∑
i=1

||Gi −Ri(P) + V i||2F .

(7)

The optimal solutions of X and {Gi}nt
i=1 can be calculated

separately since they are decoupled. The X -subproblem

min
X

1

2
||D � (B � X ) − Y ||2F +

β1

2
||X −P + U ||2F (8)

can be breaked up into the following subproblems equivalently
in the vector form:

min
xi

1

2
‖DiBixi − yi‖2F +

β1

2
‖xi − pi + ui‖2F , i = 1, . . . , b

(9)
where b is the number of bands, x1, . . . ,xb ∈ RMN×1 are the
target high spatial resolution bands obtained by vectorizing each
band image, i.e.,xi = vec(X (i)),y1, . . . ,yb ∈ RMN×1 are the
upsampled low spatial resolution bands, i.e., yi = vec(Y(i)),
B1, . . . ,Bb ∈ RMN×MN are matrices, which are equal
to frontal slices of each block tensor Bi ∈ RM×M×N of
B ∈ RM×MB×N , i.e., Bi = bcirc(Bi), representing the
PSF of the sensor, D1, . . . ,DB ∈ RMN×MN are diagonal
downsampling matrices, which are equal to the vectorization of
frontal slices of D ∈ RM×N×N , i.e., diag(Di) = vec(D(i)),
andui andpi are obtained by vectorizing each frontal slices ofU
and P , respectively, i.e., ui = vec(U (i)) and pi = vec(P(i)).
In essence, (8) and (9) are the same for modeling and degradation
process. They are the different forms for solving X . In the
ADMM framework, the variables X and G are solved as the
unitary block, which is tensor-based form and describes the
low rankness of the data. As we can see, variables X and G
are decoupled, X subproblem is reformulated as (9), which is

tensor-based form. In order to solve the problem efficiently, the
problem is equal to a vector-based form which is (9).

Each xi-subproblem has the following closed-form solution:

xi = (BH
i DH

i DiBi+β1IN×N )−1(BH
i DH

i yi+β1(pi − ui))
(10)

which can be calculated exactly and efficiently via fast Fourier
transforms (FFTs) [43], [44]. The cost of updating x is
O(BMN logMN).

For the Gi-subproblem

min
Gi

β2

2
‖Gi −Ri(P) + V i‖2F + λ‖Gi‖NSTMR, i = 1, . . . , nt

according to [39], [45], it has the closed-form solution

Gi = ifft

⎛
⎜⎜⎜⎜⎝Fold

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
U1

iD λ
β2

,ε(Σ
1
i )V

1T
i

U2
iD λ

β2
,ε(Σ

2
i )V

2T
i

...
Ub

iD λ
β2

,ε(Σ
b
i )V

bT
i

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠ , i = 1, . . . , nt

(11)
where Uk

iΣ
k
iV

kT
i , k = 1, . . . , B is the singular value decom-

position of (Ri(P)
(k) − V(k)

i ) and D λ
β2

,ε(Σ
k
i ) is thresholding

operator defined as

D λ
β2

,ε(x) =

{
0 if c2 ≤ 0

sign(x)
(

c1+
√
c2

2

)
if c2 > 0

with c1 = |x| − ε, c2 = (c1)
2 − 4( λ

β2
− ε|x|). The cost of up-

dating all {Gi}nt
i=1 is O(ntns min{WB2, B2W}).

In Step 2, we update P in the following subproblem:

min
P

β1

2
‖X −P + U‖2F +

β2

2

nt∑
i=1

‖Gi −Ri(P) + V i‖2F

which has the closed-form solution

P =

(
β1(X+U)+β2

nt∑
i=1

RH
i (Gi+Vi)

)
./(β11+ β2W).

(12)
Here, W :=

∑nt

i=1 W i and W i computes the number of times
that each pixel of X occurs in Gi. The cost of updating P is
O(MNB). In the last step, we update the multipliers

V i := V i + Gi −Ri(P), i = 1, 2, . . . , nt (13)

and

U := U +X −P . (14)

The solving algorithm is summarized in Algorithm 1.
In the following part, we discuss the convergence of the

proposed Algorithm 1. Before that, we give a brief review about
the framework and convergence of the ADMM in nonconvex
nonsmooth optimization problem [46]. Wang et al. [46] consid-
ered the following optimization problem:

min
x,y

f(x) + g(y)

s.t. Ax+By = 0 (15)
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Algorithm 1: The ADMM Algorithm for Solving NSTMR.
Input:
1: Y - observed image
2: B - blurring tensor
3: D - mask tensor
4: β1, β2 - penalty parameters
5: λ - regularization parameter;
Initialization: X 0,G0

i ,P0,V0
i ,U0

6: while not converged do
7: Update X via Eq. (10);
8: Update Gi via Eq. (11);
9: Update P via Eq. (12);

10: Update the multiplier V i via Eq. (13);
11: Update the multiplier U via Eq. (14);
12: end while
Output: The estimation of X

where f : RI → RL is continuous, proper, possibly nonsmooth,
and nonconvex, g : RJ → RL is proper, differentiable and pos-
sibly nonconvex, x ∈ RI and y ∈ RJ are variables with the
corresponding coefficient matrices A ∈ RL×I and B ∈ RL×J ,
respectively. By introducing the auxiliary multiplier z ∈ RL, we
have the augmented Lagrangian function Lβ as

Lβ(x,y, z) = f(x) + g(y) + 〈z,Ax+By〉

+
β

2
‖Ax+By‖22

where β > 0 is a penalty parameter. ADMM solves (15) itera-
tively as following:⎧⎨

⎩
xt+1 = argminx Lβ(x,y

t, zt)
yt+1 = argminy Lβ(x

t+1,y, zt)
zt+1 = zt + β(Axt+1 +Byt+1).

(16)

The following Lemma 1 gives the convergence of ADMM in
nonconvex nonsmooth optimization.

Lemma 1: Suppose that the following assumptions A1–A5
hold, then for any sufficiently large β and starting from any
(x0,y0, z0), the sequence generated by (16) has at least one
limit point, and each limit point is a stationary point of Lη .

A1 (coercivity): The objective function f(x) + g(y) is co-
ercive over the nonempty feasible set D = {(x,y) ∈ RI+J :
Ax+By = 0}.

A2 (feasibility): Im(A) ⊆ Im(B), where Im(·) denotes the
image of a matrix.

A3 (Lipschitz subminimization paths):
(a) For any x, there exists a Lipschitz continuous map

h : Im(B) → RL obeying h(u) = argminy{f(x) + g(y) :
By = u}.

(b) For any y, there exists a Lipschitz continu-
ous map k : Im(A) → RL obeying k(u) = argminx{f(x) +
g(y) : Ax = u}.

A4 (objective-f regularity): f is lower semicontinuous or
sup{‖d‖ : x ∈ S, d ∈ ∂f(x)} is bound for any bound set S.

A5 (objective-g regularity): g is Lipschitz differentiable.

Next, we present the convergence result of the proposed
Algorithm 1.

Theorem 1: For any sufficiently large β, Algorithm 1 gener-
ates a sequence (X t, {Gt

i},Pt,U t, {Vt
i }) that converges to the

stationary point of the augmented Lagrangian function Lη .
Proof: We first reformulate (6) in the matrix-vector multipli-

cation form as

argmin
Z,P

f(Z) + g(P)

s.t.

⎛
⎜⎜⎜⎜⎝
I 0 0 0

0 I · · · 0

0 0
...

...

0 0 · · · I

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

x

g1

...

gnt

⎞
⎟⎟⎟⎟⎠−

⎛
⎜⎜⎜⎜⎝

I

R1

...

Rnt

⎞
⎟⎟⎟⎟⎠p = 0

where Z = [X ;G1; · · · ;Gnt
], f(Z) = 1

2‖D � (B � X )−
Y‖2F + λ

∑
i ‖Gi‖NSTMR, g(P) = 0, I denotes the identity

matrix, Ri is the matrix that extracts the pixel form P (since
the Ri is the linear operator), and x, {gi}nt

i=1, and p denote the
vectorization of X , {Gi}nt

i=1, and P , respectively. It is clear that
our model fits the framework of (15).

Now we check the assumptions A1–A5. A1 holds because
of the coercivity of f(Z) + g(P). A2 and A3 hold because the
coefficient matrix of p and the coefficient matrix of the column
vector composed by x and {gi}nt

i=1 are full column rank. A4
holds because f(Z) is lower semicontinuous. A5 holds because
g(P) is Lipschitz differentiable.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
algorithm on simulated data with S2 parameters and real S2
images. All experiments are performed using Windows 10 and
MATLAB Version R2017a running on a desktop with an Intel
Core i9-7900 K CPU at 3.30 GHz with 64 GB of memory.

Quantitative indices: For simulated data, the signal-to-
reconstruction error (SRE), the spectral angle mapper (SAM),
and structural similarity (SSIM) index are used for quantitative
performance evaluations. The SRE of each band is defined as

SRE := 10 log10
||X (k)||2F

||X (k) − X̂ (k)||2F
measured in dB, where X̂ (k)

and X (k) are, the kth band of the
estimated image and the ground truth image, respectively. The
average SRE (aSRE) is defined as

aSRE :=
1

(b20 + b60)

(b20+b60)∑
i=1

SREi

where b20 and b60 are the numbers of 20 m and 60 m bands, and
SREi is the SRE of ith 20 m or 60 m band. The SAM [47] is
computed as

SAM :=
1

mn(b20 + b60)

mn∑
i=1

arccos
〈X:i, X̂:i〉

||X:i||2||X̂:i||2
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where X̂i: and Xi: are the spectral values of 20 m and 60 m
bands located at the pixel i, of the estimated image X̂ and the
ground truth image X.

The SSIM [48] is computed as

SSIM(x, x̂) :=
(2μxμx̂ + c1) (2σxx̂ + c2)(

μ2
x + μ2

x̂ + c1
) (

σ2
x + σ2

x̂ + c2
) (17)

where μx and μx̂ are the average of groundtruth and the esti-
mated image, σ2

x, σ
2
x̂ are the variance, σxx̂ is the covariance. The

SSIM is obtained by using the MATLAB command ssim.
The SAM and SSIM is computed only for the super-resolved

bands and then is averaged over all pixels of the image. Generally
speaking, better results are reflected by higher SRE values and
lower SAM values. The stopping criterion of ADMM is the
relative change of the successive iterations to be less than a
specified tolerance: ‖X k −X k−1‖F /‖X k−1‖F ≤ 1× 10−3.

Compared methods: We compare the proposed NSTMR
method with ATPRK [11], SupReME [16], MuSA [17], and
S2Sharp [18] methods. In the abovementioned methods, except
for the first method, which belongs to pansharpening algorithms,
all other methods fall into the model-based class. The reason why
we did not compare with deep learning (DL) methods was that
DL-based methods depends on neural network, whose output
results largely subject to distribution of training dataset. In our
experiments compared with DSen2, the dataset we use was not
identically distributed with the DSen2’s so that the performance
is not easily compared by SRE and SAM. Most importantly, the
proposed method is model based so we compared with methods
of the same type.

Simulated data: For the simulation of S2 images, we use
both simulated and real data. Simulated S2 images are generated
from airborne hyperspectral images. There are three simulated
datasets. The first two datasets are based on the HYDICE image
of Washington DC Mall1 and Terrain2 with 2.8 m spatial resolu-
tion. The third dataset we use is the airborne prism experiment
(APEX) [49] image of Baden3 with 1.8 m spatial resolution. We
use the following strategies to generate simulated images. First,
we created the ground truth (GT) images, which is the super-
resolved S2 images with 10 m resolution at all 12 bands. For this
purpose, we selected twelve bands with the same wavelength as
S2 satellite to generate the MS images. We lowpass filtered the
abovementioned MS images and then downsampled the blurred
MS image with a factor of d1 = 3 to approximately obtain a
spatial resolution of 10 m. The reason for this operation is that
other satellites do not necessarily have a ground sample distance
of 10 meters in the same wavelength and factor d1 depends
on the ratio of ground sample distance between S2 and the
satellite generating the simulated images. Then, we blurred the
abovementioned GT to obtain the images with spatial features
at 20 m and 60 m and downsampled the blurred images with
a factor of d2 = 2 and d3 = 6, obtaining the observed images.

1Online. [Available]: https://engineering.purdue.edu/∼biehl/MultiSpec/
hyperspectral.html

2Online. [Available]: http://www.erdc.usace.army.mil/Media/Fact-Sheets/
Fact-Sheet-Article-View/Article/610433/hypercube/

3Online. [Available]: http://www.apex-esa.org/content/free-data-cubes

Take the Washington DC as an example, the size of satellite
image is 280× 307× 191, after selecting bands, lowpass fil-
tering, and downsampling, the GT is 90× 96× 12. Next, we
blurred the GT and downsampled the result to obtain simulated
20 m (downsampling factor d2 = 2) and simulated 60 m bands
(downsampling factor d3 = 6), obtaining the observed LR bands
with the size of 15× 16 (60 m), 90× 96 (10 m), 45× 48 (20 m),
respectively.

The Gaussian blur kernels differ from each band with 10 m,
20 m, and 60 m. These kernels are computed from the calibrated
modulation transfer function supplied by ESA.4 These simulated
S2 images are generated by blurring, downsampling and adding
Gaussian noise such that the SNR is 40 dB. The size of Wash-
ingtong DC, Terrain, and APEX is 90× 96× 12, 96× 96× 12,
and 114× 114× 12, respectively.

For all three simulated datasets, the pixel values of each
band are normalized scaled to the interval [0, 1]. The similar
patches are found in the 10 m bands for these bands are ground
truth and has more accurate spatial information. The SRE and
SAM values of the estimated results by different methods on
simulated data sets (Washington DC, Terrain, and APEX) are
summarized in Table III. The bold font in this table denotes the
best results. Apart from quantitive assessments, the visual effect
of the residual image between recovered results and ground truth
is also shown.

For the Washington DC image, the false-color images created
with bands at 60 m (B1 and B11) and 20 m (B6) and the residual
images at B1, B11, and B6 are shown in Fig. 3. In terms of the
aSRE, it is easily seen that NSTMR performs the best, just with
being a step behind S2sharp at B7, B8a, and B12 SRE. NSTMR
not only delivers the best quantitive results but also outperforms
the other methods at B1 and B6 for visual inspection on residual
images. Most of the areas on the residual appear blue, which
means the super-resolved image is closer to the GT.

For the Terrain image, the false-color images created with
bands at 60 m (B1) and 20 m (B5 and B9) and residual image
at B1, B5, and B9 are shown in Fig. 4. For the APEX image,
the false-color images created with bands at 20 m (B5, B6,
and B7) and residual image at B1, B7, and B9 are shown in
Fig. 5. The residual images also show a decent improvement in
visual effect. We can observe that the NSTMR method is better
than the other methods since the residual images are closer to
zero than other methods. For Terrain, the aSRE of NSTMR is
the highest but the SRE at B1 a little less than S2Sharp. For
APEX, aSRE of NSTMR is still the best but B1, B11, and B12
have slightly weaker results simply because these channels are
of LR (60 m resolution) that the tensor multirank prior has a
piece of less information about image pixels. Apart from the
SRE, SAM is also reported in Table III. Here, for all three
datasets, NSTMR also obtains the best result. NSTMR takes
nonlocal spatial similarity and global spectral rudundancy into
consideration so that it can deal with the S2 resolution problem
effectively.

4Online. [Available]: https://sentinel.esa.int/documents/247904/685211/
Sentinel-2_L1C_Data_Quality_Report

https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
http://www.erdc.usace.army.mil/Media/Fact-Sheets/Fact-Sheet-Article-View/Article/610433/hypercube/
http://www.apex-esa.org/content/free-data-cubes
https://sentinel.esa.int/documents/247904/685211/Sentinel-2_L1C_Data_Quality_Report
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TABLE III
QUANTITIVE METRICS VALUES OF THE ESTIMATED RESULTS BY DIFFERENT ALGORITHMS ON SIMULATED DATASETS

Fig. 3. Top: the false-color images created with bands B1, B11, and B6. Bottom: the residual image of the estimated results at B1, B6, and B11 by different
methods for Washington DC. From left to right: the GT, results by ATPRK, SupReME, MuSA, S2Sharp, and NSTMR, respectively.

In terms of SSIM, the results in Washingtong DC and Terrain
from NSTMR are 0.9887 and 0.9952, respectively, indicating
a better recovery result compared with other methods, which
was consistent with the trend of SRE and aSRE. At the same
time, the SSIM on APEX is slightly inferior to SupReME, and
in line with the trend of SRE being slightly inferior to other

methods at B5, B11 and B12. The reason is that the low rankness
of image APEX cannot be captured by the proposed model,
because the content of image is not very evenly distributed
buildings, i.e., the image spatial redundancy is not very good.
As for processing time, it can be observed that MuSA and
NSTMR have much longer processing time than other methods,
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Fig. 4. Top: the false-color images created with bands B1, B5, and B9. Bottom: the residual image of the estimated results at B1, B5, and B9 by different methods
for Terrain. From left to right: the GT, results by ATPRK, SupReME, MuSA, S2Sharp, and NSTMR, respectively.

due to the large amount of time spent searching for nonlocal
similar patches.

Real data: For real datasets, we use real S2 images of scenes
Verona, Malmo, Treviso,5 and RealData4.6 For the first three
data, we select an area with a spatial extent of 180× 180.
For the last data, we select an bigger image with the size of
300× 300. The pixel values of each band are also normalized
scaled to the interval [0, 1] in real data. Due to the unreliability
of blind measures, we only use the visual effect to give intuitive
evaluations of different algorithms. For each data, we select an
area with a spatial extent of 20× 20 (30× 20 for RealData4) and
zoom it out in the lower right for a contrast effect. The false-color
images created with bands at 20 m and 60 m are shown in Figs. 6
–9. In terms of visual inspection, the NSTMR method can match
the S2Sharp and other competing methods. From bottom right
corner of the image in Figs. 6 and 8 in this response, we can
see that the SupReME and NSTMR provided more details and
texture, showing the geometric details in the scene better. In
Fig. 7, the details of the enlarged images by different methods
are not very similar so it is difficult to estimate, which is better.

5Online. [Available]: https://earthexplorer.usgs.gov/
6Online. [Available]: https://scihub.copernicus.eu/dhus/

In Fig. 9, the results by NSTMR and S2Sharp are very similar.
When the data are large, the running time of MuSA and NSTMR
is much longer than other algorithms since this two methods
need to search for the nonlocal patches. Both methods use block
matching 3-D stategies to process similar patches. As can be seen
from the Fig. 9, there are many stripes with alternating rows and
columns in the result estimated by MuSA, indicating that the
parameters of this method may not optimal. For parameters on
the real datasets, we used the best parameters from the simulated
data with the same size. In order to get the optimal parameter,
the more metrics should be introduced but there is no specific
quantitative metrics to evaluate on the real set so that parameter
tunning is a difficult task. However, for NSTMR, from the
perspective of vision, the details can be compared with S2Sharp,
therefore, NSTMR is also a good method.

V. DISCUSSION

A. Convergence

In this section, we show the numberical convergence of Al-
gorithm 1. In Fig. 10, we demonstrate the relative error curves
with respect to iteration number in recovering of Washington
DC, Terrain, and APEX. From the figure, we can observe that the

https://earthexplorer.usgs.gov/
https://scihub.copernicus.eu/dhus/
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Fig. 5. Top: the false-color images created with bands B5, B6, and B7. Bottom: the residual image of the estimated results at B1, B7, and B9 by different methods
for APEX. From left to right: the GT, results by ATPRK, SupReME, MuSA, S2Sharp, and NSTMR, respectively.

Fig. 6. False-color images created with bands at 20 m (B5, B6, and B12) by different methods for Treviso. From left to right: the estimated results by ATPRK,
SupReME, MuSA, S2Sharp, and NSTMR, respectively.

algorithm stops the iteration quickly, which shows the numerical
convergence of Algorithm 1.

B. Parameter Analysis

In this section, we analyze the effect of parameter λ, β1, and
β2. The ATPRK main parameter are the size of the PSF. The
SupReME main parameter is the regularization parameter λ.
The MuSA main parameters are the regularization parameter

λ and noise standard deviation τ . The S2Sharp main param-
eter is the regularization parameter λ. For other methods, we
use grid parameter tuning. Their parameter selection range is
{10−4, 10−3, 10−2, 10−1} and default number provided by the
author. We select the parameters when aSRE is maxium. All
parameters of competing methods are fine-tuned to achieve
their best performance. Note that, fine tuning of parameters
for different datasets may yield better results, but we unify the
parameter selection to illustrate the robustness of the proposed
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Fig. 7. False-color images created with bands at 60 m (B9) and 20 m (B11 and B12) by different methods for Malmo. From left to right: the estimated results
by ATPRK, SupReME, MuSA, S2Sharp, and NSTMR, respectively.

Fig. 8. False-color images created with bands at 20 m (B5, B6, and B12) by different methods for Verona. From left to right: the estimated results by ATPRK,
SupReME, MuSA, S2Sharp, and NSTMR, respectively.

Fig. 9. False-color images created with bands at 20 m (B5, B6, and B12) by different methods for RealData4. From left to right: the estimated results by ATPRK,
SupReME, MuSA, S2Sharp, and NSTMR, respectively.

Fig. 10. Relative error curves with respect to iteration number on Washington
DC, Terrain, and APEX.

Fig. 11. The aSRE with respect to β1, β2, and λ.

method. Taking the APEX as an example, in the process of
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fine tuning, we select β1, β2,∈ {10−4, 10−3, 10−2, 10−1, 1} and
λ ∈ {10−4, 10−3, 10−2, 10−1} to estimate the optimal parame-
ters. In Fig. 11, we show the aSRE values with respect to β1,
β2, and λ. We can see that as λ rises from 10−4 to 10−1, the
range of aSRE decreases and NSTMR delivers the relatively
good performance when λ is between 10−3 and 10−4. In both
cases, when β1 is smaller and β2 are between 0.01 and 0.1, the
aSRE is much higher. As smaller β1 and β2 make the algorithm
achieve convergence in more steps, β1 and β2 cannot get any
smaller values to achieve faster convergence. Under the tradeoff
of the speediness of algorithm convergence and performance,
λ = 0.001, β1 = 0.1, and β2 = 0.0001 are the best parameters.

VI. CONCLUSION

To enhance the resolution of S2 images, we proposed a tensor-
based nonlocal low-multirank regularized model by taking full
advantage of the nonlocal spatial-spectral redundancy of the S2
image. The efficient alternating direction method of multipliers
was developed to solve the proposed model and its convergence
is theoretically guaranteed. Extensive experiments on simulated
and real data demonstrated state-of-the-art performance of the
proposed model both quantitatively and visually. It is remarkable
that although upscaling 60 m bands to 10 m spatial resolution
seems challenging, the proposed method NSTMR can obtain
good results by taking full advantages of the low-rankness
depicted by nonlocal similarity. In the future, we will design
some new points to utilize the correlation of different bands.
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