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Target Detection in Clutter/Interference Regions
Based on Deep Feature Fusion for HFSWR
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Abstract—High-frequency surface wave radar (HFSWR) is of
great significance for maritime detection, but in the HFSWR echo
signal, ship targets are often submerged in a variety of clutter and
interference, making it difficult to detect vessels. In this paper, we
propose an intelligent detection algorithm for targets concealed in
strong clutter and complex interference environments. The algo-
rithm has two stages: preprocessing and target detection. In the
preprocessing stage, faster region-based convolutional neural net-
works Faster R-CNN are designed to identify and locate clutter and
interference regions in the range Doppler spectrum; in the target
detection stage, a two-level cascade algorithm is proposed. First, an
extremum detection algorithm is proposed to identify suspicious
target points in the clutter/interference regions, including real and
false target points, to quickly obtain potential target positions.
Second, in consideration of the characteristics of radar targets, two
lightweight networks are designed to extract the CNN features and
the stacked autoencoder features of the potential target locations.
Then, fusion features are obtained and sent to an extreme learning
machine that acts as a second-level classifier to distinguish between
real and false target points. Experiments show that the proposed
HFSWR target-detection algorithm has better performance for
vessel detection in clutter/interference regions than the current
mainstream detection algorithms.

Index Terms—Convolutional neural network (CNN), extremum
detection, feature fusion, high-frequency surface wave radar
(HFSWR), stacked autoencoder (SAE), target detection.

I. INTRODUCTION

H IGH-FREQUENCY surface wave radar (HFSWR) has
over- the-horizon detection ability for real time monitor-

ing of large areas of the exclusive economic zone and has been
widely used for vessel target detection [1]. However, because
HFSWR operates in the high-frequency band in complex electro-
magnetic environments, its echo signal contains not only target
information, but also a large amount of clutter and interference,
such as ground clutter, sea clutter, ionospheric clutter, and radio
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frequency interference (RFI). Therefore, it is important to accu-
rately and effectively detect targets affected or even submerged
by clutter and interference in complex environments [2].

The constant false-alarm rate (CFAR) [3] is a classical al-
gorithm widely used in target detection. The common CFAR
detection methods include mean, ordered statistics, and adaptive
regression. The CFAR usually establishes a test statistic for each
test cell of interest and compares it with a threshold value calcu-
lated from a reference cell in accordance with some criterion to
obtain test results. The classical cell average CFAR (CA-CFAR)
[4] uses the average value of the reference cell to obtain the
detection threshold. The ordered statistic CFAR was proposed by
He and Rohling [5] to sort the reference values near the test cell of
interest and select one as the detection threshold, which removes
the influence of wild values on noise estimation by sorting to
ensure the accuracy of the threshold detection. The adaptive
power regression CFAR algorithm proposed by Dzvonkovskaya
and Rohling [6] set the maximum value of the upper confidence
bounds of the range regression and Doppler regression curves at
the cell of interest as the detection threshold. This method esti-
mates the noise from a global perspective, which can effectively
suppress a wide range of clutter and interference. Nowadays,
due to the rapidity of CFAR detection, it is widely used in the
preprocessing stage of the radar target detection field [7], [8].

On the basis of the CFAR algorithm, many ideas have been
proposed for HFSWR target-detection algorithms. Jangal et al.
[9], [10] proposed a wavelet-transform-based algorithm for tar-
get point detection in the range Doppler (RD) spectrum based
on differences in the morphology and distribution of clutter and
target points. This method used the multiscale characteristics
of the wavelet transform to separate the clutter from the target
points via the low-frequency and high-frequency components
of the image. On the basis of this, Li et al. [11] proposed a
detection algorithm based on discrete wavelet transforms, which
can adaptively determine the scale of the wavelet transform and
enhance the high-frequency coefficients to effectively eliminate
clutter and noise while reducing the false-alarm rate. Similarly,
on the basis of the variability of clutter and target morphological
components in the RD spectrum, Grosdidier and Baussard [12]
proposed a target-detection method based on morphological
component analysis using multi-scale transformation and sparse
expression for target extraction. Zhang et al. [13] introduced
the concept of reverse phase transition in the Duffing oscillator
and proposed a detection algorithm for HFSWR targets with
a low signal-to-noise ratio (SNR). Cai et al. [14] proposed a
target-detection method based on time-frequency analysis to
obtain the time-frequency representation of the echo signal using
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a synchronous extraction transform algorithm. Although these
algorithms can detect targets in certain circumstances, their
detection performance is severely affected by human- deter-
mined factors, such as the scale of wavelet transform, complete
dictionary, or a priori knowledge.

In recent years, some intelligent target-detection schemes
have been applied in HFSWR target detection. Zhang et al.
[15] proposed a scheme based on an error self-adjustment ex-
treme learning machine (ES-ELM) and a cascade classifier. The
Haar-like features of the potential target regions generated by
the first-level classifier are extracted and sent into the ES-ELM
for learning and classification. Subsequently, Zhang et al. [16]
proposed an optimized ES-ELM (OES-ELM) and applied it
to HFSWR target detection to further improve performance.
After that, on the basis of characteristics of the target points
in the RD spectrum, Li and Han [17] extracted and fused
the textural and morphological features of the target and sent
them to the classifier. These intelligent algorithms all require
human selection of features and training of the classifier. The
quality of the features selected will directly affect the results
produced by the classifier and the quality of the target de-
tection. Second, simple morphological features tend not to be
very robust in complex environments with strong clutter and
interference.

From the above analysis of the current HFSWR target- detec-
tion algorithm, several problems can be identified as follows.

1) Conventional algorithms often rely on artificial factors or
conditions. It is difficult to set these artificial parameters
in practice, but inaccurate parameters will cause a higher
false-alarm rate in the detection process.

2) Some intelligent detection algorithms perform detection
by extracting features of target points. The quality of
the extracted features directly affects the performance of
classification and target detection, while effective features
require a lot of time and experience to design.

3) Most of the current algorithms have good detection in a
stable environment, but drastically worse performance in
strong clutter or interference due to the reduction of the
SNR. In these circumstances, the extracted morphological
features in the algorithms cannot effectively distinguish
target and clutter.

To reduce the difficulty of target detection in complex
environments affected by strong clutter and interference,
we propose an intelligent algorithm based on cascade deep
learning networks combined with ELM and feature fusion
to effectively detect targets under the influence of strong
clutter and interference, including targets at the edge of the
clutter/interference region and partially submerged by the
clutter/interference. Therefore, identification and localization
of clutter and interference regions in the RD spectrum is the first
step. Conventional detection of clutter or interference regions
is achieved by image segmentation or classifier classification
[18]–[20], and detection performance depends on many artificial
factors. However, the deep-learning-based faster region-based
convolutional neural network R-CNN detection framework
[21], which can simultaneously localize and classify the target
in less time through learning, has a good detection effect on
normal-sized targets. Hence, faster R-CNN is designed for
clutter and interference region detection in this article.

In clutter and interference regions, the morphology and en-
ergy of the target points vary. Conventional manually designed
target-feature extraction operators, such as the Haar-like feature
and local binary patterns, are often not very robust. Deep se-
mantic features tend to perform better [22], [23]. Therefore, to
avoid the trouble of designing preselected features manually,
and to improve the adaptability of the extracted features in
strong clutter or interference environments, we designed two
lightweight machine-learning-based feature extractors, a CNN
[24]–[26] and a stacked autoencoder (SAE) [27], to automati-
cally extract features from different perspectives. The structure
of the two networks is simplified, to avoid the time consumption
of feature-extraction networks. Different types of features gen-
erally represent objects with different meanings. Multifeature
fusion has been shown to bridge the gaps between different
features and improve the accuracy of classification [28]–[30]. In
view of this, the features extracted from two networks are sent to
the multifeature fusion center to further improve discriminatory
ability.

In this article, a two-level cascade target-detection algorithm
for clutter and interference regions is proposed. Clutter and
interference regions in the RD spectrum are detected by the
faster R-CNN algorithm. The first level is an extremum detector
based on grayscale values. In the first level, inspired by the CFAR
algorithm, we use the average grayscale values of the reference
cells around the cell under test to obtain the detection threshold,
and then determine whether the cell under test is a suspicious
target point. The purpose of the extremum detector we use in this
level is to separate all suspicious target points from the clutter
and interference region to improve the real time performance
of the algorithm and to complete the target localization. The
number of false-alarm targets in the first-level detection result is
not in itself important, but does ensure that the detection rate is
high enough to prevent the proposed algorithm from missing the
target points in the first level. False targets will be removed in
the next level of the algorithm. Next, lightweight CNN and SAE
are combined to automatically extract potential region features
from different perspectives. The features extracted from the two
networks are processed and concatenated, and a robust sparse
linear discriminant analysis (RSLDA) [31] algorithm is used to
reduce redundancy and improve the discriminatory ability of
the fusion features. Finally, the fusion features are sent to the
second-level classifier, the ELM [32],[33], to classify true target
points efficiently.

The article is organized as follows: Section II provides a brief
overview of the general framework of our proposed HFSWR
target-detection algorithm. Section III describes the clutter/
interference identification and localization method in the RD
spectrum based on faster R-CNN. Section IV describes the
proposed two-level cascade target-detection algorithm. Exper-
imental results are shown in Section V. Finally, Section VI
concludes the article.

II. PROPOSED FRAMEWORK

Fig. 1 shows a typical RD spectrum of HFSWR with a large
amount of RFI. The horizontal and vertical coordinates represent
the Doppler frequency shift and the range cell, respectively.
The change of color from red to blue indicates that the energy
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Fig. 1. Actual measured RD spectrum.

gradually decreases. As this figure shows, the RD spectrum
contains the target points, sea clutter, ground clutter, ionospheric
clutter, different levels of RFI, and background noise. Among
these, the target points are shown as isolated peaks in the
RD spectrum with a certain degree of expansion in both the
Doppler and range directions. The ground clutter is located at
zero Doppler frequency and has a certain degree of expansion in
the Doppler direction and a ridge-like distribution with energy
attenuation in the range direction. Sea clutter also has some
expansion in the Doppler direction and a ridged distribution
in the range direction. However, ionospheric clutter has some
expansion in the range direction and a ridged distribution in the
Doppler direction. RFI mainly shows expansion along the range
direction in the RD spectrum, and the energy does not decrease
with range. In addition, in the RD spectrum, many targets are
seriously affected by clutter and RFI.

In this article, an intelligent detection method for vessel
targets in strong clutter and complex interference environments
is proposed. The framework of the proposed target-detection
algorithm is shown in Fig. 2. The algorithm has two stages. The
first stage is preprocessing, in which faster R-CNN is used to
identify and locate the position of the clutter or interference in
the RD spectrum. The details are illustrated in Section III. The
second stage is target detection, which is based on a two-level
cascade detection algorithm. The first level is an extremum
detector for extracting potential target locations from clutter and
interference regions. The detector is fast at detecting targets
but hits a lot of false targets. The second level is an ELM
that is responsible for discriminating between true and false
targets among the candidates extracted by the first level, whose
input is the fusion features of the potential target locations.
The fusion features are obtained from the features extracted by
the two feature extractors separately, and processed by feature
processing. See section IV for details.

III. CLUTTER AND INTERFERENCE REGION

DETECTION ALGORITHM

Because the morphology of targets outside the clutter and
interference regions is obvious, traditional detection methods,

such as CFAR can deal with them easily. This paper focuses on
the detection of targets within clutter and interference regions.
In the preprocessing stage, we need to identify and localize the
interference and clutter regions in the RD spectrum. On the
basis of the ideas in [34], we use Faster R-CNN as a detection
framework to identify and locate clutter and interference regions
in the RD spectrum.

Faster R-CNN is a two-level, end-to-end target-detection
framework that contains two subnetworks: one for the region
proposal network to generate the region proposal box, and the
other for Fast R-CNN, for target classification and localization.
In this article, ResNet-101, which is pretrained on ImageNet, is
used as the backbone of faster R-CNN. We select the actual
measured RD spectrum to make a dataset and annotate sea
clutter, RFI, and ionospheric clutter. Fig. 3 shows the results
of clutter and interference detection using faster R-CNN: the
framework can effectively identify and locate the clutter regions.
Testing shows that faster R-CNN has a high detection rate
for clutter and interference in the RD spectrum, and the mean
average precision is close to 1. In terms of detection time, the
algorithm used can complete the detection of an RD spectrum
in 0.97s.

IV. PROPOSED TWO-LEVEL CASCADE DETECTION ALGORITHM

A. First-Level Detector—Extremum Detector

Fig. 4 shows the result of graying out an RD spectrum. The
closer the color is to black, the higher the energy and the
lower the grayscale value. The grayscale values of the target
points, the clutter, and most of the RFI are lower than those
of the background component in the clutter and interference
regions. Fig. 5 shows the morphology of the target point in
the grayed—out RD spectrum, with the vertical coordinate
representing the grayscale values; from which it can be seen
that the target point is morphologically represented as isolated
extreme point. Therefore, we propose a grayscale feature-based
extremum detector, which uses the average grayscale value of
the reference cells around the cell under test as the evaluation
criterion to quickly identify all the suspicious target points in
the clutter and interference regions.

The first-level detector extracts all candidate targets using the
following criterion:

f (xtest ) =
{

1, h(xtest ) ≤ αk
0, h(xtest ) > αk

(1)

where α is the threshold factor, k is the average grayscale value
of the reference cells, h(xtest ) is the grayscale value of the test
cell, f (xtest ) is the category to which the cell belongs, 1 is the
suspected target point, and 0 is the background component.
The target points, clutter, and RFI have lower grayscale values
than the background. Therefore, the points below the detection
threshold are suspicious targets to be extracted. Statistically,
almost all target sizes in our data are within the range of 15 × 15,
so we select a 15 × 15 rectangular box around the cell under test
as the reference cell. Here, we need to ensure that the detection
rate Pd is high enough to detect all possible target points to avoid
missing targets at the first level of the network, regardless of the
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Fig. 2. Framework of the proposed target-detection algorithm.

Fig. 3. One example of the results of the clutter/interference detection.

false-alarm rate Pf . Pd and Pf can be obtained as follows:

Pd = DR
/

(DF + DN) (2)

Pf = DF
/

(DR + DF) (3)

where DR is the true target points detected, DF is the false
target points detected, and DN is the undetected target points.
The threshold factor α can change the detection rate and the
false-alarm rate of the test results. To guarantee that all the targets
are detected by the extremum detector, the appropriate value of α

should be determined, which is easier compared to conventional
CFAR. Fig. 6 shows the trend of Pd and Pf in the clutter and
interference regions as α changes. As αincreases, both Pd and

Fig. 4. Typical grayed-out RD spectrum.

Pf increase rapidly. All targets in the clutter and interference
regions are detected when α = 0.85. Fig. 7 shows the detection
result of a typical RD spectrum when α = 0.85. It can be seen
from the detection result that although the detection result is full
of a large number of false targets, the first-level detector hits all
the suspicious targets and avoids missing targets.

The extremum detection results in a set of candidate target
points {(xi, yi )|i ∈ { f (xtest ) = 1}}, where (xi, yi ) is the ith central
coordinate of the suspicious target point. Considering that a 15 ×
15 area can contain most of the targets in our data, the potential
target position is set to a 15 × 15 neighborhood of the central
coordinates of each candidate target point.
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Fig. 5. Morphology of the target point.

Fig. 6. Target-detection rate and false-alarm rate.

Fig. 7. One example of the results of the first-level detector.

B. Feature Extraction

In this article, lightweight CNN and SAE are designed to
automatically extract deep features of potential target positions
by learning from different perspectives, to avoid the drawbacks

Fig. 8. Sliding window selection. (a) Potential target locations. (b) Original
RD spectrum.

of manual design and preselected features. The RSLDA algo-
rithm also aims to process the serial fusion feature to reduce
redundancy in features while improving discriminatory ability.

1) Feature Extraction by CNN: In this article, CNN is chosen
as a feature extractor to extract deep convolution features. CNN
generally contains an input layer, convolutional layers, pooling
layers, fully connected layers, and an output layer. In the convo-
lutional layer, the input image is convolved with multiple ker-
nels to generate multiple feature maps while preserving spatial
information. The feature maps extracted by the convolutional
layer are down-sampled by a pooling layer to reduce the dimen-
sionality of the features and avoid overfitting. The convolutional
and pooling layers make up the feature-extraction module. The
fully connected layer, placed at the end of the network, can be
considered the classifier of the network.

The potential target positions in the clutter and interference
regions are obtained by the extremum detection algorithm.
According to the potential target positions, we use the sliding
window method to generate a certain size of sliding window for
detection [7], [35]–[36]. As shown by the black regions in the
red rectangular box in Fig. 8(a), each pixel in the black regions is
used as a reference pixel to generate a sliding window of a certain
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TABLE I
WHOLE CNN STRUCTURE

size in the RD spectrum of the original RGB three-channel,
which is sent to the CNN network to extract the CNN feature of
that reference pixel.

Because the target points in the RD spectrum are usually
tiny, it is difficult to get good convolution features with a small
window. Statistically, almost all target sizes in our data are
within the range of 15 × 15, combined with the criterion of
the sliding window size selected for target detection in [7] and
[35]. Therefore, we choose a 29 × 29 window centered on
the reference pixel and twice the size of the target, as shown
in Fig. 8(b), so that the target point is surrounded by some
background information to let the CNN learn deep semantic
features. At the same time, because the structure and parameters
of CNN networks require extensive experience to debug, we here
use a simple structure as much as possible while still ensuring the
classification accuracy of the lightweight CNN networks. The
CNN established in this article follows the classical AlexNet
design idea and network structure, and the number of convolu-
tional kernels increases with the depth of the network. To match
the quantity of data and the number of classes while speeding up
the network, the designed CNN network is shallower than that
of AlexNet. The designed lightweight CNN structure includes
three convolutional layers, two pooling layers, and two fully
connected layers. The convolutional layers contain 8, 16, and
32 convolutional kernels respectively, each with a 3 × 3 kernel
size. The two maximum pooling layers use a 2 × 2 window for
down-sampling of the convolution features. Table I gives the
structure of the whole designed CNN.

To verify the effectiveness of our designed lightweight CNN,
we introduced AlexNet based on transfer learning, fine-tuned
on our training set, and compared with our designed CNN on
a validation set. The dataset used will be described in detail
in Section V. Table II gives the comparison results of the two
networks. The classification accuracy and running time of the

TABLE II
PERFORMANCE COMPARISON OF ALEXNET AND THE LIGHTWEIGHT CNN

TABLE III
RADAR PARAMETERS

TABLE IV
INFORMATION OF THE DATASET

two networks are evaluated on the same dataset and performed
ten times respectively, with the results averaged.

From the comparison results, it can be seen that the proposed
lightweight CNN is not very different from AlexNet based on
transfer learning in classification accuracy, but the proposed net-
work is significantly faster than AlexNet with larger parameters.
Therefore, the proposed lightweight CNN is more suitable for
our radar dataset. Here, we use the trained CNN model as the
feature-extraction module. Marmanis et al. [37] explained that
the shallow layers of the network are generic features, and the
higher layers are less generic and more specific. The features
contained in the last layers of the network are more important
in the classification compared to the features in the previous
layers. Therefore, we extract deep semantic features from the
first fully connected layer for the feature fusion. The steps for
extracting CNN features from potential target positions using
the CNN networks are as follows.

1) Train CNN with a dataset with labels.
2) Fix the parameters of the pretrained CNN and truncate the

model. The input layer to the first fully connected layer
(FC1) is used as a convolution feature-extraction module.

3) Input the 29 × 29 RGB window centered on the refer-
ence pixel to the convolution feature-extraction module
to obtain the 64-dimensional CNN feature FCNN of that
reference point.

2) Feature Extraction by SAE: After designing a lightweight
CNN to extract deep semantic features from suspicious target
positions, we designed a self-learning-based SAE as the second
lightweight feature- extraction network from different perspec-
tives. An SAE is a stack of automatic encoders (AEs). Fig. 9
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TABLE V
COMPARISON WITH DIFFERENT FEATURE ON THE TEST SET

TABLE VI
COMPARISON WITH DIFFERENT FUSION FEATURE REPRESENTATION ON THE TEST SET

TABLE VII
EVALUATION OF THE FIRST-LEVEL DETECTOR

Fig. 9. Structure of the AE.

shows the structure of an AE, consisting of an encoder and a
decoder. The encoder maps the input signal xto the encoded
signal z , and the decoder converts the encoded zto the output
signal x̂. AE trains and adjusts the weights of the network so

Fig. 10. Structure of the SAE.

that the output value is as close as possible to the input value.
The mappings learned in the encoder of AE can then be used to
extract features from the raw data. Fig. 10 shows the structure of
a SAE, in which the output of the former layer is used as the input
of the latter layer and the output layer of the SAE is a Softmax
classifier. The SAE trains each AE using a greedy method, in
which the hidden-layer output of the previous AE is used as the
input of the next AE, and so on, to pretrain the entire network.
Then, the network parameters are fine-tuned backwards on the
basis of the output error of the classifier.

To extract more efficient features from the potential target
position, similarly to the CNN feature extracted above, the SAE
feature is extracted within the 29 × 29 neighborhood of the
reference pixel. The 29 × 29 sliding window is then grayed
out and collapsed into an 841-dimensional column vector as the
input of the SAE we designed.
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TABLE VIII
PERFORMANCE COMPARISON ON THE MEASURED RD SPECTRUM

TABLE IX
DETECTION RATE RESULTS OF THE THREE ALGORITHMS

TABLE X
DETECTION RATE RESULTS OF THE THREE ALGORITHMS FOR WEAK TARGETS

SAE can extract deep features of the input data layer by layer
under unsupervised learning, but it is pointed out in [28] that the
more complex the network structure, as well as the more neurons
in the network, the more likely the network is to be overfitted
for a certain number of training samples. Kang et al. suggested
reducing the number of SAE layers as much as possible under
the premise of ensuring certain accuracy. Therefore, the SAE
designed in this paper contains only two hidden layers.

In addition, since the number of hidden-layer neurons has
a significant impact on network performance [38], we should
properly configure the number of neurons in each hidden-layer
in SAE to achieve better performance. We explore the impact
of the hidden-layer neuron configuration on performance in the
framework of two hidden layers. An experiment was performed
to determine the number of neurons of each layer in SAE.
We define the configuration of the hidden-layer neurons of the
designed SAE as (Num1, Num2), where Num1 ∈ (100, 450)
and Num2 ∈ (10, 100) refer to the number of the first and the
second hidden-layer neurons, respectively. We will search for
the optimal configuration in the range of Num1 and Num2.
We set the step of Num1 to 25 and the step of Num2 to 10,
so there are 150 hidden-layer configurations in total. We apply
each configuration to construct the corresponding SAE, then
train them on the same training set and test them on the same
validation set. The specific training process is as follows.

Fig. 11. Influence of the number of neurons on classification accuracy.

1) Perform unsupervised layer-by-layer greedy training of all
layers in the network, based on minimizing reconstruction
errors.

2) Train the Softmax Layer: Use the labels of the training
data to train the layer in a supervised manner.

3) Fine-tune the network by performing back propagation of
the entire multilayer network on the basis of the training
data in a supervised manner.

Based on the accuracy of the validation set, we chose the
optimal hidden-layer neuron configuration. To guarantee accu-
racy, the training and testing were run ten times under each
configuration and the results were averaged. Fig. 11 shows the
test results for each hidden-layer neuron configuration on the
validation set. It can be seen from the experimental results that
the corresponding SAE achieved the best performance on the
validation set when Num1 = 200 and Num2 = 60. Therefore,
our final SAE structure has two hidden layers; the first hidden
layer has 200 neurons and the second hidden layer has 60
neurons.

We chose the second hidden layer of SAE to extract features.
The specific process is as follows.

1) Fix the parameters of the pretrained SAE and truncate the
model. The input layer to the second hidden layer is used
as the SAE feature-extraction module.

2) Gray out the 29 × 29 RGB window and collapse it into
a column vector. Send it into the SAE feature-extraction
module to obtain the 60-dimensional SAE feature FSAEof
that reference point.
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C. Multifeature Fusion

In this part, feature processing is performed by an RSLDA
algorithm. The RSLDA algorithm can select and extract the most
discriminating features with less discriminatory loss and is more
robust to noise. Moreover, the algorithm is insensitive to the
selection of feature dimensions. The RSLDA algorithm is briefly
introduced below.

We define X ∈ Rm×n as a dataset with n samples; each sample
has m dimensions. The objective function of RSLDA can be
written as follows:

min
P,D,Er

Tr(DT (Mw − εMb)D + σ‖D‖2,1 + λ‖Er‖1)

s.t. X = PDT X + E, PT P = I
(4)

where Mw and Mb are within-class and between-class scatter
matrices, respectively, ε is a small positive parameter balancing
the two scatter matrices, σ and λ are small positive trade-off
parameters that determine the importance of the corresponding
terms, Er denotes the model’s random noise, and D ∈ Rm×d (d <

m) is the discriminant projection matrix. The constraint can be
seen as a variant of principal component analysis (PCA) to retain
energy. P ∈ Rm×d is an orthogonal reconstruction matrix.

According to the potential target positions detected by the
extremum detector, a series of sliding windows is generated.
CNN and SAE features are extracted from each window, and
then feature fusion is performed in two steps. First, to avoid
the impact of different scales, the two features are normalized
separately and then concatenated to obtain the 124-dimensional
serial fusion feature. Second, RSLDA is designed to further
refine the obtained fusion feature, which reduces the redundancy
of the feature while improving the discriminative ability of the
fusion feature.

D. Second-Level Detector—ELM

After the fusion feature extraction in Section IV-C, we select
the ELM to distinguish the true targets from among the suspected
ones.

Supposing R = {(x(i), y(i) )|i = 1, 2, . . . , q; x(i) ∈ Rn;y(i) ∈
R2} is a dataset with q samples, where x(i) is the n-dimensional
fusion feature of the ith sliding window and y(i) is the desired
output of the ith sliding window, representing whether it is the
target or not, then the output of an ELM network with L hidden
layer nodes is as follows:

⎡
⎢⎣

g(w1x(1) + b1) · · · g(wLx(1) + bL )
...

. . .
...

g(w1x(q) + b1) · · · g(wLx(q) + bL )

⎤
⎥⎦

⎡
⎢⎢⎣

β1
β2
...

βL

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

t (1)

t (2)

...
t (q)

⎤
⎥⎥⎥⎦ (5)

where t (i) is the actual output of the ith fusion feature, g(·) is the
activation function, wl is the input weight, bl is the bias, and βl
is the output weight of the lth node. Equation (5) can then be
simplified and written as follows:

Hβ = T (6)

where H is the output of the hidden layer, β =[β1,β2, . . . ,βL]T ,
T =[t (1), t (2), . . . , t (q)]T .

During the network training, the input weights and bias of
the hidden layer are randomly determined. The aim of ELM

Fig. 12. Examples of target samples and nontarget samples. (a) Target samples,
(b) Nontarget samples.

learning is to minimize the output error
∑q

i=1 ‖t (i) − y(i)‖. Thus,
the training procedure for the ELM is equivalent to solving the
least-squares solution to (6), which can be expressed as follows:

β̂ = H+Y (7)

where H+ is the Moore-Penrose generalized inverse of H . Here,
the fusion feature dataset is sent into the ELM for training, and
the trained ELM can then be used as a second-level detector.

V. EXPERIMENT

Multiple experiments were performed to verify the effec-
tiveness of the proposed cascade target-detection framework,
especially for complex environments with strong clutter and
interference. Our data come from the field HFSWR experiment
conducted in Huanghai, China. The radar system parameters
used are given in Table III. In Section V-A, we present the
dataset used by the proposed algorithm for target detection; in
Section V-B, we evaluate the discriminatory ability of the fusion
feature on the test set; and in Section V-C, we perform tests on
the actual measured RD spectrum and the RD spectrum of the
simulated target points to evaluate the overall performance and
target-detection performance of the proposed algorithm. The
corresponding simulation experiments were performed using
MATLAB 2019b with the hardware support of an Intel i5-9400
(2.90GHz) CPU and 16 GB memory.

A. Dataset for Target Detection

The proposed target-detection algorithm contains two feature-
extraction networks to adaptively extract the features of the
sliding window. We construct a dataset using measured RD
spectra (875 × 656 pixels). The dataset consists of sliding
windows of size 29 × 29, each centered on a reference pixel,
and the labels of the dataset are “target” and “nontarget,” where
all targets are real target points. Because the proposed algorithm
focuses on target detection in clutter and interference regions,
most of the target points with positive labels are at the edge of, or
inside, the clutter. The dataset contains 10 000 window samples,
where the number of target samples is 5000 and the number
of nontarget samples is 5000. Fig. 12 shows the examples of
target samples and nontarget samples. We randomly divide the
dataset, 7/10 of which is used as the training set X1 to pretrain
the two feature-extraction networks, 1/10 of which is used as the
validation set X2 to evaluate the two feature-extraction networks,
and the remaining samples are used as the remaining set X3

to train and evaluate the second-level detector ELM. Table IV
gives the information of the dataset. When two feature-extraction
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networks are trained and evaluated, for CNN, the window sam-
ples in X1 and X2 are directly used as inputs, while for SAE,
the window samples in X1 and X2 need to be grayed out and
collapsed into an 841-dimensional column vector as the input of
the designed SAE. Fusion features are extracted from the X3 in
accordance with the scheme described in Section IV-C to train
and evaluate the ELM-based target detector.

B. Discriminant Capacity Analysis of Fusion Feature

In this part, we verify the performance of the proposed two
lightweight feature-extraction networks and the effectiveness
of the proposed feature-fusion algorithm. The X3 are divided
into a training set and a test set; the ratio of training set to test
set is 2:1. Our method here is the feature obtained through the
feature-fusion scheme mentioned in Section IV-C. To evaluate
the effectiveness of the proposed feature-fusion algorithm, a
comparison has been made among the CNN feature FCNN, the
SAE feature FSAE, the original serial fusion feature obtained
after direct concatenation of the CNN and SAE features, and the
feature obtained by processing the original serial fusion feature
using PCA. The PCA algorithm is used to preserve 98% of the
energy of the original serial fusion feature, in order to obtain a
50-dimensional fusion feature. For a fair comparison, we use the
RSLDA algorithm to transform the original serial fusion feature
to 50 dimensions.

Classification was performed using the ELM, and each group
of experiments was performed 50 times and the final results
averaged. Because the number of hidden-layer nodes has a
large influence on the final classification performance, for each
feature, multiple tests were performed to find the optimal number
of hidden-layer nodes before the comparison experiment began.
Table V gives the results for several features. The “time” here
refers to the time consumed to extract features using different
feature-extraction algorithms for a single sample. For a single
feature, the discriminative ability of the CNN feature is slightly
better than that of the SAE feature. This is due to the design
of the CNN network, which uses multiple convolutional layers
to extract more complex deep semantic features. Second, the
original serial fusion feature has better performance than a single
feature. This means that the extracted CNN feature and SAE
feature are complementary, and the designed SAE can extract
some information different from the deep convolution feature
from various perspectives, which is a good way to describe the
target point. After the PCA algorithm is used to process the
serial fusion feature, there is little loss of accuracy, indicating
that there is some redundancy affecting discriminatory ability.
Furthermore, the fusion features obtained by the RSLDA algo-
rithm achieve the best result, which indicates that the proposed
feature-fusion strategy is effective.

We make use of t-distributed stochastic neighbor embedding
[39] to visualize the original serial fusion feature, the fusion
feature obtained using the PCA algorithm, and the fusion feature
obtained by the RSLDA algorithm in Fig. 13. In comparison
with the other two features, the fusion feature obtained using
the RSLDA algorithm is clearly divided into two classes and is
more aggregated within the classes.

In addition, to evaluate the effectiveness of the proposed
two lightweight feature-extraction networks, we introduced the

Fig. 13. Visualization of (a) the original serial fusion feature. (b) Fusion feature
obtained using the PCA algorithm. (c) Fusion feature obtained using the RSLDA
algorithm.

transfer-learning-based AlexNet network as the standard feature
extractor [23]. We extracted deep features from the first fully
connected layer. Since the extracted features are up to 4096
dimensions, we reduce the dimension of the final AlexNet
feature FAlex to 330 by the PCA algorithm while retaining 98%
of the original feature energy. We used different fusion feature
representation and evaluated them separately. The specific ex-
perimental setup is the same as that of Table V. Table VI gives
that the transfer-learning-based AlexNet feature representation
is much worse than the two lightweight feature extractors we
designed specifically for radar target detection. However, feature
fusion of FAlexwith FSAEand FCNN, respectively, reveals that both
classification results have different degrees of improvement over
single features, showing that the fusion feature contains more
information in characterization of the target. In addition, we find
that the fusion of FAlexwith FSAEoutperforms the fusion with
FCNN, which demonstrates that the designed SAE can extract
more effective features, also given in Table V. The experimental
results show that the three-feature-fusion scheme is a significant
improvement compared to the single-feature. Moreover, in terms
of detection time, due to the deeper layers and large number of
parameters in AlexNet, the detection time for a single sample is
0.0203s and the three-feature-fusion scheme is even longer than
0.026s, while our algorithm takes only 0.0052s.

C. Detection Results for Vessels in the RD Spectrum

In the previous section, we briefly evaluated the proposed
algorithm on a test set. Next, we verify the performance of the
proposed algorithm on the RD spectrum. In this paper, target-
detection rate Pd, false-alarm rate Pf , error rate E , and target-
omission rate M are used as the evaluation indexes of detection
performance. Pdand Pf are defined in (2) and (3); Mand E are
defined as follows:

M = 1 − Pd (8)

E = Pf + M. (9)
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1) Evaluation of the First-Level Detector: We introduce a
grayscale feature-based extremum detector in the first level of
the two-level cascade detector to realize the rough extraction of
suspicious targets and improve the efficiency of the algorithm.
To verify the necessity of introducing the first-level detector, a
comparison experiment was performed. We removed the first-
level detector from the proposed two-level cascade detector and
used only the ELM directly to detect targets in the clutter and
interference regions. At this point, since the first-level detector
is removed, we use each pixel in the clutter and interference
regions as a reference pixel to generate the sliding windows,
after which all processes are the same as those in the proposed
algorithm.

We selected 30 RD spectra of known ship locations for detec-
tion, and all ship information was obtained through automatic
identification system (AIS). We counted the detection results in
clutter and interference regions identified during the preprocess-
ing stage. A performance comparison with the proposed cascade
detector in terms of time and accuracy is also provided. Table
VII gives the detection performance of the two algorithms.

From the comparison results, we can see that the Pd of the
two algorithms are basically the same, which indicates that the
proposed first-level detector can extract all suspicious target
points without missing targets. The Pf of the two-level cascade
detector is lower than that of only the second-level detector ELM.
This is because the proposed first-level detector can effectively
filter some clutter windows misclassified by the second-level
detector. In terms of detection time, the proposed algorithm is
significantly more efficient than that of only the second-level de-
tector ELM. This is because the proposed algorithm can roughly
extract all the suspicious target points, which saves detection
time by filtering out the invalid windows for the subsequent
algorithm.

From the above comparison experiment, we come to a con-
clusion that the proposed two-level cascade target-detection
algorithm can improve the detection efficiency and accuracy
compared with using only the ELM network.

2) Target Detection by Field RD Spectrum: In this part,
the effectiveness of the proposed detection framework is
evaluated by comparison with current mainstream HFSWR
target-detection algorithms: the modified CFAR algorithm;
the wavelet-transform-based algorithm [11] proposed by Li
et al.; and the OES-ELM-based algorithm [16] proposed by
Zhang et al.

The modified CFAR algorithm is mainly divided into three
steps. First, curve fitting is used to suppress clutter and back-
ground noise. Then, a two-dimensional CA-CFAR is performed
in the Doppler direction and range direction, respectively. Fi-
nally, a global peak detection is performed, and an “AND”
operation is performed on the results of the three detections to
obtain the final detection results.

The wavelet-transform-based algorithm [11] uses a peak
SNR-based algorithm to determine the scale of the wavelet
transform, and then a fuzzy-set-based algorithm is used to
enhance the high-frequency coefficients. Finally, reconstruct the
high-frequency coefficients to suppress clutter and background
noise for target detection.

The OES-ELM-based algorithm [16] uses a two-stage cas-
cade detector for target detection. The first stage uses a linear

classifier based on grayscale features to determine the location
of suspicious target points. The second stage sends the extracted
Haar-like features at suspicious target locations to the OES-ELM
for real target classification.

According to the principal analysis, the modified CFAR al-
gorithm and the wavelet-transform-based algorithm implement
target detection after suppressing the clutter, while our algorithm
and the OES-ELM-based algorithm perform the target detection
directly on the RD spectrum. We selected 30 RD spectra of
known ship locations for detection, and all ship information
was obtained through AIS. Table VIII compares the perfor-
mances of the four algorithms. We count the detection results
in clutter and interference regions identified during the prepro-
cessing stage. In detection time, the modified CFAR algorithm,
wavelet- transform-based algorithm, and OES-ELM-based algo-
rithm count the time from the input RD spectrum to the output
detection results. Our proposed algorithm counts the test time
of the two-level cascade detector.

Table VIII gives that the proposed algorithm has better de-
tection performance than the other three. The proposed algo-
rithm has the lowest false-alarm rate and the highest detection
rate. This indicates that the extracted fusion features can better
characterize the target points and are more robust. Although
the wavelet-transform-based algorithm can remove sea clutter,
ground clutter, ionospheric clutter, and RFI regions and retain
only the high-frequency components in the RD spectrum, its
detection performance is poor due to the variable morphology
and energy of the clutter regions. In particular, the OES-ELM-
based target detection algorithm extracts Haar-like features of
the potential target regions and classifies the real target using
the OES-ELM, which can detect targets in the smooth region of
the RD spectrum. However, in our experiments, the algorithm
performed poorly in the clutter and interference regions, with a
high false-alarm rate, indicating that the simple central Haar-like
features alone are not sufficient for detection in clutter and
interference regions. Due to the complexity of the environment
in the clutter and interference regions, morphological features
cannot effectively distinguish targets from clutter, while the pro-
posed deep feature representation can better distinguish between
targets and clutter.

For the same RD spectrum, the modified CFAR algorithm
had the fastest average testing time, and the wavelet-transform-
based algorithm was the slowest. The proposed algorithm is
faster on average than the OES-ELM-based algorithm. The main
reason is that the first-level classifier of the OES-ELM-based
algorithm uses a linear classifier based on grayscale values to
obtain potential target regions. This treats almost all clutter and
interference regions as potential target regions and consumes
a lot of time. However, the proposed algorithm is more effi-
cient by using a simple extremum detector to extract potential
targets.

Fig. 14 shows the detection results for two actual ship targets
for 15 min. The RD spectrum of the current moment and the
distance and velocity of the two ship targets are acquired every 3
min. Fig. 14(a) shows the RD spectra of the sea clutter, including
the negative Doppler-frequency shift at the moment of acquisi-
tion. The two specific ship targets, t1 and t2, are provided by
the AIS installed on the vessels. The horizontal coordinate is the
target speed in kilometers per hour, and the vertical coordinate
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Fig. 14. (a) Partial RD spectrum containing two typical targets. (b) Detection results of modified CFAR algorithm. (c) Detection results of wavelet-transform-based
algorithm. (d) Detection results of OES-ELM-based algorithm. (e) Detection results of proposed algorithm.

is the target range. Fig. 14(b)–(e) shows the detection results
of the modified CFAR algorithm, the wavelet-transform- based
algorithm, the OES-ELM-based algorithm, and the proposed
algorithm at the corresponding moments. It can be seen that the
two selected target points are affected by the clutter at most of

the moments, and are even partially submerged by the clutter for
a time, but the proposed algorithm can detect both consistently.
The other three algorithms have obvious failings. Moreover,
the OES-ELM-based algorithm cannot work properly in these
circumstances and has a very high false-alarm rate. Hence, in
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Fig. 15. (a) Original RD spectrum. (b) Detection results of proposed algorithm. (c) Detection results of modified CFAR algorithm. (d) Detection results of
wavelet-transform-based algorithm.

subsequent experiments, the OES-ELM-based algorithm will
not be used as a comparison algorithm.

3) Comparison of Target Detection Performance: For HF-
SWR target detection, the detection rate Pd is more important
than the false-alarm rate Pf , as false targets can be removed by
subsequent schemes such as multi-frame correlation. Therefore,
in this part, target-detection experiments were performed in the
clutter and interference regions to evaluate the performance of
the proposed algorithm. On the one hand, to completely measure
the Pd of each algorithm, a large number of RD spectra are
required. On the other hand, as the number and location of
artificially added simulated target points are determined, and
their signal-to-clutter ratio (SCR) can be set artificially, it is
easy for us to precisely perform comparison experiments. For
the above considerations, we added simulated target points in the
clutter and interference regions of the RD spectrum to obtain
a large number of experimental samples to evaluate the Pd of

each algorithm. Table IX gives the detection results of the three
algorithms for 60 RD spectra with simulated target points added.
The detection rate is defined as the ratio of the number of detected
targets to the total number of targets.

Table IX gives the algorithm proposed in this article has better
detection performance than the other two in the interference
and clutter regions. The proposed algorithm has the highest
target detection rate Pd, which is attributed to the use of two
deep networks to extract features, and the fusion feature better
characterizes the target point. The detection rates of the wavelet-
transform-based algorithm and the modified CFAR algorithm
are not much different. Fig. 15(a) shows a typical RD spectrum
with randomly added simulated target points, which contains a
variety of clutter and a large amount of RFI. Fig. 15(b)–(d) shows
the detection results of the proposed algorithm, the modified
CFAR algorithm, and the wavelet-transform-based algorithm,
respectively. The circles mark the simulated targets, and the
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Fig. 16. Detection of weak targets with SCR of 12.5dB. (a), (c) Original RD spectrum. (b), (d) Detection results of proposed algorithm.

squares mark the targets detected by each algorithm. The pro-
posed algorithm can accurately detect all the added targets in the
clutter/interference regions, but the other two miss a lot of them.
To further evaluate the performance of the proposed algorithm
in detecting weak targets affected by clutter and interference,
we added lower-energy targets in the clutter and interference
regions. Here, the energy of the target is defined as the SCR, as
follows:

SCR = 10 · log10

(
Ps

Pac

)
(10)

where Ps is the amplitude of the target point and Pacis the average
amplitude of the clutter around the target point. The SCR of the
added targets ranges from 7.5 to 12.5 dB. Three sets of tests are
performed, each of which is a statistical result of 45 RD spectra.
Table X compares the results of the three algorithms. When the
SCR of the simulated target point is less than 10 dB, the mor-
phology of the target point is almost invisible. However, because
the algorithm in this paper uses two deep learning networks
to extract features, which has better robustness, it still works
better than the other two algorithms in the low-SCR case. Fig.
16 shows two typical detection results when the simulated target
energy is 12.5 dB. The circles in Fig. 16 mark the location of
the simulated target points, showing that the proposed algorithm
can effectively detect the edge of the clutter and interference as
well as the submerged target point.

VI. CONCLUSION

We propose a new intelligent algorithm for target detection in
clutter and interference regions for HFSWR, based on a cascade
deep learning network combined with ELM and feature fusion.
The clutter/interference region in the RD spectrum is quickly
identified by faster R-CNN. Then, a two-level cascade detector is
proposed to effectively detect real target points in the clutter and
interference regions. In the proposed two-level cascade detector,
the extremum detector, as the first-level detector, is used for
extraction of suspicious target positions. To overcome the dis-
advantages of conventional feature-extraction operators, which
are difficult to design and have poor robustness in clutter and
interference regions, two trained networks are also designed to
extract the deep features of potential target positions from differ-
ent perspectives. Then, the features are fused and sent to the ELM

for accurate classification. The effectiveness of the fusion feature
was verified in the feature-comparison experiment. Furthermore,
to show the detection performance of the proposed algorithm
in the clutter/interference regions, we compared it with the
current mainstream detection algorithms. The experiments for
actual vessel targets show that the proposed algorithm has better
detection performance than the conventional algorithms. The
proposed algorithm is optimal in both target-detection rate and
false-alarm rate. In the target-detection experiments, it has the
highest detection rate for weak targets with low SCR concealed
in the clutter and interference regions. Hence, the proposed
algorithm is usable for the intelligent detection of HFSWR
vessels affected by strong clutter and interference.
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