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Abstract—Hypersepctral unmixing (HU) has been one of the
most challenging tasks in hyperspectral image research. Recently,
nonnegative matrix factorization (NMF) has shown its superiority
in hyperspectral unmixing due to its flexible modeling and little
prior requirement. But most NMF algorithms tend to use least
square function as the objective, which is sensitive to outliers and
different kinds of noise. In this article, we propose a modified
Huber (mHuber) NMF model to achieve robustness to outliers and
different kinds of noise. Under this robust model, we accelerate
the half-quadratic optimization algorithm by replacing multiplica-
tive updating rule with a projected nonlinear conjugated gradient
rule, which achieves much faster convergence rate. Moreover, a
new tuning parameter, rather than a fixed one, is given to adapt
to mHuber loss function. Finally, we perform algorithm analysis
and experiments in the synthetic and real-world datasets, which
confirms the effectiveness and superiority of the proposed method
when compared with several state-of-the-art NMF methods in HU.

Index Terms—Modified Huber (mHuber), nonnegative matrix
factorization (NMF), projected conjugated gradient, tuning
parameter.

I. INTRODUCTION

HYPERSPECTRAL image is often a mixing of the spec-
trums from different substances, which is acquired by

hyperspectral imaging sensor. A significant task in hyperspectral
image analysis is hyperspectral unmixing (HU). It decomposes
any pixel into the combination of an endmember matrix and
an abundance matrix. Due to its high-spectral resolution, low-
spatial resolution, and spectral redundancy, HU has also been a
challenging work in recent hyperspectral image research [1].
Recent research has generally divided the HU task into two
models, i.e., linear mixing model (LMM) and nonlinear mixing
model (NLMM). Since nonlinear mixing model incorporates the
mutual impact of two or more substances, which leads to variety
and complexity of the model, most algorithms for HU in these
years are based on LMM, which ignores the mutual impact of
endmembers. Existing HU algorithms on LMM can be classified
into four categories: Geometry-based, sparsity regression-based,
statistics-based, and deep learning- based.
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Geometry-based methods often assume the existence of “pure
pixel” in the HU, whose typical algorithms include vertex com-
ponent analysis (VCA) [2], N-Findr [3], pixel purity index [4],
and minimum volume-based methods like simplex identification
via split augmented Lagrangian (SISAL) [5] and minimum
volume simplex analysis (MVSA) [6]. But in real cases, this
assumption is not always true. Sparse-regression-based methods
assume that each pixel can be represented by the pure spectrums
from the known spectral libraries. So the HU problem seeks
to find an optimal linear combination of endmembers. Zheng
et al. [7] proposed a weighted sparse regression model and
the corresponding two iterative reweighted algorithm, which
combines the advantages of alternating direction method of
multipliers and iterative reweighting procedure. Fu et al. [8]
proposed a sparse regression HU algorithm based on self-
dictionary multiple measurement vector (SD-MMV). However,
this method relies much on a prior dictionary of endmembers.
Deep learning-based methods have received increasing attention
with the improvement of deep learning, Savas [9] developed
a two-staged autoencoder network by introducing additional
layers and a projection metric to achieve an optimum solu-
tion. Statistics-based methods have already been a widely used
method for HU problem. Popular algorithms including indepen-
dent component analysis (ICA) [10], nonnegative matrix factor-
ization (NMF) [11], [12] have been proved both theoretically and
practically to be powerful in dealing with HU problem. Among
these algorithms, NMF achieves public attention due to its
advantages on effectiveness, little prior requirement and flexible
modeling. Lee et al. [13] proposed a brief multiplicative rule to
decompose a nonnegative matrix into two nonnegative ones si-
multaneously. In this HU problem, the two achieved nonnegative
matrices can be seen as the spectral endmember matrix and the
abundance matrix. In [13], it shows that the two matrices can also
be regarded as a sparse representation due to their nonnegativity.

Now we introduce several common NMF-based methods for
HU. L1-NMF [14] added L1 sparsity constraint to the loss
function to ensure the sparsity of the solution. L1/2-NMF [11]
selected L1/2 as the best Lq regularizer, but with more com-
putational cost than L1-NMF. Li [15] used a L2,1 norm as the
loss function, not only to determine the optimal endmember
number but also get robust results. Since hyperspectral image
is originally an image tube, naturally the tube version of NMF
generates. Nonnegative tensor factorization (NTF) [16] has been
developed by considering spatial information of hyperspectral
image. Li et al. combined the advantages of NTF and NMF to
preserve the local spatial structure of hyperspectral image [17].
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Moreover, several existing NMF algorithms tend to use man-
ifold learning regularization for the abundance matrix to keep
its intrinsic structure. Lu et al. [12] incorporated manifolding
regularization intoL1/2-NMF to preserve the similarity between
the original image and the abundance maps. Shu et al. proposed
a multilayer manifold sparse NMF on both spectral signature
matrix and the abundance matrix [18]. Peng et al. proposed a
general loss model for different kinds of noise [19]. Even with
so many pros and achievements, many NMF models and their
corresponding updating rules still suffer from several cons like
instability, outliers, local minima, and low convergence rate.

A well-known knowledge is that most NMF models utilize
the least square function (L2 function) as their loss function, but
it suffers from a drawback that when the reconstruction error
is larger than 1, the square error is larger than the original
error; while the reconstruction error is smaller than 1, it is
smaller than the original error. That is to say, L2 function is
sensitive to large values such as outliers and different kinds
of noise in real scenarios. The lack of robustness in existing
NMF models naturally arouses extra exploration for more robust
NMF models. As we know, M -estimators is a significant robust
technique. The common M -estimators include: L2 estimator,
L1 estimator (i.e., absolute value), L2,1 estimator, Lp estimator
(i.e., least-powers), Fair estimator, Huber estimator, cauchy es-
timator, and so on. Huber function is recommended for almost
all situations in multivariate linear regression, since it not only
incorporates the superiority of L2 and L1 but also shows broad
applicability.

But the research of Huber function and its modified models
in NMF for unmixing is far from enough. Du et al. [20] gave an
iterative algorithm for both correntropy NMF and Huber NMF
under the scheme of half-quadratic optimization, but with low
convergence rate. Wang studied the truncated cauchy estimator
for NMF for HU in [21], and downplayed the effect of extreme
outliers, but suffered from more parameters to be learned. Peng
et al. [22] proposed a self-paced NMF model and made com-
parison with several robust NMF methods by adding noise in
different ways.

In this article, we propose to replace theL2 loss of residuals by
a modified Huber (mHuber) function for NMF to achieve robust
matrix factorization and avoid the instability of standard Huber
NMF. After adding some common regularization, we solve the
new loss function by half-quadratic optimization. The existing
half-quadratic optimization to solve Huber NMF adopts multi-
plicative updating rule (MU). Since the MU in NMF are often
shown to have low convergence rate, we develop a projected non-
linear conjugated gradient algorithm under the half-quadratic
scheme as an improved and fast version of the algorithm given
in [20]. Then we introduce an new tuning parameter to adapt
mHuber. Moreover, we give the corresponding convergence
analysis and robustness analysis for our proposed model. In
order to show the performance of our proposed method, we
design several experiments and introduce a new indicator SFF
in order to help evaluate the performance of unmixing.

The contributions of this article are listed as follows.
1) We introduce a modified version of Huber loss function into

NMF model, not only to provide robustness against outliers and

different kinds of noises but also to ensure stability and better
performance.

2) A projected nonlinear conjugated gradient algorithm under
half-quadratic scheme for updatingS is proposed to make up the
low convergence rate of MUs; convergence rate, computational
complexity, and robustness analysis are also included.

3) A new tuning parameter is proposed to adapt the new loss
function, instead of the normal fixed median method.

The rest of this article is organized as follows: Section II illus-
trates the basic knowledge of the LMM, Huber NMF model, and
the mHuber NMF. Section III presents a mHuber NMF model,
its updating algorithm and algorithm analysis. Section IV shows
the experiments on synthetic data and real-world hyperspectral
dataset. Section V concludes this article.

II. PRELIMINARY

A. LMM and Multiplicative Update Rule

In the hyperspectral images, each pixel is regarded as a
combination of one or several pure endmembers of different
substances. Regardless of the mutual impact of endmembers to
the spectral reflectance, the linear mixed model can be applied to
decompose a pixel ofM bands from the observation intoK pure
endmembers and their corresponding abundance matrix. For a
given pixel vector x = [x1, . . ., xM ]T , M denotes the number
of the spectral bands. The LMM can be given as

x = As+ ε

in which A = [A1, . . .,AK ] ∈ RM×K is the endmember ma-
trix, s = [s1, . . ., sK ]T ∈ RK represents the abundance vector
of pixel, k is the number of endmembers, and ε denotes an
M × 1 vector of the additive noise as the measurement errors.
Given two constraints of x in LMM: The abundance nonneg-
ativity constraint (i.e., si ≥ 0), and the abundance sum-to-one
constraint (i.e.,

∑k
i=1 si = 1), respectively. By matrix notation,

the LMM for N pixels in the image can rewritten as

X = AS + E (1)

whereX ∈ RM×N ,A ∈ RM×K ,S ∈ RK×N , and E ∈ RM×N

represent the observed data, the endmember reflectance, the end-
member abundances, and noise, respectively. In most cases, the
noise E is assumed to be independent and identically distributed
Gaussian noise. But there will also be some other kinds of noise
in it, such as heavy-tailed noise, outliers.

The widely used optimization algorithm for this model is
multiplicative iterative algorithm which applies a multiplicative
update rule in NMF as follows:

A← A. ∗ XST ./ASST (2)

S ← S. ∗ ATX./(ATA)S. (3)

B. Huber Criterion

To be robust to the outliers or noise corruptions, the loss
function based on Huber’s criterion is adopted, which is a critical
theory as a M -estimator in robust analysis. It has lowered the
sensitivity of the least square function by replacing the square
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term into L1 term in suitable conditions. As Huber function
is so satisfactory that it has been recommended for almost all
situations [23]. Then, the Huber loss is given by

H (Eij) =

{
1
2 E2

ij , ‖Eij‖2 ≤ c
c‖Eij‖2 − 1

2c
2, else.

(4)

The corresponding derivative ψij of the Huber loss are given by

ψij =

{
Eij , |Eij | ≤ c
c · Eij

|Eij | , else
(5)

in whichEij = Xij −
∑K

k=1 AikSkj . When |Eij | is small, the
Huber Loss acts as a quadratic increase; while it acts as a linear
increase when |Eij | is large. c is a cutoff parameter, which is
set to control the level of robustness. It is easy to see that the
loss function reduces to least-squares pattern as c→∞, while it
reduces to least absolute deviation when c→ 0. In [23], Huber
proposed a fixed c value of 1.345 to achieve 95% efficiency
at N(0, 1), N(0, 1) denotes the standard normal distribution.
But there are other adaptive methods to get c automatically.
Moreover, from (5), we can get that |ψij | ≤ c.

Even Huber function gives remarkable performance, it en-
counters difficulties because of a lack of stability in the gradient
values. To be specific, it may have two discontinuous second
derivative 1 and 0 when Eij varies during different iterations.
The modified form is less sensitive than standard Huber loss and
benefits from a smooth second derivative. Then a mHuber model
is proposed in [24], which guarantees a unique solution of the
new Huber Loss in, i.e.,

HM (Eij) =

{
c2 [1− cos (Eij/c)] , |Eij | /c ≤ π/2,
c |Eij |+ c2 (1− π/2) , else

.

(6)
The corresponding first derivative is

ψM (Eij) =

{
c sin (Eij/c) , |Eij | /c ≤ π/2,
c · sgn (Eij/c) , else

. (7)

The corresponding second derivative is

ψ′M (Eij) =

{
cos (Eij/c) , |Eij | /c ≤ π/2,
0, else

. (8)

III. ALGORITHM FOR MODIFIED HUBER-BASED NMF
UNMIXING

A. Modified Huber-Based NMF

Now, we introduce the mHuber loss into the NMF model in
the HU, which is defined as follows:

f(A,S) =
1

2

M∑
i=1

N∑
j=1

HM (Eij) (9)

in which Eij = Xij − (AS)ij .
In most hyperspectral images, most pixels will not consist of

all endmembers, especially when the number of endmembersK
is relatively large. So we can expect low rank and sparseness of
reconstruction image. Naturally, we propose the nuclear norm of
the reconstruction to ensure its low rank and sparseness. More-
over, graph regularization [12] is often added into unmixing

model to build the link between the inner manifold structures of
the abundance and the observation. This is derived from the
assumption that pixels that similar to each other tend to be
close in the new abundance space. Thus, the f(A,S) can be
transformed into

f(A,S) =
1

2

M∑
i=1

N∑
j=1

HM
(
(X −AS)ij

)

+λ1‖AS‖∗ + λ2Tr
(
SLST

) (10)

where Tr(·) is the trace. L = D −G is an N ×N laplacian
matrix, in which D is a diagonal matrix whose entries are
column sums of G, G is the weight matrix of graph calculated
by common methods, such as heat kernel.

The nuclear norm has the following relaxation as ‖AS‖∗ →
1/2(‖A‖2F + ‖S‖2F ), the second term of our loss can be trans-
formed into λ1(‖A‖2F + ‖S‖2F ), then the new f(A,S) will be

f(A,S) =
1

2

M∑
i=1

N∑
j=1

HM
(
(X −AS)ij

)
+

λ1

(‖A‖2F + ‖S‖2F
)
+ λ2Tr

(
SLST

)
. (11)

Then the abundance nonnegativity constraint (ANC) and
abundance sum-to-one constraint (ASC) constraints of matrix
form are denoted by

A ≥ 0,S ≥ 0, 1TKS = 1TN

where 1K and 1N denote all one column vectors of size K and
N .

Till now, our robust mHuber NMF model is built with the first
term robust to outliers, the second term guaranteeing the low
rank and sparseness, the third term keeps the intrinsic manifold
structure of abundance.

B. Updating Rules

Since the cost function f of our mHuber NMF model
is not convex to A and S together, the classical MUs for
NMF may confront difficulties. Due to the higher efficiency
of half-quadratic minimization than gradient-based methods for
this kind of problem [25], we adopt it here to optimize our
model. To realize it, we introduce additional auxiliary function
/varPhi(W ij) and the conjugate variable W ij of Eij , which
reformulates our loss function into an augmented loss function
with a quadratic term in an enlarged parameter space. Then the
following equation holds:

L =

M,N∑
i,j=1

(
1

2
W ijE

2
ij + /varPhi (W ij)

)

+ λ1

(‖A‖2F + ‖S‖2F
)
+ λ2Tr

(
SLST

)
. (12)

Via this, we have the augmented objective function

argmin
A,S,W,c

L = argmin
A,S

f (A,S) . (13)

The half-quadratic scheme will be a three-step scheme.



5562 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

TABLE I
HYBRID STRATEGY FOR βk+1

1) When A, S, and c are fixed, the minimization of the (12)
becomes a convex problem to W . The optimal W is given by

Wij =
H

(Eij)
M
Eij

. (14)

It is easy to see that when a large error exists, W ij tends to be
small, with larger W ij when small error exists.

2) When W and c are fixed, our loss becomes a weighted
least square NMF problem, then multiplicative rules to alterna-
tively iterate A and S has been used in standard Huber NMF
in [20]. But multiplicative rules is often criticized for its slow
convergence rate. Thus, we propose a new nonlinear projected
conjugated gradient rule here to update A and S.

3) When A, S, and W are fixed, c can be determined by
several methods.

The detail of our proposed algorithm is illustrated as follows.
1) Update W : When A, S, and c are fixed, The weight

matrix W can be updated by

WM (Eij) =

{
c∗sin(Eij/c)

Eij
, |Eij | /c ≤ π/2

c·sgn(Eij/c)
Eij

, else.
(15)

2) UpdatingS: When the weight matrixW is fixed, the opti-
mization reduced to a weighted NMF problem, then the common
MUs can be applied. But because of its low convergence rate,
we develop a nonlinear projected conjugated gradient method
in the iteration process of half-quadratic framework for both S.
First taking the partial derivative with respect to S yields

∂L
∂S

= −AT (W ⊗X) +AT (W ⊗ (AS)) + λ1S + λ2SL

(16)
in which ⊗ means the Hadamard product. Then the iteration
direction will be

Ξk+1 = −∂L/∂Sk+1 + βk+1Ξk. (17)

Now in terms of the choice of βk+1, the Dai–Yuan (DY) formu-
las [26] ensures strong convergence properties but may suffer
from a tiny step and bad search direction. The Hestenes–Stiefel
(HS) formulas [27] often guarantees better search direction and
step size, but with poor convergence. Thus we select a hybrid
strategy to chooseβk+1, which are given in Table I. Before given
the strategy, we define yk as yk = vec( ∂L

∂Sk+1
− ∂L

∂Sk
).

After getting the iteration direction /varXik+1, we need to
decide the step length αk+1. In order to avoid bad-scaled search
direction that may happen in conjugated gradient method, an
expedient is to integrate current information for an initial guess

of αk+1 as

αinit =
αk (vec (∂L/∂Sk+1))

T vec (/varXik)

(vec (∂L/∂Sk))
T vec (/varXik+1)

. (18)

When k = 0, the initial step size is 1/‖vec(∂L/∂S0)‖∞. Then
by utilizing an inexact line search method satisfying the weak
Wolfe condition:

(i) f(Sk+1)− f(Sk) ≤ c1αk/varXikf
′(Sk);

(ii) /varXiTk f
′(Sk+1) ≥ c2/varXikf ′(Sk);

where 0 < c1 < c2 < 1; (i) is the Armoji condition for suffi-
cient descent, while (ii) is the curvature condition to avoid very
short step; thus we have

Sk+1 = Sk + αk+1/varXik+1. (19)

As the above updating cannot ensure nonnegativity of S, we
need a project operation by

Sk+1 = max {0,Sk+1} . (20)

The stopping criterion of the iteration is

‖vec (∂L/∂Sk+1) ‖∞
(1 + ‖vec (∂L/∂S0) ‖∞) < ε (21)

where ‖ · ‖∞ denotes the infinity norm, and ε > 0 denotes a
specified threshold (default value is 10−6).

3) Updating A: Terming to updating A, we have two updat-
ing rules. Obviously, when fixing S, the partial derivative of A
is given as

∂L
∂A

= − (W ⊗X)ST + (W ⊗ (AS))ST + λ1A. (22)

The original MU of classical NMF is proposed as follows:

A← A.∗ (W ⊗X)ST ./
[
(W ⊗AS)ST + λ1A

]
. (23)

4) Updating c: c is critical in determining the threshold of
inliers and outliers. Huber showed that when c = 1.345, one gets
approximately 95% efficiency in the Gaussian cases compared
to the optimal estimators. c used in [20] is the median of
reconstruction errors, which is defined as c = med(|Eij |). But
they are not appropriate in all cases. c is the tuning constant that
should be used to adjust the efficiency of the resulting estimators
for specific distributions.

Therefore, we adopt Holland and Welsch’s rule [28], which
suggests that c is chosen as the product of a constant and the
median of the absolute value of reconstruction error. Such as for
in standard Huber function, c can be

c = 1.345 ·median (|Eij |) . (24)

Since our new loss function is a mHuber, we change the 1.345 by
1.2107 to get 95% asymptotic efficiency on the standard normal
distribution, i.e.,

c = 1.2107 ·median (|Eij |) . (25)

5) Stopping Criterion: At last, the whole algorithm will ter-
minate when reaching the maximum iteration number and the
reconstruction error is less than a threshold (defaulted value is
10−4).
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C. Algorithm Analysis

1) Implementation Issues: There are four issues to be dis-
cussed in implementing our proposed method. The first issue is
the initialization of A and S. We use common NMF algorithms
for HU, such as a) random initialization, b) Nfindr-FCLS ini-
tialization, and c) VCA-FCLS initialization. As for random ini-
tialization, it randomly generates initial A by choosing columns
from the observation, and randomly chooses any values between
0 and 1 to be the entries of initial S. VCA and Nfindr are used
to initialize A. FCLS can be adopted in initialize S. The second
issue is the coefficient λ1 and λ2 of low rank regularization
and manifold regularization, which in general are decided by
experience. Third, the ASC constraint is often incorporated by
a simple simplex method proposed in [29], the matrix X and A
are replaced by X̂ and Â in our inputs, respectively, i.e.,

X̂ =

[
X
δ1TN

]
, Â =

[
A
δ1TK

]
(26)

Fig. 1. Comparison of different loss functions.

in which 1TN = 1TKS, and δ controls the effect of ASC, most
papers choose δ from 10 to 20 to ensure relatively high accuracy
and convergence rate. At last, since our algorithm cannot decide
the number of endmembers, the number K is given by a prior
information by other algorithms, such as VD [30], HySime [31],
and R-CoNMF [15].

2) Convergence Analysis: When A, W , c are fixed, there
are several requirements to ensure the global convergence of the
algorithm 1. c1 and c2 are set as 0 < c1 < 1/2 and c1 < c2 < 1
(i.e., c1 = 0.0001, c2 = 0.5). When satisfying the weak Wolfe
condition, [32, Th. 3.1] revealed that when the size of βk+1

ranges in the interval rk ∈ [ c2−1c2+1 ], limk→∞ inf‖/varXik‖ = 0.
‖ · ‖ means the Euclidean norm. The global convergence of A
is natural when S, W , c are fixed.

3) Computational Complexity Analysis: Now, the computa-
tional complexity analysis of our proposed methods will be
given in detail. The computational complexity in calculating
A can be easily derived the normal NMF method. So we try to
get the time of floating-point calculation in calculating S, W ,
c in each iteration. From [12], the addition and multiplication
cost of SL is dKN , respectively, in which d represents the d
nonzero entries in each row of G. In our algorithm, t (t < 8)
is the maximum search number in the inexact line search for
searching ak. The nonlinear conjugated gradient method only
has the computational complexity of O(MNK) for updating
S. Like GLNMF, there is only one O(MN2) operation in our
proposed algorithm to achieve d-nearest neighbor for manifold
learning. The calculation times of each iteration are given in
the Table II. With γ steps of iteration, the overall cost of our
proposed method is O(γMNK +MN2).

4) Robustness Analysis: We propose the robustness analysis
of our method. In order to study the property of mHuber,
we make a comparison between mHuber and some other M -
estimator statistically and geometrically. As shown in Fig. 1, we
can see that when the reconstruction error increases, the original
Huber and mHuber loss function generally enjoy much lower
increasing rate thanL1 andL2. This indicates the insensitivity of
Huber loss. In addition, with the same tuning parameter c of 0.1
and 2/π, the curves of mHuber loss are always under the curves
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TABLE II
CALCULATION TIMES IN EACH ITERATION IN MHUBER NMF METHOD

TABLE III
COMPARISON OF DIFFERENT M -ESTIMATORS

Fig. 2. Comparison of different second-order derivative

of original Huber. Therefore, the mHuber has better robustness
than original Huber loss to reduce the negative effect of large
outliers. Third, As can be seen in Fig. 2, mHuber loss enjoys
a continuous second-order moment than original Huber loss,
which would add more stability in the computation. In Table III,
six M -estimators with their corresponding weight matrix and
first-order derivative are listed. These estimators are all that can
be used in NMF algorithm. Cauchy function has a descending
first derivative, which tends to yield erroneous solutions in a
way which cannot be observed [33]. L2 is sensitive to noise, L1

reduces the influence of both large errors and small errors. L2,1

has no tuning parameter to determine the inliers and outliers.

IV. EXPERIMENT

This section will evaluate the performance of our proposed
methods. Both synthetic and real-world data are tested. We
utilize spectral angle distance (SAD) and root-mean-square error
(RMSE) to assess the accuracy of the extracted endmembers
and the corresponding abundances. SAD intends to evaluate the

similarity of the ground-truth kth endmember signature Ak and
the estimation Âk, it is defined as

SADk = arccos

(
AT

k Âk

‖Ak‖‖Âk‖

)
. (27)

The RMSE evaluates the difference of abundance estimate Sk,
the ground-truth abundance matrix for kth endmember is Ŝk,
which is defined as

RMSEk =

(
1/N

∣∣∣Sk − Ŝk

∣∣∣2)1/2

. (28)

Despite of the two common indicators, we introduce spectral
feature fitting (SFF) [34],[35] as another indicator to examine the
performance of unmixing for mineral dataset: Cuprite dataset.
SFF has been widely used in real practice in remote sensing
due to its sensitivity in recording precise and subtle mineral
absorption features in the spectral diagram of the mineral under
consideration. And not all the band ranges are necessarily useful
in identifying the substances. Thus we adopt spectra between
the band range from 2.0 to 2.5μm in SFF method for further
comparison between the estimated endmembers and reference
endmembers. Here, after continuum removal, the estimated
Âmk and ground-truth kth endmember signature Amk,m is the
mth band. In order to achieve best fitting, we use the minimum of∑

m (Âmk − (aAmk + b))2, in which a, b are the least square
fitting coefficients. Then the related coefficient fcorof Ak and

Âk can be calculated by fcor =
Cov(Âk,Ak)√
D(Âk)

√
D(Ak)

. Then the root

mean square Rsff is obtained by Rsff =
√

(1− f2cor)D(Ak).
Finally the ratio of fcor and Rsff are often used to represent the
fitting performance, i.e.,

SFF =
fcor

Rsff
. (29)

Larger SFF indicates higher similarity of two spectral curves.
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Fig. 3. Several endmembers used in synthetic data.

The proposed mHuber method is compared with several
widely usedM -estimators and HU NMF algorithms throughout
this article, including L2-NMF, L1/2-NMF, L2,1-NMF, CIM-
NMF, Cauchy-NMF, Huber-NMF. All the algorithms are imple-
mented by ourselves. The best results are highlighted in bold in
all the tables in this paper.

A. Experiments on Synthetic Data

We refer to the common method to generate the synthetic
dataset. As in [12], 10 pure spectra (i.e., endmembers) are
arbitrarily chosen form USGS spectral library. Among them, we
display the first 5 spectra in Fig. 3. The image is of size 64× 64,
in which each pixel has 224 spectral bands. Their wavelengths
range from 0.38 to 2.5 μm with a resolution of 10 nm. In order
to linearly mix them, the entire image would be divided into
several 8 × 8 blocks and then be simulated into an image with
mixed pixels by a spatial low-pass filter. The low-pass filter we
utilize here is a simple 7× 7 averaging filter, which is able to
determine the degree of mixing. To enhance the mixture of the
obtained dataset, we replace each pixel with the abundance larger
than 80% by a new pixel with of all endmembers having equal
abundances in it; so we can see that, the abundance of each
endmember in these pixels turn out to be 1/c. The example of
endmembers in synthetic dataset are shown in Fig. 3.

Gaussian noise with zero mean is added into the synthetic
data having different levels of signal-to-noise ratio (SNR) as

SNR = 10 log10
E
(
XTX

)
eT e

(30)

in which X represents the original data and e represents the
noise in a pixel. E is the expectation.

1) Convergence Rate Analysis: Now, we perform conver-
gence rate experiments of original Huber function and mHuber
function under two algorithms, i.e., the existing half-quadratic
algorithm and our proposed improved half-quadratic algorithm.
All the experiments are set on the condition of SNR = 35 dB,
endmember number 4, and VCA and FCLS for initialization. We
record the first 500 iterations of each experiment. In general, the
MU are often criticized to be very slowly convergent especially
with large dataset. The conjugated gradient method searches or-
thogonal directions at each iteration to ensure that every descent

Fig. 4. Comparisons of convergence rate.

direction is different from others. As shown in Fig. 4, the red line
shows that our proposed mHuber model under our PNCG rule
in half-quadratic scheme enjoys extremely fast convergence rate
in the first 20–50 iterations. mHuber model under MU rule (blue
line) does not converge until almost first 300 iterations. Turning
to Huber model, it (black line) nearly converges at the 120th
iteration under our proposed algorithm, while it (green line)
needs more than 500 iterations to converge under MU rule. Both
the results show our superiority in convergence rate. Moreover,
the fitting effects of our proposed model are much better than
the Huber model.

2) Impact of Different Kinds of Noise: In this experiment,
we compare SAD and RMSE of different NMF methods on
different kinds of noise including salt and pepper noise, Rayleigh
noise, gamma noise, Poisson noise. All the algorithms use VCA
and FCLS methods for initialization. The Rayleigh noise is
elementwise which obeys Rayleigh probability density function.
The salt and pepper noise: The amplitude is almost the same,
but the location is randomly distributed. The Poisson noise: The
mean of its distribution equals to deviation. The gamma noise:
It subjects to gamma distribution, which is the composition of
several exponential distributions. It is observed from Table IV,
our mHuber NMF model enjoys two lowest SAD for gamma
noise and Rayleigh noise. For the other two noises, our results
keep stable, not fluctuating dramatically. And it is easy to see
from Table V, our proposed method enjoys all best RMSE results
and low deviations. For Tables IV and V, our mHuber method
gets 6 best results out of all 8 results, this indicates our general
robustness to different kinds of noise. Note that our proposed
model surpasses the original Huber model in all four kinds of
noise.

B. Experiments on Real-World Data

Here, we conduct experiments on real-world data. Two
datasets are used, the Samson dataset and the Cuprite dataset
acquired by the airborne visible/infrared imaging spectrometer
(AVIRIS) sensor over Cuprite, Nevada. These two datasets are
widely applied to evaluate the performance of hyperspectral un-
mixing algorithms. Moreover, in order to validate the robustness
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TABLE IV
SAD (×10−2) OF DIFFERENT KINDS OF NOISE FOR SYNTHETIC DATASET

TABLE V
RMSE (×10−2) OF DIFFERENT KINDS OF NOISE FOR SYNTHETIC DATASET

TABLE VI
RUNNING TIME (SECOND) OF DIFFERENT NMF METHODS FOR PURE SAMSON

DATASET UNDER PNCG AND MU RULE

of our proposed method, we not only conduct experiments on
the two datasets but also on the two “noisy” datasets by adding
Gaussian noise. Each experiment is initialized by VCA and
FCLS method, and each result used here is the mean values
after running each experiment five times.

1) Samson Dataset: Each pixel in Samson dataset has 156
spectral bands with the wavelengths ranging from 401 to 889 nm.
Its spectral resolution is 3.13 nm. There are three substances in
the dataset including tree, rock, and water. Here we compare
SAD and RMSE of different NMF methods on both pure Samson
dataset and noisy Samson dataset (adding Gaussian noise). The
noisy Samson dataset is created by adding Gaussian noise in
it. The SNR is 15 dB here, which is relatively large. First,
Table VI shows the running time of different methods with
M -estimators to get their best results (SAD), and compares their
running time under PNCG rule and MU rule. It clearly shows
the evident decrease of running time in all compared methods
by using PNCG rule. As shown from Table VII, mHuber has the
lowest mean SAD of 0.0629 among all seven methods. Huber
NMF, Cauchy NMF, and CIM-NMF are also better than the
common NMF methods in HU. As for noisy Samson dataset,
the advantages of our mHuber NMF is apparent, we not only
have the lowest mean SAD of 0.1190 but also have all the best
SADs of three endmembers. Similarly,L2-NMF andL1/2-NMF
behave less satisfying than the models with better robustness,
such as L2,1-NMF, CIM-NMF, Cauchy NMF, Huber NMF, and

mHuber NMF. From Fig. 5, we show our obtained endmember
spectra both on pure Samson and noisy Samson, compared with
the ground truth. In (a) of rock, three spectral curves are quite
close, with the one in noisy Samson a little farther than other
two. In (b) of tree, three spectral curves are almost overlapped.
But in (c) for water, the effect of noise has gradually released
after reaching the top. The blue curve decreases sharply after
reaching the top, and then shows large difference with other two
curves.

2) Cuprite Dataset: Cuprite dataset was captured over Cuprite
in Southern Nevada by the AVIRIS sensor, which has been
widely used in examining HU algorithms. 224 bands are in-
cluded in the Cuprite image from 400 to 2500 nm with size of
250× 191. After removing low SNR bands and water vapor ab-
sorption bands (i.e., 1-2104-113, 148-167, and 221-224 bands),
188 bands are left. In most papers, the endmember number is
set to be 12.

First, Table IX shows the running time of different methods
withM -estimators to get their best results (SAD) on pure Cuprite
dataset, and compares their running time under PNCG rule and
MU rule. The results show a big improvement in running time
on all the compared methods. Due to the similar computational
complexity, we do not give the results on noisy Cuprite dataset.
The noisy Cuprite dataset is also created by adding Gaussian
noise in it. The SNR is 15 dB. We can see from Table X, our
method maintains its excellent performance in the mean SAD
value as 0.1221 and get 5 best individual SADs out of all 12 ones.
But we note that, there is not any obvious difference between
the results of L2-NMF, L1/2-NMF, and other four methods
with better robustness. We guess it may derive from the fine
initialization of VCA and FCLS methods or low noise in Cuprite
dataset. It needs further exploration. Then from Table XII, we
can see that the proposed method also gets the largest SFF value
of 4.75 among all the compared methods, and in six of twelve
minerals, the proposed method achieves the best fit in all the
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TABLE VII
SAD (×10−2) OF DIFFERENT NMF METHODS FOR PURE SAMSON DATASET

Fig. 5. Endmembers estimated by our method for pure and noisy Samson and ground truth.

TABLE VIII
SAD (×10−2) OF DIFFERENT NMF METHODS FOR NOISY SAMSON DATASET

TABLE IX
RUNNING TIME (SECOND) OF DIFFERENT NMF METHODS FOR PURE CUPRITE

DATASET UNDER PNCG AND MU RULE

methods. Then for Table XI, the proposed method does not
behave as good as before. Cauchy NMF has the best SAD results
among all compared methods. But for Table XIII, the proposed
method obtained the largest mean SFF of 8.88, slightly bigger
than 8.85 of L2,1-NMF. The advantage is not as obvious as in
the noisy Cuprite dataset.

From Fig. 6, we compared our obtained endmember spectra
both on pure Cuprite and noisy Cuprite with the ground truth.
The spectral curves on noisy Cuprite (blue line) show high
similarity to almost all the ground truth but undergo sharp
fluctuation in almost all the endmembers. But for (a) Alunite, the
difference between blue line and other four is large, especially
during the bands from 2000 to 2500 nm. The purple and green

curves are obtained by evaluating the similarity of two spectral
curves by SFF during the range of 2000 and 2500 nm. From
the figure of Muscovite, SFF-based method shows absorption
features around 2200 nm. As SAD focuses on global shape
similarity while SFF highlights the spectral absorption feature
in some specific band range in identifying different minerals,
then, it would be better to combine these two indicator together
to evaluate the performance of unmixing.

In order to evaluate the performance of identification of end-
members, we compare the abundance maps of the 12 minerals
matched by SFF and SAD method on pure Cuprite dataset
(Table XIV) with the classification map created by by Tetracoder
3.3 software [36]. Since the widely used reference Fig. 7 does
not represent all the materials included in the groundtruth, such
as Andradite, Pyrope, Sphene, Dumortierite, we just compare
some of them. For example, the white region of Fig. 7 repre-
sents “Chalcedony”. Table XIV visualized our abundance maps
by SFF and SAD. SFF method in the revised version used
50 bands from 2.0 to 2.48 μm while SAD method used all
bands.

It is easy to see from Table XIV, by SFF method, the iden-
tification of Alunite, Chalcedony, Kaolinite 1, and Kaolinite 2
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TABLE X
THE PROPOSED ABUNDANCE MAPS IDENTIFIED BY SAD AND SFF FOR PURE CUPRITE DATASET

Fig. 6. Endmembers estimated by our method for pure and noisy Cuprite and ground truth. The black line represents the ground truth. The red line represents
the spectral curves of our proposed method in pure Cuprite evaluated by SAD, while the blue line indicates the spectral curves of our proposed method in noisy
cuprite by SAD. The purple line represents the spectral curves of our proposed method in pure Cuprite evaluated by SFF, while the green line indicates the spectral
curves of our proposed method in noisy Cuprite by SFF.
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TABLE XI
SAD (×10−2) ON PURE CUPRITE DATASET OF DIFFERENT METHODS

TABLE XII
SFF ON NOISY CUPRITE DATASET OF DIFFERENT METHODS

TABLE XIII
SFF ON PURE CUPRITE DATASET OF DIFFERENT METHODS

TABLE XIV
SAD (×10−2) ON NOISY CUPRITE DATASET OF DIFFERENT METHODS

were considered to be right. Montmorillonite and Muscovite
were misidentified. However, SAD method only identified Alu-
nite and Kaolinite 2 correctly, while misidentifying at least
Chalcedony, Muscovite, Dumortierite, Kaolinite 1. Therefore,
SFF method shows much better identification accuracy than
SAD method. But without more abundance groundtruth in-
formation, there are still several identifications that cannot be
evaluated.

Fig. 7. Classification map of Cuprite dataset obtained by Tetracoder 3.3
software [36].

When we consider the reason of the misidentification, two
points might be relevant. First of all, even though spectral
absorption feature is essential in identifying minerals, the mixing
of minerals may still lead to wavelength shift, since different
minerals can have different absorption feature ranges. For ex-
ample, in the “Kaolinite and Alunite and/or Muscovite,” Mus-
covite’s range is 2.082 to 2.395 μm; Alunite’s range is 1.99 to
2.36μm; Kaolinite’s range is 2.20 to 2.22μm. This phenomenon
might bring obstacles in extracting endmembers for unmixing
work.

Second, since the proposed algorithm aims to get the smallest
mean SFF or SAD, it cannot guarantee the best matching of
each minerals. And as 12 estimated endmembers have to be
matched to 12 reference spectra, one wrong misidentification
would cause chain reaction. Thus, there remains more research
to do to promote the performance. Future work will pay more
attention on this problem.

V. CONCLUSION

In this article, a mHuber-based NMF algorithm is proposed
for HU task. This method explores a more stable huber loss
for NMF, which also induces better reconstruction. Compared
with original Huber NMF, the mHuber NMF algorithm enjoys
less sensitivity and better stability. The improved half-quadratic
algorithm we propose not only accelerates the convergence rate
but also gives a new tuning parameter adapting to the mHuber
NMF model. Experimental results on synthetic datasets confirms
our advantages on convergence rate, SAD and RMSE estimates,
robustness to different kinds of noise. SFF indicators on Cuprite
dataset also confirm our superiority over other methods in HU
performance and better identification of endmembers than SAD
indicators. Experiments on real-world datasets also implies the
efficiency of our proposed method especially on the noisy
datasets.
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