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An Unmixing-Based Network for Underwater Target
Detection From Hyperspectral Imagery
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Abstract—Detecting underwater targets from hyperspectral im-
agery makes a profound impact on marine exploration. Available
methods mainly tackle this problem by modifying the land-based
detection algorithms with classical bathymetric models, which usu-
ally fail to remove the interference of background and ignore the
effect of depth information, leading to a poor detection perfor-
mance. To achieve a more precise result, in this work we propose a
novel network based on hyperspectral unmixing (HU) methodology
and bathymetric models to detect the desired underwater targets.
The proposed network, called underwater target detection network
(UTD-Net), first develops a novel joint anomaly detector with
classical HU methods to separate out target-water mixed pixels,
which is devoted to eliminate the adverse influence of background.
Then, we explore a bathymetric model-based autoencoder to unmix
the target-water mixed pixels for acquiring the target-associated
abundance values and maps. One dimension convolutional neural
network is exploited to construct the encoder part of above au-
toencoder for the sake of addressing spectral variability problem.
Moreover, considering the physical meaningless endmembers issue,
a particular spectral constraint is imposed on the objective function
as a training guidance. In this way, the autoencoder would be
capable of generating specific endmembers and their correspond-
ing abundance maps. Finally, according to the physical essence
of abundance maps, we figure out the detection result by fusing
the outcomes of autoencoder with weight coefficients determined
by abundance values. Qualitative and quantitative illustrations
demonstrate the effectiveness and efficiency of UTD-Net in compar-
ison with the state-of-the-art underwater target detection methods.

Index Terms—Anomaly detection, bathymetric model-based
(BMB) autoencoder, hyperspectral unmixing (HU), physical
meaningless endmembers.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) possess affluent spec-
tral information due to recording continuous spectra with

high wavelength solution, which are capable of depicting the
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characteristics of different material surpassingly [1]–[4]. The
reflectance values at different spectral bands of each pixel make
up the reflectance spectrum that can always be regraded as a
spectral feature vector. Since specific material generally con-
veys unique spectral feature vector named spectrum signature,
HSIs are widely used in hyperspectral target detection tasks.
In general, target detection can be interrupted as seeking out
desired targets with prior information, which attracts remarkable
attention in both civilian and military applications for several
years [5]–[8].

Plenty of signature-based target detection algorithms have
been proposed based on the assumption that target spectra
are independent of the background. If the detection targets
are underwater, aforementioned tasks will turn into underwater
target detection. However, the target-background independence
assumption is invalid owing to the interference derived from
water environment under this context [17]. That is, existing
signature-based detection algorithms might demonstrate unap-
pealing performance in tackling underwater target detection
problem. The main reason accounting for such a phenomenon is
that any light reflected by target and captured by hyperspectral
sensor has to pass through the water body [11]. Great attenuation
will be added to the sensor-observed spectra by surrounding
water column during above passing procedure, which is highly
dependent on the inherent optical properties (IOPs) of water
environment and the depth information of underwater target.
Hence, identical target might have distinct sensor-observed spec-
tra when the corresponding IOPs or depth information change.

Obviously, hyperspectral underwater detection remains a
great challenge in remote sensing field, while a growing aca-
demic interest has been developed to occupy this challenge
in recent years [9], [10], [12]–[15]. The major issue in hy-
perspectral underwater target detection is that the signature of
desired target is usually uncertain with the impact of water
environment, while most of existing detection methods ignore
such important information. Consequently, prior knowledge of
water environment such as IOPs should be introduced to re-
strict the variation of underwater target signature for addressing
this issue. In other words, if the IOPs of water body and the
depth information of target can be known beforehand, the re-
quired knowledge for signature-based detection methods will
be available beforehand. Then, we could manage to find out the
desired underwater targets with these signature-based methods.
Moreover, the prevalent viewpoint to solve underwater target
detection problem is predicting what the desired target would
look like in a given underwater scenario before detection.
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On account of these viewpoints, some related works have
been proposed to address the underwater target detection prob-
lem. In [16], Jay et al. embedded bathymetric model into
signature-based methods to detect underwater targets for both
known and unknown water quality and designed a generalized
likelihood ratio test (GLRT)-based bathymetric filter to retrieve
the IOPs of water environment. It is notable that the GLRT
always makes the hypothesis that unknown parameters should
follow a multivariate normal distribution. However, in a practical
underwater scene, the multivariate normal distribution might
not be adequate to describe the correlation among different
unknown parameters, which may have adverse impact on the
generalization and effectiveness of underwater detector. Simi-
larly, Gillis [17] proposed a general underwater target detection
framework for hyperspectral imagery. This framework employs
a spectral matching optimization algorithm (SMOA) to estimate
water IOPs, and then constructs a target space model for depth
information estimation. Unfortunately, only with sufficient prior
knowledge about surrounding water can the SMOA achieve a
promising performance. Furthermore, estimating the depth in-
formation of desired target might be computationally expensive,
especially in deposing the large-scale datasets.

There is no doubt that remarkable achievements have been
raised by the contribution of existing research works. But there
still remains some crucial problems to be settled for further
improving the detection performances in an underwater context.
One major problem is that the detection performances of existing
research works highly rely on the accuracies of IOPs retrieving
results. Generally, it is necessary to collect enough prior infor-
mation about the water environment beforehand for attaining an
accurate IOPs retrieving result, which seems to be impossible
in real-world applications. Besides, the prevalent standpoint
adopted by most existing researches turns out to be removing
the interference of water environment before detection [18].
However, this viewpoint does not take the spectral characteristics
of underwater targets into consideration, which may undermine
the accuracy of final detection result. Another universal problem
is that the targets of an identical material are usually assumed
to locate at the same depth in prior works for simplifying the
underwater detection problem. However, this situation might be
infrequent and the depth information usually has a great impact
on the sensor-observed spectra of underwater targets, which is
illustrated in Fig. 1. Therefore, a powerful underwater target
detection algorithm must possess the capability of detecting
the targets with different depth information in various water
environments.

To detect the desired target in a given underwater context, a
novel underwater target detection network (UTD-Net) has been
proposed in this work. The proposed network consists of three
significant modules: Endmembers Separation Module, Under-
water Target Separation Module, and Abundance Maps Fusion
Module. Primarily, to remove the negative effect of surrounding
water environment, a joint anomaly detector is developed in the
first module to separate the target-water mixed pixels from the
background. Meanwhile, we also develop a cluster-based abun-
dance average (CBAA) strategy to achieve a better separation
result. Furthermore, based on the characteristics of target-water

Fig. 1. Impact of depth information for underwater target spectrum.

mixed pixels, a special autoencoder is designed in the second
module to unmix the output of joint anomaly detector for ac-
quiring the suspicious target spectra and their corresponding
abundance maps. In order to tackle the physical meaningless
endmembers issue, we embed classical bathymetric model into
the decoder part of the above autoencoder as an unmixing
guidance. In addition, the embedding of bathymetric model can
also make UTD-Net follow the same physical background as
the existing underwater detection methods. Moreover, the 1-D
convolutional neural network (1D CNN) is also exploited to
establish the encoder part for the purpose of adapting spectral
variability. Finally, we acquire the underwater detection result
by fusing all the abundance maps of attained suspicious target
endmembers based on their corresponding abundance values.
The major contributions of this article are listed as follows.

1) A novel neural network named UTD-Net has been pro-
posed to address underwater detection problem, which is
based on deep learning and hyperspectral unmixing (HU)
methodologies. To the best of our knowledge, it is the first
time that these two methodologies are applied to detect
desired underwater target in an underwater context.

2) To achieve a more robust target-water mixed pixels sepa-
ration effect, we design a joint anomaly detection method
with different classical HU methods. A CBAA strategy
is proposed to integrate the anomaly detection results
figured out by these HU methods. In this way, the joint
anomaly detector can effectively eliminate the influence
of background and attain a promising detection result.

3) In order to address the physical meaningless endmembers
issue, we put forward a novel constraint for the objective
function of bathymetric model-based (BMB) autoencoder.
This specific constraint acts as an guidance to restrict the
range of unmixing results. Meanwhile, the decoder part of
autoencoder is constructed with 1D CNN which devotes
to tackling the spectral variability problem derived from
the environment factors.

The remainder of this article is organized as follows.
Section II briefly reviews the essential knowledge used in our
research. In Section III, we introduce all the details about the
proposed UTD-Net. Section IV shows the performance of our
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proposed method on synthetic sets. Section V, concludes this
article.

II. PRELIMINARIES

In this section, we briefly introduce the bathymetric model
developed in hyperspectral oceanography, which is essential to
our research work. To further demonstrate the proposed method,
hyperspectral mixing modeling is also mentioned in this section.

A. General Bathymetric Model

Generally speaking, the bathymetric model is devoted to for-
mulating the mechanism of sensor-observed underwater spec-
tra [19]–[21]. It is self-evident that the sensor-observed spectra
are generated by the sunlight which has succeeded in passing
through a water body. Intuitively, the process of generating
such sensor-observed spectra can be depicted as follows: The
sunlight first enters into the water body, then might be reflected
by underwater targets or water columns, and subsequently be
captured by hyperspectral sensors at the end. Furthermore, a
mass of attenuation will be imposed on sunlight during such
transmission process. It is worth mentioning that the spectra
captured by sensors compose of the reflectance spectra from
underwater targets and the reflectance spectra from water body.
On the basis of [23], the essence of sensor-observed underwa-
ter spectra is a linear combination of two different kinds of
reflectance spectra with the weight coefficients determined by
water attenuation. Consequently, general bathymetric model can
be defined as

r(λ) = r∞(λ)
(
1− e−2k(λ)H

)
+

rB(λ)

π
e−2k(λ)H (1)

where r(λ) denotes the sensor-observed underwater spectrum,
r∞(λ) and rB(λ) refer to the reflectance spectrum from the
water body and the reflectance spectrum from underwater target
severally. In addition, H is the depth information of underwater
target.

With (1), we can comprehensively understand the constituents
of a sensor-observed underwater spectrum and gather more use-
ful information for underwater target detection. The former term
in (1) corresponds to the contribution of water body, whereas the
later one represents the contribution derived from underwater
target. And it is noticeable that the weight coefficients of these
two term possess sum-to-one and nonnegative characteristics.

B. Hyperspectral Linear Mixing Models

Due to the limitation of spatial solution, many pixels consist
of several materials, which brings strong interference to HSI
understanding [24], [27]. HU is one crucial technology to ad-
dress this problem that aims at separating the mixed pixels into
a set of spectral signatures {em}M

m=1, termed as endmembers.
Each endmember possesses a corresponding abundance am
representing the areal abundance fraction of this endmember.
In this way, we can depict a mixing model as follows:

x = f(E,a) (2)

where E represents the matrix form of endmembers set E =
(e1, . . . , eM ) and a = (a1, . . . , aM )T refers to the abundances
set. The function f , describing how to obtain a mixed pixel x
with E and a, also decides the type of mixing model to be linear
or nonlinear.

Linear mixing model (LMM) and nonlinear mixing model
(NLMM) are the major types of mixing models [28]. Definitely,
the NLMM is closer to the real scenarios. However, taking care
about computation complexity, most of the literatures tend to
address hyperspectral mixing problems with LMM [29]. The
LMM holds that sensor-observed spectrum is a weighted av-
erage of the light scattered from various materials. Despite its
simplicity, it represents an acceptable approximation in most
real scenarios which can also dramatically simplify the com-
plexity of unmixing problems. Apart from the linear scattering
mechanism for endmembers, LMM also imposes two constraints
on abundances: 1) Abundance nonnegativity constraint (ANC),
restricting every abundance to be nonnegative; and 2) abundance
sum-to-one constraint (ASC), commanding that the fractional
abundances of the endmembers must be summed to one. Putting
everything together, this prevalent and physical interpretable
mixing model can be formulated as follows:

x =

M∑
m=1

amem + n

= Ea+ n (3)

where n represents the noise vector that has a great impact
on unmixing results. From (3), we can further understand the
constituents of mixed pixels. Moreover, the noise vector n
refers to additional uncorrelated Gaussian noise, which can be
eliminated with traditional denoising methods.

III. UTD-NET: THE UNDERWATER TARGET

DETECTION NETWORK

In this section, we elaborate on the proposed method UTD-
Net for underwater target detection. UTD-Net consists of three
parts which is illustrated in Fig. 2. The first part refers to
endmembers extraction module which conducts a joint anomaly
detector based on classical HU methods. And this detector will
be employed to separate the water-target mixed pixels from the
background for removing the influence of water environment.
Then, a BMB autoencoder is developed in the second part under-
water target separation module of UTD-Net. With this specific
autoencoder, we are capable of deriving desired target spectra
from mixed pixels regardless of the affection from water IOPs
and target depth information. After that, an abundance maps
fusion method has been proposed in the last part, abundance
maps fusion module, which is designed for figuring out the
final underwater detection result. This method tends to endow
clustered abundance maps with different weights based on their
corresponding abundance values. Finally, fusing all the derived
clustered abundance maps with their weights, a promising un-
derwater detection result is available in any underwater scenario.
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Fig. 2. Diagram of the proposed method.

A. Endmembers Separation Module

According to related research works [25], [26], targets pixels
usually occupy a tiny percent of the total HSI in hyperspectral
target detection task. Following this viewpoint, target-water
mixed pixels in the underwater HSI own the sparse characteristic
as well. Meanwhile, if the underwater targets are detectable, the
target-water mixed pixels will exhibit distinctive features com-
pared with surrounding water body background. Consequently,
based on [30], it is reasonable to consider the target-water mixed
pixels as outliers in underwater scenario. However, from (1) we
can know that, unlike the general ones existing in land-based
anomaly detection problems, these outliers are highly dependent
with the background pixels. Hence, traditional hyperspectral
anomaly detection methods, detecting outliers based on the
statistical characteristics of dataset, are invalid while employing
them to detect target-water mixed pixels from the given hyper-
spectral water imagery.

HU methods, merely taking the spectral discrepancy as cri-
terion to transform input HSI into different endmembers, are
capable of finishing above outliers detection mission. Moreover,
HU methods can achieve a satisfying performance even if the
target-water mixed pixels are not so distinguishable with their
background pixels. Consequently, we design an anomaly detec-
tor based on HU methods in this work.

Glancing over the architecture of UTD-Net, endmembers ex-
traction module is the most significant part which determines the
final detection result directly. To further find out the target-water
mixed pixels, a joint anomaly detection method integrating
various HU methods has been proposed in this module. The
flowchart of this novel detector is illustrated in Fig. 3. Let
X ∈ RL×W×B be the matrix form of input HSI which possesses
B bands withL×W spatial solution. At the very beginning, the
maximum noise fraction (MNF) algorithm is employed to reduce
the dimension of input HSI while eliminating the additional
uncorrelated Gaussian noise which is mentioned in (3). Then,

Fig. 3. Flowchart of joint anomaly detector.

for the preprocessed HSI X̂ ∈ RL×W×b, anomaly detection is
performed by different typical HU methods

(Ek,Ak) = fk(X̂) (4)

where fk refers to the kth method in HU methods
set {f1, . . . ,fK}. Ek = (ek,1, . . . , ek,p)T ∈ Rp×B repre-
sents endmember matrix containing p endmembers. Ak =
(ak,1, . . . ,ak,p)T ∈ RL×W×p is the corresponding abundance
matrix. The symbol k indicates that this result is generated
by the kth HU method. In abundance matrix, ak,n ∈ RL×W

represents the abundance map of the nth endmember, where
n = 1, 2, . . . , p. And the abundance value of thenth endmember



5474 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

generated by the kth HU method can be calculated as

ak,n =

∑L
i=1

∑W
j=1 a

k,n
ij

(L×W )
(5)

where ak,nij is the entry in the ith row and jth column of the
abundance map matrix ak,n. L and W refer to the length and
width of the abundance map matrix, respectively. As for the
physical essence of ak,n, it denotes the percentage occupied by
its corresponding endmember among the whole HSI. Conse-
quently, for the outcome of each HU method, we can rewrite it
as the endmember-abundance value pair form

(Ek,Ak) ⇒ {(ek,1, ak,1), . . . , (ek,p, ak,p)}. (6)

Since there is no prior knowledge about the amount of end-
members, in this article we will utilize each HU method to
attain p endmembers (p = nq, where q represents the number of
underwater target that need to be detected). And a collection
of endmembers Eall = {em}K×p

m=1 is available after handling
the preprocessed HSI X̂ with K different HU methods. It is
worth mentioning that different HU methods will get disparate
results even if the input HSI is identical. Meanwhile, if the
water environment condition changes a lot among the input
HSI, water background pixels might be considered as different
endmembers. To get around these issues for achieving a more
robust and effective anomaly detection performance, we fuse
these different HU results to attain a blending decision.

Considering the characteristics of HU methods, a CBAA
strategy is proposed as follows. All the derived endmembers
and their corresponding abundances can be grouped into p
clusters {Ci}pi=1 based on learning vector quantization (LVQ)
cluster method [31] and spectral information divergence (SID)
metric [32]. Let Ci

c and Cj
c be the cluster centers of Ci and Cj .

After clustering by SID-based LVQ method, any endmember e
that belongs to Ci will form an endmember collection{

e ∈ Eall | SID(e,Ci
c) � SID(E,Cj

c), j �= i
}

(7)

where SID is an excellent spectral distance metric that devotes
to comparing the relative discriminatory power between two
spectra. This specific distance metric can be formulated as
follows:

SID(x,y) = D(x‖y) +D(y‖x) (8)

where x and y are the sequence forms of two pixels re-
quired to capture the spectral correlation. D(x‖y) represents
the Kullback–Leibler information measure between the input
pixels.

The final operation in CBAA strategy is to derive the fusion
result from different clusters. As demonstrated in (6), each end-
member has its corresponding abundance value, which indicates
the importance of this endmember for the whole HSI. Therefore,
we denote the linear combination of all the endmember elements
in one cluster as its endmember fusion result with weight coef-
ficients depended on abundance values. The final fusion results
for all the clusters are demonstrated as follows:

êi =

∑N
n=1 e

i
n · ain∑N

n=1 a
i
n

, i = 1, 2, · · · · p (9)

where êi denotes the fusion result of the ith endmember cluster
containing N endmembers. ein and ain represent the nth end-
member and its corresponding abundance value in the ith end-
member cluster. p refers to the amount of endmember clusters.
Meanwhile, the associated map values of fusion endmembers
are generated with the following rule:

Â
i
=

∑N
n=1 A

i
n

K × p
, i = 1, 2, . . . , p (10)

where Ai
n represents the abundance map of the nth endmember

in the ith endmember cluster and Kp is the total quantity of the
endmembers produced by the K different HU methods. With
(5), (9), and (10), we will attain p novel {endmember, abundance
value, abundance map} pairs

{(ê1, â1, Â1
), . . . , (êp, âp, Â

p
)}. (11)

Note that, there are only q targets that need to be detected,
and hence we should pick out some particular endmembers
from the fusion result. Obviously, the water background end-
member occupies most percent of the total HSI to acquire the
largest abundance value. Therefore, we can get the pure water
endmembers by picking out the endmembers whose abundance
value is the largest one. Then, the reminder of endmembers
will be regarded as candidate water-target mixed endmem-
bers which will be sent to subsequent modules. A pseudocode
of the proposed joint anomaly detection method is given in
Algorithm 1.

B. Underwater Target Separation Module

With the effort of joint anomaly detection, pure water end-
member and candidate water-target mixed endmembers are
available. Then, we have to sort out all the water-target mixed
endmembers from candidates and employ them to figure out the
final underwater detection result. Unfortunately, due to the effect
of surrounding water environment, the same material locating
in different positions will be associated with distinct endmem-
bers. It is noticeable that each endmember of underwater HSI
must contain the pure water spectrum according to the analysis
provided in Section II. Meanwhile, as it is demonstrated in (1),
target-mixed endmember turns out to be a linear combination
of pure water spectrum and target spectrum with coefficients
matching sum-to-one and nonnegative constraints. Therefore, if
the candidate target-water mixed endmember can be unmixed
into water spectrum and another unidentified spectrum, we can
utilize the signature of this unidentified spectrum to decide
whether its corresponding endmember belongs to water-target
mixed endmembers.

Specifically speaking, the HU methodology can be used once
again to tackle the aforementioned problems or challenges.
However, traditional HU methods may not be satisfied in this
situation since their HU processes are uncontrollable. More
precisely, they might product physically meaningless endmem-
bers due to lacking of effective guidance about real endmem-
bers in the blind HU. Autoencoder is an excellent deep neural
network structure widely adopted in HU research work whose
HU process can be controllable with specific training guidance.
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Fig. 4. Diagram of the BMB autoencoder.

Following this viewpoint, to address the physically meaningless
endmembers issue, we develop a BMB autoencoder illustrated in
Fig. 4 and the proposed autoencoder composes of two principle
parts named encoder and decoder.

In encoder part, the input mixed endmember e will be com-
pressed into a low-dimension vector v which represents the
abundance vector. The physical meaning of compression pro-
cedure can be interrupted as estimating the abundance value
for each endmember according to its unique spectral features.
Considering the effect of spectral variability derived from il-
lumination, atmospheric conditions, and other environmental
factors, we conduct backbone network with 1D CNN as spec-
trum feature exactor. The 1D CNN which has been exploited to
attain middle-level, locally invariant, and discriminative features
from the input spectrum can efficiently eliminate the interference
of spectral variability. Let e ∈ Rb be input endmember with b
elements, the output of the t layer in backbone network is defined
as

y(t) =

⎧⎨
⎩

f
(
w(t) ∗ e+ b(t)

)
, t = 1

f
(
w(t) ∗ y(t−1) + b(t)

)
, t ≥ 2

(12)

where ∗ refers to the convolution math operation and f repre-
sents the nonlinear activation function contributing to impose
nonlinearity on encoder network. In this article, to make abun-
dance vector obey ANC, ReLU is utilized as the activation
function. Furthermore, the batch normalization trick is also
introduced to improve robustness for gradient vanishing and
speediness of convergence before activation operation. After 1D
CNN-based backbone network, a fully connected layer is estab-
lished to restrict the dimension of output vector v. According
to (1), we can know that there exists only two endmembers in
target-water mixed endmembers. Therefore, the dimension of v
will be set to 2 for matching the endmembers amount of target-
water mixed endmembers. Moreover, the softmax function is
exploited as the activation function for fully connected layer to

Algorithm 1: Joint Anomaly Detection Method.

Intput: HSI X , HU methods set {f i}Ki=1

1: for i = 1, 2, . . . ,K do
2: Compute (Ek,Ak) according to (4);
3: for j = 1, 2, . . . , p do
4: Obtain the abundance value for ei,j via (5);
5: end for
6: end for
7: Attain p endmember clusters {Ci}pi=1 based on

SID-based LVQ method;
8: for n = 1, 2, . . . , p do
9: Get the novel endmember ên with (9);

10: Update corresponding abundance map Â
n

by (10);
11: Calculate associated abundance value ân via (5);
12: end for
13: Acquire candidate target-water mixed endmembers

and pure water endmember according to abundance
value based threshold.

Output: Target-water mixed pixels and their
corresponding abundance maps

satisfy ASC and the output vector v can be calculated as follows:

vi =
ey

(output)
i∑2

k=1 e
y

(output)
k

(13)

where y
(output)
k denotes the kth element in the outperformance

of fully connected layer which is also associated with the kth
abundance value.

With respect to the decoder, it aims at recovering abundance
vector v to reconstruct the input mixed endmember e. In this
work, the decoder consists of merely one fully connected layer
while the relationship between reconstructed endmember ẽ and
abundance vector v is depicted as follows:

ẽ = f(v) = f(wdv + bd) (14)

where wd and bd are the weight matrix and bias term between
v and reconstructed endmember ê separately. Similarly, f rep-
resents activation function and the linear function will be used
in the decoder part. Therefore, we can rewrite (14) into a more
concrete form

ẽ = wdv + bd. (15)

It is obvious that this formula matches the linear mixing model
exhibited in (3), simultaneously v also guarantees the ANC and
the ASC. Putting it in another way, once the autoencoder has
been properly trained, the unmixing process can be performed
by

Endmembers Extraction : Ê � wd � {wd
1,w

d
2} (16)

Abundance Estimation : â � v � {a1, a2}. (17)

However, such a process only unmixes the input pixels with-
out taking consideration about the physical essence of the un-
mixing result. As mentioned, an appropriate guidance is required
for blind unmixing which is devoted to insuring one of the
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extracted endmembers to be the water spectrum. To achieve this
goal, we add a BMB constraint into objective function. The
BMB constraint first picks out a proper weight vector contained
in weight matrix wd that owns smaller spectral distance with
reference water spectrum. Then, it tries to decrease the spectral
distance between the selected weight vector and reference water
spectrum. The proposed constraint can be formulated as

f(wd) =
∥∥w̃d − r∞

∥∥
2

(18)

with

w̃d = arg max
w∈wd

‖w − r∞‖2 (19)

where || · ||2 denotes the l2 norm and r∞ is the reference water
spectrum derived from joint anomaly detector. After that, we
can tackle the simultaneous estimation of Ê and â with BMB
guidance by finding out an optimal solution for the following
optimization problem:

(wd,v) = arg min
wd,v

1

2
‖ê−wdv‖2 + λf(wd) (20)

where ê refers to the input mixed endmember. The former term
in (20) represents the reconstruction error and the later term
denotes the BMB constraint. With this BMB autoencoder, we
can transform any candidate target-water mixed endmember
into a water spectrum r̂∞ and a suspicious target spectrum
r. Analogously, the abundance value as of suspicious target
spectrum can also be selected based on the spectral distance with
reference water spectrum from abundance estimation result â.
In conclusion, with the contribution of BMB autoencoder, the
input pairs mentioned in (11) will be transformed into p− 1
novel suspicious target spectrum and abundance value pairs
{(a1s, r1), . . . , (aps , rp)}.

C. Abundance Maps Fusion Module

As exhibited in (11), each endmember êi has its correspond-

ing abundance map Â
i
. Moreover, the suspicious target spectra

generated in the last subsection are derived from the endmem-
bers in (11). Taking such relationship into consideration, we can
conclude that êi and ri should share the identical abundance
map Â

i
. Furthermore, considering the physical essence of the

abundance value as, it can be interrupted as the proportions
of target spectrum in a mixed endmembers. In some way, as
represents the probability of being a target spectrum for its as-
sociated mixed endmembers. Meanwhile, the depth information
of underwater targets is also connected with as. To put the (1)
and (16) together, as turns out to be the coefficient of the second
term in bathymetric model

as = e−2k(λ)H . (21)

When the depth informationH becomes larger, the target will
be more undetectable while the abundance value as becoming
smaller, and vice versa. Consequently, the effect of depth infor-
mation is reflected on the abundance value as. Moreover, the
abundance maps demonstrate the areal abundance fraction of
their corresponding endmembers which are approximate to the
detection result maps. Consequently, we can achieve the final

underwater detection result by fusing all the abundance maps of
suspicious target spectra with weight coefficients determined by
the abundance values

D =

p−1∑
i=i

Â
i · ais∑p−1
j=i a

j
s

. (22)

If a mixed endmember ê is similar to the water background
pixels, it will be more impossible to contain the underwater target
and its related abundance value as will be very small. According
to (22), the abundance map of this endemember will contribute
less to the final detection results. Besides, the final detection
result figured out in a fusion form can reduce the false alarm
rate while increasing the detection performance.

IV. EXPERIMENTS

In this section, we perform adequate experiments on synthetic
sets associated with different underwater scenarios to exhibit the
validity of the UTD-Net. At the very beginning, we will briefly
describe the indispensable information about the employed
datasets. Second, the evaluation criteria and parameter settings
about the experiments are listed in the subsection Experiment
Details. After that, to demonstrate the innovativeness of our
proposed method, we design some specialized tests to validate
the effectiveness of HU methods, joint anomaly detector and
BMB constraint. Moveover, the fourth subsection is mainly
about the underwater target detection experiment results and
their corresponding discussion. Finally, the remainder of this
section is devoted to conducting some specific experiments for
exhibiting a more comprehensive analysis for the UTD-Net.

A. Hyperspectral DataSets

In an ideal situation, we could accomplish all the experi-
ments with the real datasets. However, owing to the novelty of
hyperspectral underwater research, none of public hyperspec-
tral datasets containing underwater targets. To get around such
dilemma, we adopt the strategy mentioned in [17] to generate the
hyperspectral underwater targets detection datesets as realistic
as possible. The data generating progress can be divided into
several procedures as follows.

1) Select real-word hyperspectral water image as background
and figure out their IOPs.

2) Choose appropriate target spectra from the USGS spectral
library [22] and produce the underwater target spectra with
the bathymetric models in (1).

3) Add a white Gaussian noise onto the generated underwater
spectra to create the intraclass variability.

4) Embed the noisy underwater spectra into the background.
In order to comprehensively show the outperformance of

UTD-Net, we collect four different types of hyperspectral water
images as backgrounds. More detailed information about testing
datasets is shown below.

1) Synthetic Turbid Water Dataset: The first testing dataset is
created by a synthetic turbid water whose IOP parameters are
measured in [33] and the sheet metal material spectrum. This
dataset possesses 100 × 100 spatial solution and its wavelength
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Fig. 5. Detailed information of synthetic water dataset.

Fig. 6. Detailed information of sea water dataset.

ranging from 400 to 700 nm with 150 bands. Furthermore, the
noisy underwater targets are placed at various depths 0.1, 0.25,
0.5, and 1 m and the corresponding target size is 5 × 5. The
concrete conditions of the synthetic turbid water dataset are
illustrated in Fig. 5.

2) Sea Water Dataset: The second dataset is derived from
a hyperspectral sea water image which was collected by the
airborne visible infrared imaging spectrometer (AVIRIS). The
collection position is a gullet locating in Galveston Bay, Texas,
United States of America. This HSI covers 366 to 2495 nm at
9.5-nm spectral resolution and we segment out a chip with 342 ×
342 pixels for experiment. In terms of the target spectra, they are
the reflectance spectra of alunite material. The depth information
of underwater target spectra is 0.1, 1, 2.5, and 5 m and the target
size is 7 × 7. We demonstrate the specific information about this
this dataset in Fig. 6.

3) Lake Water Dataset: The background of third dataset is
a scene of Dongting Lake in Yueyang City, Hunan Province,
China. The HSI is captured by Gaofen-5 satellite with advanced
hyperspectral imagery (AHSI) in 2020 which has 330 spectral
bands covering from 400 to 2500 nm. Similarly, a 60 × 60
image chip is selected to conduct the underwater target detection
dataset and the target is particle board material. Moreover, the
target depths are in the range of 0.1 to 4 m with an alterable
step size and the target size is set as 3 × 3. Fig. 7 has detailedly
displayed the associated information about this dataset.

4) River Water Dataset: The last dataset is composed of
nylon webbing material and hyperspectral river water image.
The hyperspectral river water image was captured by Nano-
Hyperspec sensor and the experiment location is Nangang River,
Guangzhou City, Guangdong Province, China. Compared with
previous hyperspectral water images, this one covers a narrow
spectral range, whose wavelengths range from 400 to 1000 nm at

Fig. 7. Detailed information of lake water dataset.

Fig. 8. Detailed information of river water dataset.

TABLE I
SUMMARY OF IMPORTANT INFORMATION FOR ALL THE

EXPERIMENTAL DATASETS

2.22-nm spectral resolution. In addition, considering the turbid-
ity of the lake, we only set the targets at some shallow depths 0.1,
0.25, 0.5, and 0.75 m and the associated target sizes as 5 × 5. A
180 × 180 pixel chip has been sampled in our experiment which
will be demonstrated in Fig. 8.

In summary, the vital information about all the datasets is
listed in Table I.

B. Experiment Details

To better introduce the experiment results for confirming
the superiority of our research work, the essential experiment
information will be presented in this section. First of all, we
will shortly describe the evaluation criteria exploited to measure
the performance of different testing methods. After that, the
experiment settings are also listed at the end of this section.

1) Evaluation Criteria: In order to evaluate the performance
of underwater target detection task, we first use the receiver
operating characteristic (ROC) curve as a criterion. ROC curve
has been regarded as one of the most widely used evolution
metrics in vision detection missions which tends to depict the
relationship between target detection probability Pd and the
false alarm rate Pf [34]. These two important parameters can be
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TABLE II
DETAILED INFORMATION ABOUT TRAINING, VALIDATION AND

TESTING SETTINGS

TABLE III
AUC VALUES FOR EFFECTIVENESS EVALUATION OF DIFFERENT

ANOMALY DETECTORS

The bold entries represent the best performance in each row.

defined as follows:

Pd =
N0

Nt
(23)

pf =
N1

N
(24)

where N0 and N1 denote the amount of detected target pixels
and the number of background pixels mistaken as targets under
a specific threshold. Nt refers to be the total amount of desired
target pixels whileN represents the gross number of all the pixels
in the testing HSI. We are capable of acquiring the comparison
results about the detection performances for different methods in
vision with ROC curves. In addition, to achieve the quantitative
analysis about detection results, the area under ROC curve
(AUC) value has also been calculated in our experiments.

2) Experiment Settings: For all the datasets, the standard
deviation of white Gaussian noise is set as 0.05 to create a
certain intraclass variability. At the same time, some particular
models (such as ATCOR model [35]) are implemented on these
datasets to eliminate the influence of environment factors. For
establishing a more stable joint anomaly detector, we utilize
the pure pixel index [36], N-FINDR [37] and vertex component
analysis [38] methods as the fundamental algorithms. Moreover,
so as to preferably measure the effectiveness of the proposed
methods, UTD-Net will make the comparison with the following
algorithms: 1) UTDF [17]; 2) GBF [16]; 3) CEM [39]; and
4) MF [40]. For all the testing methods, they are fed with
the identical land-based target spectral signatures as the prior
detection information.

Besides, the training, validation and testing settings are listed
in Table II. It is noticeable that in all the datasets, 70% of pixels

TABLE IV
SPECTRAL DISTANCE INFORMATION FOR EFFECTIVENESS EVALUATION OF

BMB CONSTRAINT

The bold entries represent the best performance in each row.

TABLE V
AUC VALUES OF UNDERWATER TARGET DETECTION RESULTS FOR COMPARED

METHODS ON ALL THE DATASETS

The bold entries represent the best performance in each row.

Fig. 9. Unmixing results of identical underwater target in different depth. (a)
Spectral information. (b)–(e) Abundance maps.

are employed as the training samples, 10% of pixels are sampled
to establish validation set, and the rest pixels are regarded as
testing samples. Note that, all the samples are selected with the
stratified random sampling strategy from input HSI.

Finally, related experiments are performed with the support
of an Intel(R) Core (TM) i9-10920X CPU machine and 64 GB
of RAM on Windows 10 operating system.

C. Component Analysis

In this section, we will accomplish some specialized tests to
prove the validity of viewpoints mentioned beforehand for the
UTD-Net.

1) Effectiveness Evaluation of HU Method: In the Section III-
A, we have stated that HU method can separate the target-water
mixed pixels. To validate this viewpoint, we have conducted
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Fig. 10. Underwater target detection results of compared methods for the real datasets. (a) Color composites of synthetic, sea, river, and lake scenarios. (b)
Reference map. (c) UTD-Net. (d) CEM. (e) MF. (f) UTDF. (g) GBF.

some corresponding experiments and results which are illus-
trated in Fig. 9, where target-water mixed pixels containing
with different depth information are located in the synthetic
underwater scene. The testing target-water mixed pixels consist
of sheet metal material which is taken from USGS spectral
library. From the Fig. 9, we can find that the target-water mixed
pixels have been well detected under different depth conditions
even though the target-water mixed spectrum is glued to the
water background spectrum as shown in Fig. 9(a).

2) Effectiveness Evaluation of Joint Anomaly Detector: To
verify whether the joint anomaly detection can better separate
out the target-water mixed pixels from background, three classi-
cal anomaly target detectors are carried out for a comprehensive
comparison. Owing to the special detect mechanism of the joint
anomaly detector, underwater targets only locate at the identical
depth in one testing dataset. For simplicity, we adopt the AUC
values of anomaly detection results as the performance metric
and the concrete results are exhibited in Table III . Apparently,
the joint anomaly detector achieves a better anomaly detection
accuracy indicating that this detector is capable of separating
the target-water mixed pixels from the background robustly in
different underwater scenarios.

3) Effectiveness Evaluation of BMB Constraint: To figure out
whether the BMB constraint makes contribution to the target-
water unmixing result, an autoencoder model trained without it
has been performed on all the datasets. For the sake of repre-
senting the spectral distance, the Euclidean distance is utilized
as a metric to measure target spectral distance D〈rt(λ), r̂t(λ)〉

and water spectra distance D〈r∞(λ), r̂∞(λ)〉. Table IV lists the
detailed results while the characters (Y and N) in parentheses can
be interpreted as whether the autoencoder has been trained with
BMB constraint. According to Table IV, the spectra generated by
the autoencoder with BMB constraint are more closer to the ref-
erence spectra. In other words, these spectra possess the desired
physical meanings which guarantees the unmixing results make
contribution to final underwater detection results. Furthermore,
it is noteworthy that the results in the second and last columns of
Table IV are the average values of many measurements which
indicates that the unmixing results will not be stable if the BMB
constraint is not applied to the autoencoder. Taken together,
BMB constraint can help the autoencoder produce the stable
unmixing results with specific physical meaning by acting as a
training guidance.

D. Underwater Detection Performance

In this subsection, the underwater detection performance of
the UTD-Net has been evaluated, generalized, and analyzed.
Meanwhile, two prevalent underwater target detection algo-
rithms GBF and UTDF are conducted for a comprehensive com-
parison. Besides, we also implement two widely used land-based
target detection algorithms CEM and MF as the baselines.

For the datasets mentioned in previous subsection, the refer-
ence maps (such as scene pictures, ground truths, and underwater
water detection maps) are exhibited in Fig. 10. Based on the
visual inspection, our proposed method UTD-Net achieves the
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Fig. 11. ROC curves for the compared underwater target detection method. (a) Simulated dataset, (b) Sea dataset, (c) River dataset, and (d) Lake dataset.

Fig. 12. Corresponding results for investigating the effect of depth information on synthetic water dataset. (a) Spectral distances between desired targets and
background pixels with different depth information. (b) Detection performance of the compared methods with different depth information.

slightest visual difference with ground truths. This phenomenon
accounts for the outperformance of UTD-Net in desired targets
detection problem under various water environment conditions.
From Fig. 10(d) to (g), we can also find that the water background
has a great impact on the detection results for the compared

methods, which may lead to a higher false alarm rate in practical
application. Obviously, only if the target spectra are diacritical
can the compared methods finish the underwater targets detec-
tion task. On the contrary, the UTD-Net trends to suppress the
background pixels while highlighting the desired underwater
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Fig. 13. Corresponding results for investigating the effect of depth information on sea water dataset. (a) Spectral distances between desired targets and background
pixels with different depth information. (b) Detection performance of the compared methods with different depth information.

Fig. 14. Corresponding results for investigating the effect of depth information on river water dataset. (a) Spectral distances between desired targets and background
pixels with different depth information. (b) Detection performance of the compared methods with different depth information.

Fig. 15. Corresponding results for investigating the effect of depth information on lake water dataset. (a) Spectral distances between desired targets and background
pixels with different depth information. (b) Detection performance of the compared methods with different depth information.
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TABLE VI
AVERAGE COMPUTING TIME (IN SECONDS) OF THE COMPARED METHODS

The bold entries represent the best performance in each row.

Fig. 16. Experimental results for the analysis of vital hyperparameter.

TABLE VII
STATISTICAL INFORMATION OF RESULTS FOR STABILITY ANALYSIS

The label “Before” refers to the performance before imposing AWGN on datasets and the
remainder items all represent statistical information after the datasets have been affected
by AWGN.

targets pixels. Besides, owing to the pale depth estimation
strategy, the compared methods cannot find out the targets in
different depths simultaneously. As for UTD-Net, incorporating
the spectral information of underwater targets shown in the
Figs. 5 to 8 and the detection results, it is effortless to make
the conclusion that our proposed method is competent to attain
an approving detection performance even if the spectrum of
underwater target is not so distinguishable from the surrounding
water spectra. In other words, UTD-Net possesses the ability of
seeking out the targets locating in a deeper position which will
contribute a lot to deep-water exploration. Besides, UTD-Net
can provide a stable and robust result regardless of the variability
of target depth information.

In order to acquire a detailed qualitative analysis of the de-
tection results, we plot the log-scale ROC curves for false alarm

rate Pf and target detection probability Pd. As demonstrated
in Fig. 11, the proposed method remains over CEM, MF, GBF,
and UTDF for all the datasets. This verifies that the UTD-Net
can achieve a preferable underwater detection performance and
maintain a lower false alarm rate simultaneously. For quanti-
tative comparison, the AUC values of above ROC curves are
also calculated and listed in Table V. Notably, UTD-Net has
still achieved the optimal results for all the datasets. Moreover,
the AUC values of our proposed method exceed 0.9 in all the
underwater scenarios. In particular, the AUC value in the river
water dataset is approximate to the optimal result 1. Furthermore,
the average AUC score of UTD is 0.9558 while the suboptimum
performance of compared methods is merely 0.7792, which
shows the super performance of our proposed method in a
numerical aspect.

After that, we also measure the effect of depth information
on the final detection results. For simplicity, the desired targets
contained in one dataset would be positioned at the identical
position and the AUC values are exploited as the metric. To
roundly exhibit the measurement results, we tune the depth infor-
mation of desired targets in each dataset from 1 to 20 m with an
alterable step while Figs. 12 to 15 are devoted to demonstrating
the corresponding detection performances. We first calculate
the spectral distance between desired target and water column
as depth information alters for all the datasets, where the line
charts plotted in Figs. 12(a) to 15(a) are utilized to depict this
specific relationship. Obviously, this specific distance decreases
with the growth of depth information, which makes it more
difficult to detect desired targets since they are indistinguishable
with the background water column. As a result, the detection
performances of all the compared methods suffers if we would
like to detect the deeper desired targets. It is easy to find that
UTD-Net can still achieve the best detection performances under
all the appointed depth information although the performance
gaps with other testing methods are shrinking. However, even if
the depth information are set as 20 m, UTD-Net can still surpass
the baselines (CEM and MF) with depth information 2 m in all
the datasets. This confirms that our proposed method is capable
of contributing to underwater detection tasks in spite of desired
targets locating in the deep positions.

Finally, the execution time of different methods is also ex-
ploited as another criterion to offer quantitative analysis. All
the tests are carried out on the same experimental condition
mentioned in the subsection Experiment Setting. It is evident that
it takes a quantity of time to train the model for a learning-based
method. Consequently, we only measure the running time of
detection stage when the model training has been completed. As
listed in Table VI, the computation consumption of our proposed
method is not the optimal, but it is less than GBF and UTDF.
CEM and MF have the similar computational complexity which
surpass other compared methods. However, from the detection
performance we can know that these two methods cannot obtain
the satisfying detection results. The reason accounting for their
less computational complexity is that land-based detection meth-
ods do not take the impact of surrounding water environment into
consideration. In terms of UTD-Net, it can achieve the optimal
underwater detection result with a tolerable time consumption.
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Fig. 17. AUC curves for UTD-Net under different noisy conditions. (a) Synthetic dataset, (b) Sea dataset, (c) River dataset, and (d) Lake dataset.

Summarizing every aspect of the experiment performances, we
can finally come to the conclusion that UTD-Net possesses the
capacity to achieve a promising underwater detection perfor-
mance in most underwater scenarios.

E. Method Analysis

In this section, we will perform some special experiments
to comprehensively demonstrate the proposed method in terms
of hyperparameter analysis, stability analysis, and target size
analysis.

1) Analysis of Vital Hyperparameter: The function mentioned
in (20) refers to the objective function of UTD-Net and the pa-
rameter λ is exploited to establish a tradeoff between reconstruc-
tion error and BMB constraint. Consequently, it is necessary
to verify whether the detection results are sensitive to this vital
parameter λ. To accomplish this task, we conduct UTD-Net with
different λ values on all the datasets and a line chart is established

to record the corresponding results in Fig. 16. From this chart we
can find that the detection performances will meet the maximum
values while enlarging the value of hyperparameter λ. Besides,
0.05 is the maximum points for synethetic water, river water, and
lake water datasets while 0.075 is the maximum point for sea
water dataset. Therefore, hyperparameterλ could have impact on
the final detection results and different datasets would possess
different maximum points of this hyperparameter. Moveover,
according to the average result in Fig. 16, UTD-Net achieves
almost the same detection performances when the value of λ are
0.01 and 0.5. Meanwhile, the performance gap between the best
λ value and the worst λ value is less than 0.05. These phenomena
confirm that UTD-Net is not sensitive to the hyperparameter
λ but a relatively small value is recommended in practical
application for a more favorable convergence speediness.

2) Analysis of Method Stability: There is no doubt that the
effects of noise always exist in practice and an excellent under-
water detection method should achieve the remarkable results
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Fig. 18. Detection performances of UTD-Net with different target sizes. (a) Synthetic dataset, (b) Sea dataset, (c) River dataset, and (d) Lake dataset.

regardless of the interference of noise. In order to analyze the
influence of noise on final detection results, an additive white
Gaussian noise (AWGN) is imposed on the all the datasets which
can be formulated as follows:

n(λ) =
1√
2πσ

exp

(
− (λ − μ)2

2σ2

)
(25)

where μ and σ refers to mean vector and covariance metric.
Note that, the mean value μ and covariance vaule σ in different
bands would be endowed with the same values and then these two
parameters come to be the only variables for AWGN. Therefore,
we tune the values of μ and σ to generate different AWGNs
whlie the 3D figures are employed to record the corresponding
detection results, which are demonstrated in Fig. 17. On the
basis of above 3D plots, we can get to know that the UTD-Net
is more sensitive to mean value and the AWGN cannot bring
vast adverse influence to the final detection performances with
the assistance of visual inspection. The relevant statistical in-
formation has been collected in Table VII for the quantitative
analysis, where the label “before” refers to the performance
before imposing AWGN on datasets and the remainder items
all represent statistical information after the datasets have been
affected by AWGN. Integrating the Tables V and VII, we can
find that the worst performances of UTD-Net with AWGN can
still surpass the other compared methods in synthetic water
and sea water datasets. Meanwhile, the gaps between worst

detection performances and the performances before inflicted by
AWGN are not so distinct that they can be ignored in practical
application. To make a summary, UTD-Net is capable of acting
as a stable underwater detection method when suffering from
the interference of AWGN.

3) Analysis of Target Size and Shape: Target size and tar-
get shape are two important parameters for the experimental
datasets. Since UTD-Net turns out to be an unmixing-based
underwater detection method, the proportion of target pixels
may affect the final detection performance. Moreover, target
size is the crucial parameter to control the proportion of target
pixels when the spatial solution of experimental chip has been
determinate. To research the impact of target size on the final
detection accuracy, we tune the sizes of desired targets men-
tioned in Section IV-A from 3× 3 to 11× 11 for all the datasets
and perform UTD-Net to accomplish the underwater target
detection missions. The associate detection results are displayed
in the Fig. 18. The polylines in above figures reflect the change
trends of detection accuracies with the growth of target sizes.
Obviously, a larger target size would contribute to improving
the detection accuracy since it enlarges the energy of the desired
targets and makes them more distinguishable from background.
This effect will make it easier for UTD-Net to separate the target
pixels from background with endmembers extraction scheme.
However, desired targets with large target size are not common
in practical application while dim and weak target detection
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Fig. 19. Detection performances of UTD-Net with different target shapes on (a) Synthetic dataset, (b) Sea dataset, (c) River dataset, and (d) Lake dataset.

issue remains a big challenge in the hyperspectral detection
filed.

As for the influence of target shape, we decide to change
the shapes of desired targets under the condition that the total
amounts of target pixel remains almost the same. Fig. 19 is
exploited to demonstrate the corresponding results. According
to the qualitative and quantitative judgements, the target shape
would not bring dramatic change to the detection performance
and the variety of detection results among different target shape
might derive from experiment errors. The reason accounting
for this phenomenon is that UTD-Net detects the desired target
based on unmixing methodology instead of employing the con-
textual information of desired targets. Consequently, the target
shapes might not have impact on the detection accuracy.

V. CONCLUSION

In this article, an unmixing based detection network named
UTD-Net has been proposed to separate the desired underwater
targets from water background. More precisely, UTD-Net con-
sists of two meaningful parts: Joint anomaly detector and BMB
autoencoder. Due to the interference of background pixels on
final detection result, we develop a joint anomaly detector to
separate out the target-water mixed pixels as anomalies while
suppressing the effect of background. Considering the high per-
formance of the HU method in anomaly detection problems, the

joint anomaly detector is designed based on three classical HU
methods. A fusion strategy called CBAA has also been designed
to attain a more robust and effective anomaly detection result.
Then, for the sake of unmixing target-spectral mixed pixels, we
present a novel deep learning-based autoencoder with specific
constraint. In the encoder part of above autoencoder, 1D CNN
structures are exploited to construct a data transformer which can
compress the original spectral data into the abundance vectors. In
this way, we manage to predict the abundance values of unmixing
result while addressing the spectral variability problem raised
by environment factors. In addition, to tackle the issue of phys-
ically meaningless endmembers in blind unmixing, the BMB
constraint is imposed on the objective function as a guidance
to assist autoencoder in generating desired unmixing results.
Finally, based on the physical essence of abundance maps, the
underwater target detection result is derived by fusing outcomes
of BMB autoencoder with weight coefficients determined by
the abundance values. Experiments carried out on several syn-
thetic sets show that UTD-Net achieves excellent performances
for underwater target detection problems and outperforms the
prevalent methods in both objective and subjective evaluation.
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