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ESPC_NASUnet: An End-to-End Super-Resolution
Semantic Segmentation Network for Mapping

Buildings From Remote Sensing Images
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Abstract—Higher resolution building mapping from lower reso-
lution remote sensing images is in great demand due to the lack of
higher resolution data access, especially in the context of disaster
assessment. High resolution building layout map is crucial for
emergency rescue after the disaster. The emergency response time
would be reduced if detailed building footprints were delineated
from more easily available low-resolution data. To achieve this
goal, we propose a super-resolution semantic segmentation network
called ESPC_NASUnet, which consists of a feature super-resolution
module and a semantic segmentation module. To the best of au-
thors’ knowledge, this is the first work to systematically explore
a deep learning-based approach to generate semantic maps with
higher spatial resolution from lower spatial resolution remote sens-
ing images in an end-to-end fashion. The experimental results for
two datasets suggest that the proposed network is the best among
four different end-to-end architectures in terms of both pixel-level
metrics and object-level metrics. In terms of pixel-level F 1-score,
the improvements are greater than 0.068 and 0.055. Regarding the
object-levelF 1-score, the disparities between ESPC_NASUnet and
other end-to-end methods are more than 0.083 and 0.161 in the
two datasets, respectively. Compared with stage-wise methods, our
end-to-end network is less impacted by low-resolution input images.
Finally, the proposed network produces building semantic maps
comparable to those generated by semantic segmentation networks
trained with high-resolution images and the ground truth utilizing
the two datasets.

Index Terms—Building extraction, end-to-end network, remote
sensing, super-resolution semantic segmentation (SRSS).

I. INTRODUCTION

R EMOTE sensing image interpretation is an important way
to delineate buildings for urban planning. The poor ef-

ficiency and time-consuming nature of artificial interpretation
have made automatic and semiautomatic building extraction
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algorithms hot topics in the last decades [1], [2]. With the
development of remote sensing imaging technologies, the spatial
resolution of acquired data continues to improve. Thus, building
footprints extracted from remote sensing images are becoming
more detailed. For instance, images with resolution of hundreds
or tens of meters, e.g., MODIS, are often exploited to identify
large-scale built-up areas on the earth’s surface [3], [4]. Indi-
vidual buildings can be delineated from meter- or submeter-
resolution images, e.g., WorldView, QuickBird, or UAV aerial
images [5], [6]. In some emergencies with time limitations
such as disaster assessment, individual buildings need to be
delineated [7] as quickly as possible. However, it is difficult to
obtain high-resolution (HR) image quickly. By contrast, some
data with lower spatial resolution are open access. If these data
could be utilized to produce semantic maps of buildings, the
difficulty of HR data acquisition could be avoided.

Previous research works have focused on combining tra-
ditional machine learning algorithms such as support vector
machine [8] and handcrafted features such as the morphological
building index [9] and morphological shadow index [10] to
solve the problem of building extraction [11]. As remote sens-
ing data volume and complexity increase, traditional methods
cannot obtain superior performance. However, the development
of deep learning (DL) has catalyzed a great revolution in the
processing of remote sensing data and building extraction. The
application of convolutional neural networks (CNNs) to seman-
tic segmentation (SS) can tremendously increase the accuracy
of built-up mapping. The fully convolutional neural network
(FCN) is the first high-profile CNN-based SS network [12]. An
encoder–decoder structure further improves the effect of SS;
typical networks are SegNet [13] and U-Net [14]. The latest
DeepLab V3+ [15] of the DeepLab series outperformed many
state-of-the art SS networks on two widely used datasets in
2018. Motivated by the abovementioned work, various DL-
based methods aimed at building footprint extraction have been
proposed. Paisitkriangkrai et al. [16] presented the first attempt
to apply CNN and conditional random fields to remote sensing
image pixel labeling. The work demonstrated the effectiveness
of CNNs for building extraction. However, handcrafted features
and random forest were still utilized to increase the performance
due to the weak representation ability of shallow CNNs. Sub-
sequently, an end-to-end learning method based on of FCN
was proposed in [17] to delineate different objects on earth.
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The method performed well on the land cover mapping task,
although multinetwork integration was required to obtain the
best results. Inspired by encoder–decoder networks such as
U-Net [18], the traditional convolutional layer with an inception
module and proposed an enhanced hourglass-shaped network.
The newly added modules simultaneously improved accuracy
and reduced the network volume. In [19], traditional U-Net was
adapted with the ResNet [20] backbone to extract information
from handcrafted features. In [21], the combination of U-Net and
ResNet was further explored and an end-to-end deeper CNN net-
work named DeepResUnet was proposed. Inspired by NASNet-
Mobile [22], a new U-Net variant called U-NASNetMobile was
proposed to extract building footprints in [6]. Since 2015, the
performance of DL-based building extraction methods has con-
tinued to improve due to advances in computer vision technology
and SS networks. However, these methods still suffer from the
limitations of the SS framework: the spatial resolution of the
generated semantic maps strictly corresponds to that of the input
raster data. For instance, only semantic maps with 10-m spatial
resolution were generated when given raster data with 10-m
spatial resolution. This limits the application of traditional SS
methods in disaster assessment.

Image super-resolution (SR) is an alternative technique to ad-
dress the abovementioned dilemmas. Traditional interpolation-
based SR methods such as BiCubic interpolation [23] suffer
from the poor reconstruction performance and blurry results.
Great achievements in DL-based SR networks have been made
recently. The pioneering work on DL-based SR methods can be
traced to 2014, when SRCNN made the first attempt to employ a
CNN for SR [24]. Additional DL-based SR methods with a better
performance were subsequently proposed. In [25], the efficient
subpixel convolutional neural network (ESPCN) was proposed
to avoid adverse artificial effects in the deconvolutional layer.
The introduction of designed backbones, e.g., VGG-net [26]
and ResNet [20], made SR networks deeper and more powerful.
For example, VGG-net was applied on VDSR [27], and ResNet
was applied on SRDenseNet [28] and the residual dense network
(RDN) [29]. SR techniques have also been applied for remote
sensing image processing: SRCNN was exploited to construct
HR satellite-derived sea surface temperature data and obtained
a considerable improvement of the peak signal-to-noise ratio
compared with traditional methods [30]. A multifork network
named LGCNet was designed in [31] to improve the resolution
of remote sensing data; in this method, multilevel features were
learned to reconstruct HR images. In other work [32], the visual
attention mechanism was integrated within residual learning to
make the network focus on high-frequency details in land-cover
components. The method exhibited competitive performance in
two remote sensing datasets with three scaling factors. Fur-
ther recent explorations of SR include the application of the
visual attention mechanism to single remote sensing image SR
in [33].

Based on research on SR and SS, a super-resolution semantic
segmentation (SRSS) framework could be built to generate
higher resolution pixel-level semantic labels from lower res-
olution images. To the best of authors’ knowledge, there are
the following two kinds of approaches to obtain HR SS maps

Fig. 1. Sketches of stagewise SRSS approaches.

from low-resolution (LR) images: 1) stagewise approaches, i.e.,
carrying out SS and SR independently [34]; (2) end-to-end
approaches, i.e., integrating SS and SR in a network. Two
variants of stagewise SRSS approaches are depicted in Fig. 1.
As shown in Fig. 1(a), input LR images are first processed by
various SR approaches in stage 1, and then, SS models are
fed the generated HR images. The preprocessing SR methods
range from traditional interpolation-based methods to DL-based
SR networks, e.g., ESPCN and RDN. Similar to the method
shown in Fig. 1(a), Fig. 1(b) depicts another stagewise form.
The segmentation maps are first generated from LR images
with pretrained SS models in stage 1. SR approaches, e.g.,
nearest interpolation, are exploited to obtain HR segmentation
maps from LR segmentation maps directly. Few works, except
for nearest interpolation, have explored ways to enhance the
resolution of segmentation maps because rich context features
are discarded in the process of generation of LR maps. Therefore,
the quality of the final results is dominated by the LR semantic
maps.

In the stagewise methods, SR is exploited to reconstruct
images with enhanced spatial resolution in terms of visual effect
and SS is exploited to produce class labels for each of the raster
pixels. However, the images processed by SR are not certainly
beneficial for SS [34] due to the lack of cooperativity between
the two separated tasks. In other words, combining well-behaved
image SR models and SS models would produce superior
semantic maps with higher resolution from lower resolution
data. Therefore, an end-to-end SRSS approaches are in need.
In such methods, the SR process is integrated in SS networks
as a special module to enhance the resolution of features from
intermediate layers. The two main elements are named the front
component and rear component in terms of the element position
in an end-to-end network. There are different ways to combine
both of the SR and SS modules. In the end-to-end network,
the SR module could be the front component as depicted in
Fig. 2(a) and the SS module could also be the front compo-
nent as depicted in Fig. 2(b). In the recently proposed end-to-
end SRSS network [35] named dual super-resolution learning
(DSRL), the SR module is employed as the rear component. In
DBPN-SegNet [36], the SR module is employed as the front
component. However, HR images are needed to train DSRL and
DBPN-SegNet, which greatly hinders practical applications. To
address the dilemma, a unified framework in which both SR and
SS modules are integrated is proposed in this article.
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Fig. 2. Sketches of end-to-end SRSS approaches.

Our main contributions in this article are threefold.
1) We propose an effective end-to-end SRSS network, i.e.,

ESPC_NASUnet, to extract HR building maps from LR
remote sensing images, in whose training phase HR im-
ages are not in need.

2) We compare different methods, including stage-wise and
end-to-end approaches, to obtain building maps whose
spatial resolution is higher than that of the input. The rules
to construct a well performed end-to-end SRSS framework
are systematically compared and analyzed using multiple
datasets.

3) We design three new metrics, i.e., object recall (OR), ob-
ject precision (OP), and objectF1-score (OF1), to evaluate
the SRSS results, which can reflect the quality of building
prediction result from the object level.

The remainder of this article is organized as follows. In
Section II, the proposed ESPC_NASUnet is described in detail.
The datasets, implementation details, metrics, and comparison
networks are described in Section III. Both quantitative eval-
uation and qualitative analysis are presented in Section IV. In
Section V, the validity and limitations are discussed. Finally,
some conclusions are drawn in Section VI.

II. METHOD

In the proposed ESPC_NASUnet, an SR module is employed
as the front component and the rear component is an SS module.
Specifically, the efficient subpixel convolution (ESPC) and U-
Net with NASNet-Mobile [37] backbone (NASUnet) are used
as SR and SS modules, respectively.

A. SR Module: ESPC Module

Inspired by ESPCN [25], we design an ESPC feature SR
module. It consists of three convolution layers. The first two
are normal 2-D convolution layers with 64 and 32 convolutional
kernels of size 3 × 3. These two layers extract valuable informa-
tion to facilitate resolution enhancement and SS in the following
layers. In addition, the two convolutional layers can enlarge the
receptive field of the next subpixel convolution. The third layer is
a special subpixel convolution layer that consists of the following
three steps: convolution, periodic shuffle, and concatenation. As

shown in Fig. 3, win and hin are the width and height of the
input feature maps, respectively. bin and bout denote channel
numbers of input features and output features, respectively. s
means SR scale. The input features are first convoluted by bouts

2

filters. Then, the convoluted features of size win × hin × bouts
2

are rearranged with the periodic shuffle operation. The re-
aligned features are bout feature maps with size swin × shin.
Finally, the feature maps are concatenated in the channel
dimension.

In the process of subpixel convolution, spatial information is
first stored in the channel dimension and then restored to the
spatial dimension. This process can enhance spatial resolution
without artificial interruption, such as zero internal padding
in the deconvolution layer. The subpixel convolution can be
described as follows:

xSR = PS (xin) = PS (
WSR ∗ xLR + bSR

)
(1)

where PS denotes the periodic shuffle operand, xin are features
generated from former convolution layers, and WSR and bSR are
the weight and bias of the convolution layer, respectively. As
shown in Fig. 3, xin is a win × hin × (bouts

2) tensor, and the
final output tensor is swin × shin × bout, i.e., the bouts

2 tensor
is grouped into bout parts, and each part consists of s2 feature
maps. Then, features with the same spatial location in fea-
ture maps from one part are placed adjacently in the output
feature map. The process can be described mathematically as
follows:

PS (xin)x,y,z

= (xin)[ is ]·[ js ],k∗s2+ mod (i,s)∗s+ mod (j,s) (2)

where (i, j, k) indicates the coordinates of the processed feature
in the output feature maps xSR.

B. SS Module: NASUnet

The SS module acting as the rear component is named NA-
SUnet. As shown in Fig. 4, layers next to the ESPC module
represent a stem convolution, which consists of a convolution
layer with stride 2 and a batch normalization layer. The other
blocks are structures obtained via neural architecture search-
ing [22], e.g., reduction cells and normal cells. These cells are
first searched for image classification on ImageNet. In [6], they
proved effective in an SS network. As shown in Fig. 4, a normal
cell consists identity layers, depthwise-separable convolution
layers with different kernel sizes and average pooling layers
with different window sizes. Similarly, there are identity lay-
ers, depthwise-separable convolution layers, average and max
pooling layers with different kernal sizes in the reduction cell.
The kernel sizes vary among values of 3 × 3, 5 × 5, and 7 × 7.
In addition, the normal cell will repeat 4 times in the network
once it is used. For these two kinds of cells, the inputs are
the output tensors of the previous layer and the layer before
previous layer, i.e., skip connection is employed among the
layers. Note that the spatial resolution will be reduced twofold
through the reduction cell and will not change through the
normal cell. The combination of these structures has strong
feature extraction ability and functions as the encoder in this
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Fig. 3. Workflow of subpixel convolution. The sign ∗ denotes the convolution operation. As an intuitive representation, win, hin, and s are, respectively, set as 5,
5, and 2 in this figure.

Fig. 4. Specification of ESPC_NASUnet, normal cell, and reduction cell. The purple circles with the letter C in ESPC_NASUnet indicate concatenation. Sep,
Avg, Max, and Identity in two cells indicate depthwise-separable convolution layer, average pooling layer, max pooling layer, identity layer, respectively. The
number below the text in the green box is the kernel size of each layer.fi−1, fi and fi+1 are the output of the layer before the previous layer, the previous layer
and this layer, respectively.

“U” shaped SS module; the SR feature acts as the input for
the encoder. The decoder of ESPC_NASUnet is the same as
that of U-NASNetMobile [6] and can generate superior building
semantic maps with the help of the NAS mobile backbone. There
are four upsampling blocks to recover resolution from encoded

feature maps to the final semantic maps whose size equals that
of the SR feature maps. In detail, the upsampling block consists
of one bilinear interpolation layer, four normal cells and one SE
block [38]. As shown in Fig. 4, the input of ESPC_NASUnet
is LR images with size 128 × 128. The ESPC block with 4×
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SR factor converts the LR image into 512 × 512 again. Finally,
softmax is used to complete the pixel-level classification of the
decoded feature maps.

The specific architecture of ESPC_NASUnet is shown in
Fig. 4, where the ESPC module is placed next to the input
layer. In a deep SS neural network, the feature maps output
from layers that are close to the network input are compre-
hensible [39]. In other words, these feature maps contain more
detailed information about buildings [40], e.g., morphological
and geometric information, if given a remote sensing image.
In contrast, the feature maps from layers close to the output
layer are much more abstract and usually contain information
that benefits the segmentation task. In other words, low-level
feature maps are gradually refined to generate superior semantic
maps at the cost of information loss. The lost details may
be crucial for the SR task. Accordingly, the ESPC module is
employed as the front component so that the details can be
effectively exploited to reconstruct HR features without extra
loss. In addition, the ESPC module is a shallow feature SR
module, whose number of convolution layers is only three. It
can be considered as a special feature extractor. Differently,
the task of such extractor is to enhance the spatial resolution
of feature maps rather than condense it. NASUnet module is
an encoder–decoder architecture. Feature maps in such module
are first compressed in the spatial dimension via encoder then
recovered via decoder. The shallow SR module will not greatly
increase the depth of feature extraction part, which could result
in the imbalance between encoder and decoder and unstable
gradient propagation. Accordingly, ESPC module and NASUnet
module are chosen as the front and the rear components to
construct the SRSS network, i.e., ESPC_NASUnet.

III. EXPERIMENTS

In this section, we first specify some experimental settings,
such as the building datasets, training strategy, and other detailed
information. Then, pixel-level metrics and new object-level met-
rics are described for quantitative evaluation. For comparison,
the architectures of three additional end-to-end SRSS networks
are ultimately presented.

A. Datasets

For SRSS of buildings, due to the lack of directly available
datasets, we create two datasets by downsampling the images in
the DREAM-B dataset [6] and Massachusetts buildings (MBs)
dataset [41].

DREAM-B: The original dataset contains 626 image tiles from
100 different cities around the world. The size of each original
image tile is 4096 × 4096. Among them, 250 tiles are randomly
selected for training, 63 tiles for validation, and 313 tiles for
testing. The image tiles and corresponding ground truths share
the same spatial resolution of 30 cm. To meet the demands of
the SRSS task, all image tiles are resampled as 1024 × 1024
with the BiCubic method to simulate the images whose spatial
resolution is 1.2 m.

MB: The original dataset consists of 151 aerial images with
the corresponding ground truth of size 1500 × 1500. In the

dataset, 137 images, 4 images, and 10 images are employed for
training, validation, and testing, respectively. Like DREAM-B,
the images in this dataset are resampled as 375 × 375 with
the BiCubic method. Note that the original spatial resolution
is 1 m and that of the transformed samples is approximately
4 m. Therefore, the building patches are relatively smaller and
more ambiguous, and thus, the task is more challenging.

All image tiles are composed of 3 bands: red(R), green(G),
and blue(B). Only two classes, buildings and nonbuildings, are
interpreted in the semantic ground truth.

B. Implementation Details

In our experiments, one NVIDIA Tesla V100 GPU is utilized
to train ESPC_NASUnet and other networks. The value of bout

in the ESPC module is set as 3. The size of each input batch
is 128 × 128, and the batch size is set as 16. Categorical cross
entropy is used as the loss function. We apply the optimizer
Adaptive moment estimation (Adam) [42] to optimize the model
parameters. The cosine learning rate annealing schedule [43]
includes a maximum learning rate of 3 × 10−4 and a minimum
learning rate of 1 × 10−6. The annealing period is set as 100 and
the number of total epochs is 210. The first 10 epochs are used
for model warm-up. In other words, the learning rate schedule in
this article consists of one warm-up process and two annealing
cycles. In addition, data augmentations are employed to reduce
the impacts of overfitting, including random flipping vertically
and horizontally, random rotation, and random brightness jitter-
ing.

C. Evaluation Metrics

For detailed comparison, pixel-level and object-level eval-
uation metrics are exploited. In pixel-level evaluation, over-
all accuracy (OA) is the most widely used evaluation metric.
Nevertheless, the number of buildings is small compared with
that of other background objects. OA is not able to reflect the
actual performance of different methods if there is a huge gap in
the percentages of the building class and the background class.
Other metrics are also provided for inference, including recall,
precision, F1 Score, and Kappa coefficient. In addition, the
intersection over union (IoU) [44] is employed as a monitoring
index in the training process. More specifically, the IoU can be
calculated by

IoU =
Prediction ∩ Ground Truth
Prediction ∪ Ground Truth

. (3)

SS is a pixel-level classification task and corresponding met-
rics are all based on pixel-level statistics. SRSS for building
extraction is a special task in which the degree of separation
of building objects matters. For instance, distinguishing two
buildings located 2 m apart is easy in a remote sensing image
with 0.3 m spatial resolution but may be a challenge in an
image with 3 m spatial resolution. The correspondence between
predictions and building objects is always many-to-many in SS,
in contrast to the one-to-one or zero-to-one relationship in in-
stance segmentation. Therefore, object-level metrics in instance
segmentation, e.g., mean average precision, cannot be applied
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Fig. 5. Examples of OR and OP. (a) Two predicted patches intersect with GTg , i.e., ng is 2. (b) Two building objects and predicted patches ph intersect each
other, i.e., nh is 2.

in SRSS. To address the abovementioned dilemma, three new
object-level metrics are proposed based on the pixel-level recall,
precision, and F1-score. In such an evaluation pattern, irregular
patches whose prediction labels are all building classes are
considered independent building objects. For a single building
object in the ground truth, if an area of predicted building patches
approximates the true area, it can be considered appropriately
segmented. A large amount of building patches inside the true
object can also harm segmentation performance, giving rise to
the fragmentation phenomenon. To summarize, the segmenta-
tion performance can be described quantitatively by the metric
OR, which for the gth building object GTg is calculated as
follows:

ORg =
1

ng

ng∑

i=1

SGTg∩pi

SGTg

(4)

where ng denotes the quantity of predicted patches that intersect
the gth building object, and pi is the ith predicted intersectant
patch among predicted patches. S in the formula means the
value of the patch area. Similarly, the metric OP for the hth
predicted patch can be calculated based on the predicted patches
as follows:

OPh =
1

nh

nh∑

j=1

Sph∩GTj

Sph

(5)

wherenh is the quantity of real building objects that intersect the
hth predicted patch. Correspondingly, GTi denotes the jth real
building object among the abovementioned objects. Note that
a large nh indicates that many buildings are predicted inside
one patch, which is called prediction adhesion. Obviously, this
should be avoided in SRSS. To provide a better description, the
calculation example is shown in Fig. 5.

Similar to pixel metrics, OR and OP are able to reflect per-
formance unilaterally. Thus, a comprehensive index akin to the
F1-score is needed. We apply microstatistic patterns to calculate

the OF1 as follows:

OF1 =
2 ∗∑m

g=1 ORg ∗
∑n

h=1 OPh

n
∑m

g=1 ORg +m
∑n

h=1 OPh
(6)

where m and n denote the total quantities of building objects
and predicted patches, respectively.

D. Structures of Other SRSS Networks

ESPC_NASUnet is the first SRSS network that is not trained
with HR images. In other words, there is no method that can
be compared with ESPC_NASUnet under the same condi-
tions. Therefore, we constructed three other SRSS networks
that are similar to ESPC_NASUnet for comparison. There
are two SR module integration modes. The first mode is like
ESPC_NASUnet, in which the SR module is employed as
the front component. In the second mode, the SR module is
placed between the SS module and output layer to act as the
rear component, is designed. For the sake of comparison, the
network NASUnet_ESPC, in which the ESPC module is the
rear component and NASUnet is the front component. In such
a network, the spatial size of features first falls to 4 × 4 via the
encoder and then rises to 512 × 512 with the decoder and ESPC
module.

The development of SR approaches from VDSR [27] to
RDN [29] has proved the theory that deeper or wider networks
obtain the better performance in terms of image SR. It is unclear
whether a more powerful image SR model can help produces
better SRSS maps when it is modified as a feature SR block.
Therefore, the residual dense super-resolution (RDSR) block is
designed for comparison, which is transformed from a complex
and outstanding image SR model RDN.

The architecture of RDSR block is depicted in Fig. 6. There
are many convolution layers and residual dense blocks (RDBs)
in front of subpixel convolution layers. Dense connections and
residual learning are exploited inside of RDB. Features from
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Fig. 6. Architecture of RDSR block. RDB is the block proposed in RDN. D RDBs are exploited in the RDSR block. The yellow circle with the add symbol
denotes the element addition operand.

TABLE I
PIXEL-LEVEL EVALUATION RESULTS

shallow layers are added to features from deep layers via skip
connection. Similarly, RDSR modules are employed as the front
component or rear component in the newly designed end-to-
end networks, termed RDSR_NASUnet and NASUnet_RDSR,
respectively.

IV. EXPERIMENTAL RESULTS

In this section, the proposed ESPC_NASUnet is com-
pared with the three other end-to-end SRSS methods quanti-
tatively and qualitatively. The settings are the same as that of
ESPC_NASUnet described in Section III-B when training the
other end-to-end networks.

A. Quantitative Evaluation

Table I presents the quantitative evaluations of the two
datasets using six pixel-level metrics. In the DREAM-B dataset,
ESPC_NASUnet obtains the highest values of all pixel-level
metrics among the four end-to-end SRSS networks. In terms
of recall and precision, the proposed ESPC_NASUNet obtains
values of 0.7850 and 0.7842, respectively, which are high for
the SS task. In addition, the difference value of 0.0008 indicates
stability of the network. The precision values obtained by the
other three networks are all higher than the recall values by more

than 0.05. Therefore, the F1-score of ESPC_NASUnet exceeds
those of the other methods by more than 0.0685. Similarly,
the difference values of IoU and Kappa coefficient reflect the
effectiveness on this dataset: the values are greater than 0.0878
and 0.0290, respectively. Compared to the spatial resolution of
1.2 m in DREAM-B, the spatial resolution of 4 m in the MB
dataset presents a great challenge for the SRSS task. The values
of all metrics except for OA and precision in the MB dataset
considerably decline. In such situations, ESPC_NASUnet still
outperforms the other three networks. The value of recall is
0.4864, which is much lower than that of precision with respect
to DREAM-B. This phenomenon suggests that ESPC_NASUnet
tends to predict pixels that are blurry in lower resolution images
as background. Nevertheless, the values of the proposed net-
work are higher than those of the other three models. For the
three comprehensive metrics, i.e., F1-score, IoU, and Kappa
coefficient, ESPC_NASUnet yields great superiority despite the
low values arising from the challenging dataset.

Table II lists the quantitative evaluations on the simulation
datasets using three object-level metrics. On the DREAM-B
dataset, the results of the comparison are similar to those for
pixel-level metrics in terms of OF1. The values of the OR
metric and OP metric differ greatly. ESPC_NASUnet obtains
the highest OR value. This indicates that ESPC_NASUnet tends
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TABLE II
OBJECT-LEVEL EVALUATION RESULTS

to predict an integrated patch to approximate the true build-
ing patch, i.e., it predicts with low fragmentation. In terms of
OP, NASUnet_RDSR, which produces the lowest OR value,
obtains the highest OP value because the patches predicted
by NASUnet_RDSR are always accompanied by a fragmented
distribution, i.e., it is common for NASUnet_RDSR to pre-
dict a single building in the ground truth as multiple objects.
ESPC_NASUnet yields an OP value of 0.6211, which is a
relatively good result. OF1 can reflect the object-level result
comprehensively and ESPC_NASUnet obtains the highest OF1
value of 0.6031. In other words, ESPC_NASUnet obtains a
superior balance between a low degree of fragmentation and
adhesion. On the MB dataset, ESPC_NASUnet obtains the high-
est values among all methods in terms of all three object-level
metrics: 0.4588, 0.7912, and 0.5808, respectively. In terms of
OF1, the value of ESPC_NASUnet is 0.1613 higher than that of
RDSR_NASUnet, whose value of OF1 is the second greatest.
This is significantly superior with respect to the OF1 metric.

The abovementioned comparisons demonstrate the better per-
formance of ESPC_NASUnet in generating HR semantic maps
from LR images without the help of HR images.

B. Qualitative Analysis

In Fig. 7(a)–(e), the courtyards inside the building in the yel-
low circle are clearly recognized by ESPC_NASUnet, whereas
the other three methods misclassified parts of these courtyards
as buildings. In Fig. 7(f)–(j), the shadow in the circle is eas-
ily misclassified as a building by RDSR_NASUnet and NA-
SUnet_ESPC. Despite the prediction of the shadow by NA-
SUnet_RDSR, ESPC_NASUnet can produce semantic maps
with better approximation of building edges. In the MB dataset,
most buildings in downsampled images with a spatial resolution
of 4 mare small objects. There are the following two challenges
when generating semantic maps for such small objects: 1) the
adjacent objects are classified as one object, i.e., prediction with
great adhesion; 2) many small objects are omitted. As shown in
Fig. 7(k)–(o), the former situation is common in semantic maps
generated by the other three methods, whereas ESPC_NASUnet
can generate prediction results with low adhesion. In Fig. 7(p)–
(t), many buildings are misclassified as background by the other
three models. ESPC_NASUnet can generate semantic maps
with fewer omissions. These visualization results are merely
for reference, and the quantitative evaluations in Section IV-A
are more reliable.

C. Position and Complexity of the Feature SR Module

The position of the feature SR module is a significant factor
that affects the performance of the final result. ESPC_NASUnet
and NASUnet_ESPC share the same feature SR module with dif-
ferent positions in the network. Similarly, both RDSR_NASUnet
and NASUnet_RDSR include the same RDSR module with
different positions in the network. The architectures of the four
networks are described in detail in Section III-D. Loss and
F1-score curves are depicted in Fig. 8. In the training process,
ESPC_NASUnet converges with a lower loss and higher F1-
score, whereas RDSR_NASUnet and NASUnet_RDSR con-
verge at similar points. In terms of validation curves, networks
in which the feature SR module is employed as the front compo-
nent, i.e., ESPC_NASUnet and RDSR_NASUnet, obtain better
F1-scores than networks with rear-placed SR modules. This
result suggests that more beneficial segmentation information
is preserved when SR modules are employed on the low-level
features and that placing the feature SR block in front of the SS
module is a practical design idea.

The complexity of the SR block is another factor to be
considered when constructing an SRSS network. The ESPC
module and RDSR module are two SR modules with different
complexities: the latter is more complex, and the prototype
RDN has stronger image SR capability. SRSS networks with the
ESPC module reach the convergence point with lower loss and
higher F1-scores with respect to the DREAM-B dataset, which
diverges from the rule in image SR tasks [27]–[29]. In addition,
the validation curves of the networks in both datasets with RDSR
as the front component are unstable because the number of layers
in networks is too large to maintain normal gradient propagation.
Note that the convergence point of NASUnet_ESPC is higher
than that of NASUnet_RDSR in terms of training loss on the MB
dataset. For datasets with low spatial resolution, a more complex
SR rear component with stronger representational capacity is
needed. This phenomenon suggests that the complexity of the
feature SR block cannot dominate SRSS performance. In other
words, an SR block transformed from a high-performing image
SR model may not necessarily provide superior performance.
The final result may be affected by the position of the SR module
and the spatial resolution of the dataset.

V. DISCUSSION

In this section, some conventional methods are evaluated
for the sake of discussion. The settings of these methods are
listed in Table III. The HR or LR in the brackets next to the
SS model refer to the dataset used for model training. For
instance, U-NASNetMobile(HR) is trained with HR images and
the corresponding HR ground truth. In the DREAM-B dataset,
the resolution is 0.3 m for HR data and 1.2 m for LR data. The
resolutions of HR data and LR data in the MB dataset are 1 m
and 4 m, respectively. All stagewise methods and end-to-end
methods are evaluated on the LR test images. To distinguish
between the end-to-end approaches and stagewise approaches,
the latter methods are named by joining the names of the applied
SR method and SS method with a plus sign.
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Fig. 7. SS results of different end-to-end SRSS methods. The subfigures in the first column are the building ground truth. The subfigures in the other columns
are generated by RDSR_NASUnet, NASUnet_ESPC, and ESPC_NASUnet, respectively. Some notable details are marked with yellow circles. The background of
each figure is the original HR image.

TABLE III
GENERAL SETTINGS OF THE METHODS IN THE SECTION V

GT in the second column refers to ground truth.
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Fig. 8. Loss and F1-score curves of end-to-end SRSS networks in training process. Training and validation curves are plotted in the same subfigure.(a) Training
process in DREAM-B dataset. (b) Training process in MB dataset.

A. Comparison Between ESPC_NASUnet and Stagewise
Methods

The proposed ESPC_NASUnet is an efficient end-to-end
model for generating HR semantic maps from LR images di-
rectly. SR and SS are carried out independently in stage-wise
methods. To compare the two kinds of models, four stagewise
methods are tested on the two datasets. There are the following
three methods of preprocessing: interpolation-based BiCubic
resampling, shallow SR network ESPCN, and complex network
RDN. Only one method with postprocessing nearest to resam-
pling is included due to the lack of related research. The same
data augmentation as ESPC_NASUnet is exploited in the train-
ing phase of U-NASNetMobile(LR), U-NASNetMobile(HR),
RDN, and ESPCN. Following [29] and [25], the loss functions
of RDN and ESPCN are set as the mean absolute error and
mean square error, respectively. For the methods RDN+U-
NASNetMobile(HR) and ESPC+U-NASNetMobile(HR), the
training process is divided into two parts. First, HR images and
corresponding LR images are used to train the supervised SR
models RDN and ESPCN. Then, the supervised SS models are
trained with HR images and HR labels. Therefore, HR images
are reused in the training process.

As shown in Table IV, stagewise methods can obtain higher
precision values, except for U-NASNetMobile(LR)+Nearest in
MB. However, the values of other metrics vary greatly between
the two datasets. In DREAM-B dataset, the degeneration of
spatial resolution from 0.3 to 1.2 m makes little difference for
building recognition. Although the quality of the final results
mainly depends on that of the generated LR semantic maps,
U-NASNetMobile(LR)+Nearest obtains a relatively good re-
sult. Among the methods with preprocessing, DL-based SR
methods are better than interpolation-based methods. Note that
RDN+U-NASNetMobile(HR) obtains better results than the
proposed ESPC_NASUnet, which is reasonable for the recy-
cled usage of HR images in the training process of RDN and
U-NASNetMobile(HR). By contrast, none of the HR images are
exploited to train ESPC_NASUnet. As depicted in Fig. 9(b)–(d),
DL-based SR networks can recover details from LR images
better than BiCubic resampling. In terms of visual effect, the
image recovered by RDN in Fig. 9(d) exhibits little difference
from the original image in Fig. 9(a), which leads to superior
semantic maps in Fig. 9(h). By contrast, many buildings are
misclassified as background in Fig. 9(f) due to the poor perfor-
mance of BiCubic resampling in Fig. 9(b).
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TABLE IV
RESULTS OF DIFFERENT STAGEWISE METHODS IN THE TWO DATASETS

Pixel-level and object-level metrics are all employed for evaluation. The numbers in brackets are difference values between the methods. A positive number indicates a higher
value than that of ESPC_NASUnet for that such metric. All positive numbers are in bold.

TABLE V
QUANTITATIVE RESULTS OF U-NASNETMOBILE(HR) AND U-NASNETMOBILE(HR)+NEAREST

The numbers in brackets are difference values between the methods and ESPC_NASUnet. A positive number indicates a higher value of the metric than that of ESPC_NASUnet.
All positive numbers are in bold.

For the MB dataset, the performance of stagewise methods
degenerates considerably. The visual effect changes substan-
tially when the spatial resolution declines from 1 to 4 m. This
challenge results in significant omission in the prediction results
of U-NASNetMobile(LR)+Nearest. In addition, the tremendous
degeneration of resolution makes image SR a tough task. The
listed BiCubic resampling and ESPCN encounter difficulty in
rebuilding images from those with 4-m resolution. In spite of
the superior performance for DREAM-B, RDN is unable to
produce clear SR images from the MB dataset. As shown in
Fig. 9(k)–(m), the SR results from the three methods are all
blurry and result in inferior semantic maps in Fig. 9(o)–(q). By
contrast, ESPC_NASUnet obtains the superior performance for
such datasets.

B. Lower Bound and Upper Bound of the SRSS Task in Terms
of Performance

For SRSS, the lower bound and upper bound are produced
in two different situations. For the upper bound, data with
HR are tested on U-NASNetMobile(HR). Data with LR are
tested on U-NASNetMobile(HR) without any preprocessing
to produce the lower bound. For a fair comparison, nearest

resampling is exploited to enhance the resolution of the gen-
erated semantic maps. The name of the lower bound is U-
NASNetMobile(HR)+Nearest.

Quantitative results are listed in Table V. In DREAM-B, the
values of all metrics for U-NASNetMobile(HR) are higher than
those of ESPC_NASUnet. However, the difference values are
smaller than 0.05. By contrast, the difference values between
U-NASNetMobile(HR)+Nearest and ESPC_NASUnet exceed
0.3 for some metrics. In Fig. V-B(a) –(d), prediction results on
a region from Nepal are depicted. In terms of delineation of
small buildings, the results of ESPC_NASUnet exhibit greater
degrees of adhesion than those of U-NASNetMobile(HR),
whereas all buildings are predicted as background by U-
NASNetMobile(HR)+Nearest. In MB, the upper bound method
produces much higher values of the metrics due to the
great difference between the input data of the two meth-
ods. Correspondingly, ESPC_NASUnet obtains much better
values of some metrics than U-NASNetMobile(HR)+Nearest.
The disparities among the three methods are enlarged in
the MB dataset due to the degradation of spatial resolu-
tion. The prediction results for a subregion in Massachusetts
are shown in Fig. V-B(e)–(h): more small buildings are
misclassified as background by ESPC_NASUnet than by
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Fig. 9. Visual examples of stagewise methods with preprocessing and ESPC_NASUnet. (a)–(i) From DREAM-B and (j)–(r) MB. (a) and (j) Original HR
images. (e) and (n) Corresponding ground truths. (b)–(d) and (k)–(m) Preprocessed images in two datasets and the three preprocessing methods are BiCubic
resampling, ESPCN and RDN, respectively. (f)–(h) and (o)–(q) Semantic maps generated by BiCubic+U-NASNetMobile(HR), ESPCN+U-NASNetMobile(HR),
and RDN+U-NASNetMobile(HR) in two datasets. (i) and (r) are generated by ESPC_NASUnet. In semantic maps, pixels in green and blue are predicted correctly
and incorrectly, respectively. Pixels in red are omitted in the prediction.

U-NASNetMobile(HR). The comparison between the upper
bound U-NASNetMobile(HR), ESPC_NASUnet, and the lower
bound NASNetMobile(HR)+Nearest shows that the perfor-
mance of ESPC_NASUnet is better than the lower bound. How-
ever, the gap between the upper bound and ESPC_NASUnet is
hard to ignore. Therefore, further improvement of the approxi-
mation effect of SRSS models is needed.

C. Comparison With Another End-to-End SRSS Network

If an SRSS network is trained without HR images, the
network can be called an HRI-free network. Otherwise, it is
called an HRI-need network. However, no HRI-free SRSS net-
work was proposed before ESPC_NASUnet. To compare the
ESPC_NASUnet with HRI-need network, we choose DBPN-
SegNet [36] as a base model and remove the SR branch of it

TABLE VI
QUANTITATIVE RESULTS OF ESPC_NASUNET, DBPN-SEGNET, AND

MDBPN-SEGNET ON THE MA DATASET

to construct a new modified DBPN-SegNet (MDBPN-SegNet).
As shown in Table III, the training data of the modified network
are the same as that of ESPC_NASUnet. We trained MDBPN-
SegNet with the same settings as ESPC_NASUnet on the MB
dataset. DBPN-SegNet is also evaluated for comparison.

As shown in Table VI, the performance of ESPC_NASUnet is
the best among the three networks in terms of the four metrics. In
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Fig. 10. SS examples of U-NASNetMobile(HR)+Nearest, U-NASNetMobile(HR), and ESPC_NASUnet. The subfigures in the first column are the buildings’
ground truth. The results generated by U-NASNetMobile(HR)+Nearest, U-NASNetMobile(HR), and ESPC_NASUnet are listed in the second, third, and fourth
columns, respectively.

Fig. 11. Visual examples of ESPC_NASUnet, DBPN-SegNet, and MDBPN-
SegNet. (a) LR image. (b)–(d) Semantic maps generated by ESPC_NASUnet,
DBPN-SegNet, and MDBPN-SegNet, respectively. In semantic maps, pixels in
green and blue are predicted correctly and wrongly. Pixels in red are omitted in
the prediction.

addition, the performance of DBPN-SegNet is worse than that of
MDBPN-SegNet, i.e., the SR task of DBPN-SegNet harms the
SS task in this dataset. As shown in Section V-A, it is a difficult
task to super-resolve the resampling images four times in the MA

TABLE VII
EVALUATION OF ESPC_NASUNET WITH DIFFERENT SR SCALE FACTORS

dataset. In other words, the multitasks cannot promote each other
when some tasks are difficult to complete. Therefore, HRI-need
networks are not necessarily effective for datasets with LR. By
contrast, the proposed ESPC_NASUnet can be applied to more
scenarios.

D. ESPC_NASUnet With Other SR Factors

The network is proposed for data with LR. To demonstrate
the efficiency of ESPC_NASUnet, more large SR scales are
employed on the MB dataset, including 6, 8, and 10. In the
training phase, the input images are resized with a large factor,
and the input labels retain the original spatial resolution. All
the training settings are the same as in the experiment with 4×
ESPC_NASUnet. The metrics of F1-score, IoU, and OF1 are
used for evaluation. The result is shown in Table VII. When the
scale factor changes from 4 to 6, the performance drops slightly.
However, the metric values drop sharply when the scale factor
is 8 or 10. The main reason is that extensive information loss
occurs in the process of shrinking the images. The larger the
factor is, the more information is lost. Remote sensing data with
LR, e.g., Sentinel-2A images, could alleviate this dilemma.
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TABLE VIII
QUANTITATIVE RESULTS OF ESPC_NASUNET ON SENTINEL-2 IMAGES

Fig. 12. Semantic maps of predicted buildings from a Sentinel-2 image. (b)
Predicted buildings with 2.5 m spatial resolution by the ESPC_NASUnet from
the Sentinel-2 image in (a). (c) Enlarged subimage from (a) marked with red box;
(d) Image in (c) overlaid with buildings predicted by the ESPC_NASUnet. The
sentinel images displayed in (a), (c), and (d) Resampled four times to correspond
the spatial resolution of predicted semantic maps.

E. ESPC_NASUnet on Sentinel-2 Images

In order to further analyze the practicability of
ESPC_NASUnet, we employed the network on Sentinel-2
images. The images used in our experiments are the level-2A
of Sentinel-2 with red, green, blue, and near infrared bands,
whose spatial resolution is 10 m. The ground truth is extracted
based on open street map (OSM). Beijing in China is chosen as
an experimental area. In consideration of that some buildings
in Beijing are not labeled in the build-up coverage of OSM, we
select 1075 patches with correct semantic labels as the training
samples and 145 patches for validation. The pixel size of all the
samples are 64 × 64 and that of corresponding ground truth is
256 × 256.

All the training settings are the same with that in Section III.
The quantitative results of validation samples are listed in Ta-
ble VIII. The 2.5 m predicted building maps of beijing are
depicted in Fig. 12. As we can find that some small buildings are
delineated well in the Fig. 12(d). Therefore, the ESPC_NASUnet
can also work well on Sentinel-2 images, which could extract
precise 2.5 m building map from 10 m Sentinel-2 image.

VI. CONCLUSION

Inspired by the image SR technologies and SS, an end-to-
end SRSS network called ESPC_NASUnet is proposed in this
article that makes full use of the relationships between higher
resolution ground truth and lower spatial resolution images. The
main conclusions of this article are as follows:

1) employing the SR module as the front component im-
proves the performance of end-to-end SRSS;

2) In contrast to SR approaches in stagewise SRSS methods,
SR modules with low complexity can help maintain the
stability and superiority of end-to-end methods;

3) the HRI-free end-to-end methods are less impacted by the
degeneration of spatial resolution;

4) the proposed ESPC_NASUnet is capable of capturing
details in LR images for fine recognition of individual
buildings.

This article is the first attempt at HRI-free SRSS for building
delineation from remote sensing images and can be used as a
reference for higher resolution mapping from lower resolution
satellite images. However, there is still a gap in the performance
between the proposed method and the SS model trained by the
HR dataset. Although the results in Section V-E have proved the
practicability of ESPC_NASUnet on Sentinel-2 satellite images
of Beijing City, the dataset is small and a larger real satellite
datasets are in need. In the future, we would furthermore explore
the practical application of the proposed method to produce
semantic maps of buildings from large-scale satellite images
with middle level resolution, for example, rapid mapping from
Sentinel-2 images for unexpected national disasters in China.
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